Abstract

The development of a radiation thermometer calibrated for spectral radiance responsivity using cryogenic, electrical-substitution radiometry to determine the thermodynamic temperatures of the Ag- and Au-freezing temperatures is described. The absolute spectral radiance responsivity of the radiation thermometer is measured in the NIST Spectral Irradiance and Radiance Responsivity Calibrations using Uniform Sources (SIRCUS) facility with a total uncertainty of 0.15%(k=2) and is traceable to the electrical watt, and thus the thermodynamic temperature of any blackbody can be determined by using Planck radiation law and the measured optical power. The thermodynamic temperatures of the Ag- and Au-freezing temperatures are determined to be 1234.956  K  (±0.110  K)(k=2) and 1337.344  K (±0.129  K)(k=2) differing from the International Temperature Scale of 1990 (ITS-90) assignments by 26mK and 14mK, respectively, within the stated uncertainties. The temperatures were systematically corrected for the size- of-source effect, the nonlinearity of the preamplifier and the emissivity of the blackbody. The ultimate goal of these thermodynamic temperature measurements is to disseminate temperature scales with lower uncertainties than those of the ITS-90. These results indicate that direct disseminations of thermodynamic temperature scales are possible.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. J. Quinn, Temperature (Academic, 1990), pp. 20-22.
  2. L. A. Guildner and R. E. Edsinger, "Deviation of the international practical temperatures from thermodynamic temperatures in the temperature range from 273.16 K to 730 K," J. Res. Natl. Bur. Stand. 80A, 703-738 (1976).
  3. M. R. Moldover, S. J. Boyes, C. W. Meyer, and A. R. H. Goodwin, "Thermodynamic temperatures of the triplepoints of mercury and Gallium in the interal 217 K to 303 K," J. Res. Natl. Inst. Stand. Technol . 104, 11-46 (1999).
  4. L. Crovini and A. Actis, "Noise thermometry in the range 630 °C to 962 °C," Metrologia 14, 69-78 (1978).
    [CrossRef]
  5. R. E. Edsinger and J. F. Schooley, "Differences between thermodynamic temperature and t (IPTS-68) in the range 230 °C to 660 °C," Metrologia 26, 95-106 (1989).
    [CrossRef]
  6. D. R. White, R. Galleano, A. Actis, H. Brixy, M. De Groot, J. Dubbeldam, A. L. Reesink, F. Edler, H. Sakurai, R. L. Shepard, and J. C. Gallop, "The status of Johnson noise thermometry," Metrologia 33, 325-335 (1996).
    [CrossRef]
  7. Supplementary Information for the International Temperature Scale of 1990, Sèvres, Bureau International des Poids et Mesures, 1990.
  8. T. J. Quinn and J. E. Martin, "A radiometric determination of the Stefan-Boltzmann constant and thermodynamic temperatures between −40 °C and +100 °C," Philos. Trans. R. Soc. 316, 85-189 (1985).
    [CrossRef]
  9. H. W. Yoon and C. E. Gibson, in Proceedings of TEMPMEKO'99, J. F. Dubbledam and M. J. de Groot, eds., Vol. II (IMEKO/Nmi Van Swinden Laboratorium, Delft, 1999, pp. 737-742.
