Abstract

Reflection filters are useful in optical communication, display, and other systems. A novel reflection filter is designed and fabricated. Analytical design formulas have been put forward and show good agreement with the measured maximum reflectance as well as with the bandwidth at the central wavelength. The effective admittance and distribution of the electrical field intensity are also calculated to analyze the properties of the filter. This novel filter with high peak reflectance, narrow bandwidth, and deep cutoff, is simple to design, easy to fabricate and convenient to integrate, compared with the conventional dielectric multilayer reflection filters.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Gamble and P. H. Lissberger, "Reflection filter multilayers of metallic and dielectric thin films," Appl. Opt. 28, 2838-2846 (1989).
    [CrossRef] [PubMed]
  2. J. S. Sheng and J. T. Lue, "Ultraviolet narrow-band rejection filters composed of multiple metal and dielectric layers," Appl. Opt. 31, 6117-6121 (1992).
    [CrossRef] [PubMed]
  3. A. Thelen, "Design of optical minus filters," Appl. Opt. 6, 365-369 (1971).
  4. X. Wang, H. Masumoto, Y. Someno, L. D. Chen, and T. Hirai, "Design and preparation of a 33-layer optical reflection filter of TiO2-SiO2 system," J. Vac. Sci. Technol. A 18, 933-937 (2000).
    [CrossRef]
  5. T. Augustsson, "Proposal of a DMUX with a Fabry-Perot all-reflection filter-based MMIMI configuration," IEEE Photon. Technol. Lett. 13, 215-217 (2001).
    [CrossRef]
  6. J. S. Sheng, J. T. Lue, and J. H. Tyan, "Design criteria for band rejection filters made from multilayer of dielectric and ultrathin metal films," Appl. Opt. 30, 1746-1748 (1991).
    [CrossRef] [PubMed]
  7. M. Q. Tan, Y. C. Lin, and D. Z. Zhao, "Reflection filter with high reflectivity and narrow bandwidth," Appl. Opt. 36, 827-830 (1997).
    [CrossRef] [PubMed]
  8. H. A. Macleod, Thin-film Optical Filters, 2nd ed. (Adam Hilger Ltd, 1986).
    [CrossRef]

2001

T. Augustsson, "Proposal of a DMUX with a Fabry-Perot all-reflection filter-based MMIMI configuration," IEEE Photon. Technol. Lett. 13, 215-217 (2001).
[CrossRef]

2000

X. Wang, H. Masumoto, Y. Someno, L. D. Chen, and T. Hirai, "Design and preparation of a 33-layer optical reflection filter of TiO2-SiO2 system," J. Vac. Sci. Technol. A 18, 933-937 (2000).
[CrossRef]

1997

1992

1991

1989

1971

Augustsson, T.

T. Augustsson, "Proposal of a DMUX with a Fabry-Perot all-reflection filter-based MMIMI configuration," IEEE Photon. Technol. Lett. 13, 215-217 (2001).
[CrossRef]

Chen, L. D.

X. Wang, H. Masumoto, Y. Someno, L. D. Chen, and T. Hirai, "Design and preparation of a 33-layer optical reflection filter of TiO2-SiO2 system," J. Vac. Sci. Technol. A 18, 933-937 (2000).
[CrossRef]

Gamble, R.

Hirai, T.

X. Wang, H. Masumoto, Y. Someno, L. D. Chen, and T. Hirai, "Design and preparation of a 33-layer optical reflection filter of TiO2-SiO2 system," J. Vac. Sci. Technol. A 18, 933-937 (2000).
[CrossRef]

Lin, Y. C.

Lissberger, P. H.

Lue, J. T.

Macleod, H. A.

H. A. Macleod, Thin-film Optical Filters, 2nd ed. (Adam Hilger Ltd, 1986).
[CrossRef]

Masumoto, H.

X. Wang, H. Masumoto, Y. Someno, L. D. Chen, and T. Hirai, "Design and preparation of a 33-layer optical reflection filter of TiO2-SiO2 system," J. Vac. Sci. Technol. A 18, 933-937 (2000).
[CrossRef]

Sheng, J. S.

Someno, Y.

X. Wang, H. Masumoto, Y. Someno, L. D. Chen, and T. Hirai, "Design and preparation of a 33-layer optical reflection filter of TiO2-SiO2 system," J. Vac. Sci. Technol. A 18, 933-937 (2000).
[CrossRef]

Tan, M. Q.

Thelen, A.

Tyan, J. H.

Wang, X.

X. Wang, H. Masumoto, Y. Someno, L. D. Chen, and T. Hirai, "Design and preparation of a 33-layer optical reflection filter of TiO2-SiO2 system," J. Vac. Sci. Technol. A 18, 933-937 (2000).
[CrossRef]

Zhao, D. Z.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Theoretically simulated reflectance curve (dashed curve) and measured curve (solid curve) of the filter Air / Cr ( LH ) 3 2 L ( HL ) 7 H / Sub .

Fig. 2
Fig. 2

(Color online) Real part (solid curve) and imaginary part (dashed curve) of effective admittance of the stack ( LH ) 3 2 L ( HL ) 7 H / Sub .

Fig. 3
Fig. 3

(a) Distribution of electrical field intensity in every layer at λ = 700 nm (solid curve) and λ = 650 nm (dashed curve) inside the filter Air / Cr ( LH ) 3 2 L ( HL ) 7 H / Sub ; (b) absorptance of the filter.

Fig. 4
Fig. 4

(Color online) Real part (solid curve) and imaginary part (dashed curve) of effective admittance of the stack ( HL ) 2 H 2L ( HL ) 7 H / Sub .

Fig. 5
Fig. 5

(a) Distribution of electrical field intensity in every layer at λ = 700 nm inside structure Air / Cr ( HL ) 2 H 2 L ( HL ) 7 H / Sub . (b) Reflectance (solid curve) and absorptance curve (dashed curve).

Tables (1)

Tables Icon

Table 1 Optical Constants of Cr Layer as a Function of Wavelength

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

M c = [ cos δ c j sin δ c / η c j η c sin δ c cos δ c ] [ 1 j 2 π d / λ 4 π d n c k c / λ 1 ] ,
R [ n 0 2 π d ( n 0 Y + 2 n c k c ) / λ Y ] 2 + ( 2 π n 0 d Y / λ Y ) 2 [ n 0 2 π d ( n 0 Y 2 n c k c ) / λ + Y ] 2 + ( 2 π n 0 d Y / λ + Y ) 2 .
[ B 0 C 0 ] M c [ 0 j / n H j n H 0 ] [ 1 x ] = [ 2 π n H d / λ 0 + j x / n H j n H + j 4 π n c k c d x / n H λ 0 ] .
R 0 ( 2 π n 0 n H d / λ 0 ) 2 + [ ( n 0 x / n H ) n H ( 4 π n c k c d x / n H λ 0 ) ] 2 ( 2 π n 0 n H d / λ 0 ) 2 + [ ( n 0 x / n H ) + n H + ( 4 π n c k c d x / n H λ 0 ) ] 2 .
2 Δ λ 0.5 4 | A | λ 0 π [ ( 24 π n 0 n c k c d / λ 0 ) n 0 2 ( 4 π n c k c d / λ 0 ) 2 ] 0.5 ,
where A = n L 1 + 2 n L n H n L [ 1 ( n H n L ) 2 ( m 1 + 1 ) ] .
| E j | = 754 T / Re ( η j ) ,

Metrics