  10. N. P. Fox, J. E. Martin, and D. H. Nettleton, "Radiometric aspects of an experiment to determine the melting/freezing temperature of gold," Metrologia 28, 221-227 (1991).
    [CrossRef]
  11. W. R. Blevin and B. Steiner, "Redefinition of the candela and lumen," Metrologia 11, 97-104 (1975).
    [CrossRef]
  12. P. J. Martin, H. A. Macleod, R. P. Netterfield, C. G. Pacey, and W. G. Sainty, "Ion-beam-assisted deposition of thin films," Appl. Opt. 22, 178-184 (1983).
    [CrossRef] [PubMed]
  13. S. W. Brown, G. P. Eppeldauer, and K. R. Lykke, "Facility for spectral irradiance and radiance responsivity calibrations using uniform sources," Appl. Opt. 45, 8218-8237 (2006).
    [CrossRef] [PubMed]
  14. P. J. Mohr and B. N. Taylor, "CODATA recommended values of the fundamental physical constants: 2002," Rev. Mod. Phys. 77, 1-108 (2005).
    [CrossRef]
  15. G. P. Eppeldauer and J. E. Hardis, "Fourteen-decade photocurrent measurements with large-area silicon photodiodes at room temperature," Appl. Opt. 30, 3091-3099 (1991).
    [CrossRef] [PubMed]
  16. F. Sakuma and S. Hattori, "Establishing a practical temperature standard by using a narrow-band radiation thermometer with a silicon detector," in Temperature: Its Measurement and Control in Science and Industry, J. F. Schooley, ed. (AIP, 1982), Vol. 5, pp. 421-427.
  17. V. I. Sapritsky and A. V. Prokhorov, "Spectral effective emissivities of nonisothermal cavities calculated by the Monte Carlo method," Appl. Opt. 34, 5645-5652 (1995).
    [CrossRef] [PubMed]
  18. G. Bauer and K. Bischoff, "Evaluation of the emissivity of a cavity source by reflection measurements," Appl. Opt. 10, 2639-2643 (1971).
    [CrossRef] [PubMed]
  19. C. K. Ma, "Method for the measurement of the effective emissivity of a cavity," in Proceedings of TEMPMEKO'04, D. Zvizdic, ed. (Laboratory for Process Measurement, Zagreb, 2005), pp. 575-580.
  20. F. Sakuma and L. Ma, "Evaluation of the fixed-point cavity emissivity at NMIJ," in Proceedings of TEMPMEKO'04, D. Zvizdic, ed. (Laboratory for Process Measurement, Zagreb, 2005), pp. 563-568.
  21. N. P. Fox, J. E. Martin, and D. H. Nettleton, "Absolute spectral radiometric determination of the thermodynamic temperatures of the melting/freezing points of gold, silver, and aluminum," Metrologia 28, 357-374 (1991).
    [CrossRef]
  22. K. D. Mielenz, R. D. Saunders, and J. B. Shumaker, "Spectroradiometric determination of the freezing temperature of gold," J. Res. Natl. Inst. Stand. Technol. 95, 49-67 (1990).
  23. R. L. Rusby, R. P. Hudson, M. Durieux, J. F. Schooley, P. P. M. Steur, and C. A. Swenson, "Thermodynamic basis of the ITS-90," Metrologia 28, 9-18 (1991).
    [CrossRef]
  24. J. Fischer, M. Battuello, M. Sadli, M. Ballico, S. N. Park, P. Saunders, Y. Zundong, B. C. Johnson, E. Van der Ham, F. Sakuma, G. Machin, N. Fox, W. Li, S. Ugur, and M. Matveyev, "Uncertainty budgets for realization of ITS-90 by radiation thermometry," in Temperature: Its Measurement and Control in Science and Industry, D. C. Ripple, ed. (AIP, 2003), Vol. 7, pp. 631-638.

2006

2005

P. J. Mohr and B. N. Taylor, "CODATA recommended values of the fundamental physical constants: 2002," Rev. Mod. Phys. 77, 1-108 (2005).
[CrossRef]

1999

M. R. Moldover, S. J. Boyes, C. W. Meyer, and A. R. H. Goodwin, "Thermodynamic temperatures of the triplepoints of mercury and Gallium in the interal 217 K to 303 K," J. Res. Natl. Inst. Stand. Technol . 104, 11-46 (1999).

1996

D. R. White, R. Galleano, A. Actis, H. Brixy, M. De Groot, J. Dubbeldam, A. L. Reesink, F. Edler, H. Sakurai, R. L. Shepard, and J. C. Gallop, "The status of Johnson noise thermometry," Metrologia 33, 325-335 (1996).
[CrossRef]

1995

1991

G. P. Eppeldauer and J. E. Hardis, "Fourteen-decade photocurrent measurements with large-area silicon photodiodes at room temperature," Appl. Opt. 30, 3091-3099 (1991).
[CrossRef] [PubMed]

N. P. Fox, J. E. Martin, and D. H. Nettleton, "Absolute spectral radiometric determination of the thermodynamic temperatures of the melting/freezing points of gold, silver, and aluminum," Metrologia 28, 357-374 (1991).
[CrossRef]

R. L. Rusby, R. P. Hudson, M. Durieux, J. F. Schooley, P. P. M. Steur, and C. A. Swenson, "Thermodynamic basis of the ITS-90," Metrologia 28, 9-18 (1991).
[CrossRef]

N. P. Fox, J. E. Martin, and D. H. Nettleton, "Radiometric aspects of an experiment to determine the melting/freezing temperature of gold," Metrologia 28, 221-227 (1991).
[CrossRef]

1990

K. D. Mielenz, R. D. Saunders, and J. B. Shumaker, "Spectroradiometric determination of the freezing temperature of gold," J. Res. Natl. Inst. Stand. Technol. 95, 49-67 (1990).

1989

R. E. Edsinger and J. F. Schooley, "Differences between thermodynamic temperature and t (IPTS-68) in the range 230 °C to 660 °C," Metrologia 26, 95-106 (1989).
[CrossRef]

1985

T. J. Quinn and J. E. Martin, "A radiometric determination of the Stefan-Boltzmann constant and thermodynamic temperatures between −40 °C and +100 °C," Philos. Trans. R. Soc. 316, 85-189 (1985).
[CrossRef]

1983

1978

L. Crovini and A. Actis, "Noise thermometry in the range 630 °C to 962 °C," Metrologia 14, 69-78 (1978).
[CrossRef]

1976

L. A. Guildner and R. E. Edsinger, "Deviation of the international practical temperatures from thermodynamic temperatures in the temperature range from 273.16 K to 730 K," J. Res. Natl. Bur. Stand. 80A, 703-738 (1976).

1975

W. R. Blevin and B. Steiner, "Redefinition of the candela and lumen," Metrologia 11, 97-104 (1975).
[CrossRef]

1971

Actis, A.

D. R. White, R. Galleano, A. Actis, H. Brixy, M. De Groot, J. Dubbeldam, A. L. Reesink, F. Edler, H. Sakurai, R. L. Shepard, and J. C. Gallop, "The status of Johnson noise thermometry," Metrologia 33, 325-335 (1996).
[CrossRef]

L. Crovini and A. Actis, "Noise thermometry in the range 630 °C to 962 °C," Metrologia 14, 69-78 (1978).
[CrossRef]

Ballico, M.

J. Fischer, M. Battuello, M. Sadli, M. Ballico, S. N. Park, P. Saunders, Y. Zundong, B. C. Johnson, E. Van der Ham, F. Sakuma, G. Machin, N. Fox, W. Li, S. Ugur, and M. Matveyev, "Uncertainty budgets for realization of ITS-90 by radiation thermometry," in Temperature: Its Measurement and Control in Science and Industry, D. C. Ripple, ed. (AIP, 2003), Vol. 7, pp. 631-638.

Battuello, M.

J. Fischer, M. Battuello, M. Sadli, M. Ballico, S. N. Park, P. Saunders, Y. Zundong, B. C. Johnson, E. Van der Ham, F. Sakuma, G. Machin, N. Fox, W. Li, S. Ugur, and M. Matveyev, "Uncertainty budgets for realization of ITS-90 by radiation thermometry," in Temperature: Its Measurement and Control in Science and Industry, D. C. Ripple, ed. (AIP, 2003), Vol. 7, pp. 631-638.

Bauer, G.

Bischoff, K.

Blevin, W. R.

W. R. Blevin and B. Steiner, "Redefinition of the candela and lumen," Metrologia 11, 97-104 (1975).
[CrossRef]

Boyes, S. J.

M. R. Moldover, S. J. Boyes, C. W. Meyer, and A. R. H. Goodwin, "Thermodynamic temperatures of the triplepoints of mercury and Gallium in the interal 217 K to 303 K," J. Res. Natl. Inst. Stand. Technol . 104, 11-46 (1999).

Brixy, H.

D. R. White, R. Galleano, A. Actis, H. Brixy, M. De Groot, J. Dubbeldam, A. L. Reesink, F. Edler, H. Sakurai, R. L. Shepard, and J. C. Gallop, "The status of Johnson noise thermometry," Metrologia 33, 325-335 (1996).
[CrossRef]

Brown, S. W.

Crovini, L.

L. Crovini and A. Actis, "Noise thermometry in the range 630 °C to 962 °C," Metrologia 14, 69-78 (1978).
[CrossRef]

De Groot, M.

D. R. White, R. Galleano, A. Actis, H. Brixy, M. De Groot, J. Dubbeldam, A. L. Reesink, F. Edler, H. Sakurai, R. L. Shepard, and J. C. Gallop, "The status of Johnson noise thermometry," Metrologia 33, 325-335 (1996).
[CrossRef]

Dubbeldam, J.

D. R. White, R. Galleano, A. Actis, H. Brixy, M. De Groot, J. Dubbeldam, A. L. Reesink, F. Edler, H. Sakurai, R. L. Shepard, and J. C. Gallop, "The status of Johnson noise thermometry," Metrologia 33, 325-335 (1996).
[CrossRef]

Durieux, M.

R. L. Rusby, R. P. Hudson, M. Durieux, J. F. Schooley, P. P. M. Steur, and C. A. Swenson, "Thermodynamic basis of the ITS-90," Metrologia 28, 9-18 (1991).
[CrossRef]

Edler, F.

D. R. White, R. Galleano, A. Actis, H. Brixy, M. De Groot, J. Dubbeldam, A. L. Reesink, F. Edler, H. Sakurai, R. L. Shepard, and J. C. Gallop, "The status of Johnson noise thermometry," Metrologia 33, 325-335 (1996).
[CrossRef]

Edsinger, R. E.

R. E. Edsinger and J. F. Schooley, "Differences between thermodynamic temperature and t (IPTS-68) in the range 230 °C to 660 °C," Metrologia 26, 95-106 (1989).
[CrossRef]

L. A. Guildner and R. E. Edsinger, "Deviation of the international practical temperatures from thermodynamic temperatures in the temperature range from 273.16 K to 730 K," J. Res. Natl. Bur. Stand. 80A, 703-738 (1976).

Eppeldauer, G. P.

Fischer, J.

J. Fischer, M. Battuello, M. Sadli, M. Ballico, S. N. Park, P. Saunders, Y. Zundong, B. C. Johnson, E. Van der Ham, F. Sakuma, G. Machin, N. Fox, W. Li, S. Ugur, and M. Matveyev, "Uncertainty budgets for realization of ITS-90 by radiation thermometry," in Temperature: Its Measurement and Control in Science and Industry, D. C. Ripple, ed. (AIP, 2003), Vol. 7, pp. 631-638.

Fox, N.

J. Fischer, M. Battuello, M. Sadli, M. Ballico, S. N. Park, P. Saunders, Y. Zundong, B. C. Johnson, E. Van der Ham, F. Sakuma, G. Machin, N. Fox, W. Li, S. Ugur, and M. Matveyev, "Uncertainty budgets for realization of ITS-90 by radiation thermometry," in Temperature: Its Measurement and Control in Science and Industry, D. C. Ripple, ed. (AIP, 2003), Vol. 7, pp. 631-638.

Fox, N. P.

N. P. Fox, J. E. Martin, and D. H. Nettleton, "Absolute spectral radiometric determination of the thermodynamic temperatures of the melting/freezing points of gold, silver, and aluminum," Metrologia 28, 357-374 (1991).
[CrossRef]

N. P. Fox, J. E. Martin, and D. H. Nettleton, "Radiometric aspects of an experiment to determine the melting/freezing temperature of gold," Metrologia 28, 221-227 (1991).
[CrossRef]

Galleano, R.

D. R. White, R. Galleano, A. Actis, H. Brixy, M. De Groot, J. Dubbeldam, A. L. Reesink, F. Edler, H. Sakurai, R. L. Shepard, and J. C. Gallop, "The status of Johnson noise thermometry," Metrologia 33, 325-335 (1996).
[CrossRef]

Gallop, J. C.

D. R. White, R. Galleano, A. Actis, H. Brixy, M. De Groot, J. Dubbeldam, A. L. Reesink, F. Edler, H. Sakurai, R. L. Shepard, and J. C. Gallop, "The status of Johnson noise thermometry," Metrologia 33, 325-335 (1996).
[CrossRef]

Gibson, C. E.

H. W. Yoon and C. E. Gibson, in Proceedings of TEMPMEKO'99, J. F. Dubbledam and M. J. de Groot, eds., Vol. II (IMEKO/Nmi Van Swinden Laboratorium, Delft, 1999, pp. 737-742.

Goodwin, A. R. H.

M. R. Moldover, S. J. Boyes, C. W. Meyer, and A. R. H. Goodwin, "Thermodynamic temperatures of the triplepoints of mercury and Gallium in the interal 217 K to 303 K," J. Res. Natl. Inst. Stand. Technol . 104, 11-46 (1999).

Guildner, L. A.

L. A. Guildner and R. E. Edsinger, "Deviation of the international practical temperatures from thermodynamic temperatures in the temperature range from 273.16 K to 730 K," J. Res. Natl. Bur. Stand. 80A, 703-738 (1976).

Hardis, J. E.

Hattori, S.

F. Sakuma and S. Hattori, "Establishing a practical temperature standard by using a narrow-band radiation thermometer with a silicon detector," in Temperature: Its Measurement and Control in Science and Industry, J. F. Schooley, ed. (AIP, 1982), Vol. 5, pp. 421-427.

Hudson, R. P.

R. L. Rusby, R. P. Hudson, M. Durieux, J. F. Schooley, P. P. M. Steur, and C. A. Swenson, "Thermodynamic basis of the ITS-90," Metrologia 28, 9-18 (1991).
[CrossRef]

Johnson, B. C.

J. Fischer, M. Battuello, M. Sadli, M. Ballico, S. N. Park, P. Saunders, Y. Zundong, B. C. Johnson, E. Van der Ham, F. Sakuma, G. Machin, N. Fox, W. Li, S. Ugur, and M. Matveyev, "Uncertainty budgets for realization of ITS-90 by radiation thermometry," in Temperature: Its Measurement and Control in Science and Industry, D. C. Ripple, ed. (AIP, 2003), Vol. 7, pp. 631-638.

Li, W.

J. Fischer, M. Battuello, M. Sadli, M. Ballico, S. N. Park, P. Saunders, Y. Zundong, B. C. Johnson, E. Van der Ham, F. Sakuma, G. Machin, N. Fox, W. Li, S. Ugur, and M. Matveyev, "Uncertainty budgets for realization of ITS-90 by radiation thermometry," in Temperature: Its Measurement and Control in Science and Industry, D. C. Ripple, ed. (AIP, 2003), Vol. 7, pp. 631-638.

Lykke, K. R.

Ma, C. K.

C. K. Ma, "Method for the measurement of the effective emissivity of a cavity," in Proceedings of TEMPMEKO'04, D. Zvizdic, ed. (Laboratory for Process Measurement, Zagreb, 2005), pp. 575-580.

Ma, L.

F. Sakuma and L. Ma, "Evaluation of the fixed-point cavity emissivity at NMIJ," in Proceedings of TEMPMEKO'04, D. Zvizdic, ed. (Laboratory for Process Measurement, Zagreb, 2005), pp. 563-568.

Machin, G.

J. Fischer, M. Battuello, M. Sadli, M. Ballico, S. N. Park, P. Saunders, Y. Zundong, B. C. Johnson, E. Van der Ham, F. Sakuma, G. Machin, N. Fox, W. Li, S. Ugur, and M. Matveyev, "Uncertainty budgets for realization of ITS-90 by radiation thermometry," in Temperature: Its Measurement and Control in Science and Industry, D. C. Ripple, ed. (AIP, 2003), Vol. 7, pp. 631-638.

Macleod, H. A.

Martin, J. E.

N. P. Fox, J. E. Martin, and D. H. Nettleton, "Radiometric aspects of an experiment to determine the melting/freezing temperature of gold," Metrologia 28, 221-227 (1991).
[CrossRef]

N. P. Fox, J. E. Martin, and D. H. Nettleton, "Absolute spectral radiometric determination of the thermodynamic temperatures of the melting/freezing points of gold, silver, and aluminum," Metrologia 28, 357-374 (1991).
[CrossRef]

T. J. Quinn and J. E. Martin, "A radiometric determination of the Stefan-Boltzmann constant and thermodynamic temperatures between −40 °C and +100 °C," Philos. Trans. R. Soc. 316, 85-189 (1985).
[CrossRef]

Martin, P. J.

Matveyev, M.

J. Fischer, M. Battuello, M. Sadli, M. Ballico, S. N. Park, P. Saunders, Y. Zundong, B. C. Johnson, E. Van der Ham, F. Sakuma, G. Machin, N. Fox, W. Li, S. Ugur, and M. Matveyev, "Uncertainty budgets for realization of ITS-90 by radiation thermometry," in Temperature: Its Measurement and Control in Science and Industry, D. C. Ripple, ed. (AIP, 2003), Vol. 7, pp. 631-638.

Meyer, C. W.

M. R. Moldover, S. J. Boyes, C. W. Meyer, and A. R. H. Goodwin, "Thermodynamic temperatures of the triplepoints of mercury and Gallium in the interal 217 K to 303 K," J. Res. Natl. Inst. Stand. Technol . 104, 11-46 (1999).

Mielenz, K. D.

K. D. Mielenz, R. D. Saunders, and J. B. Shumaker, "Spectroradiometric determination of the freezing temperature of gold," J. Res. Natl. Inst. Stand. Technol. 95, 49-67 (1990).

Mohr, P. J.

P. J. Mohr and B. N. Taylor, "CODATA recommended values of the fundamental physical constants: 2002," Rev. Mod. Phys. 77, 1-108 (2005).
[CrossRef]

Moldover, M. R.

M. R. Moldover, S. J. Boyes, C. W. Meyer, and A. R. H. Goodwin, "Thermodynamic temperatures of the triplepoints of mercury and Gallium in the interal 217 K to 303 K," J. Res. Natl. Inst. Stand. Technol . 104, 11-46 (1999).

Netterfield, R. P.

Nettleton, D. H.

N. P. Fox, J. E. Martin, and D. H. Nettleton, "Radiometric aspects of an experiment to determine the melting/freezing temperature of gold," Metrologia 28, 221-227 (1991).
[CrossRef]

N. P. Fox, J. E. Martin, and D. H. Nettleton, "Absolute spectral radiometric determination of the thermodynamic temperatures of the melting/freezing points of gold, silver, and aluminum," Metrologia 28, 357-374 (1991).
[CrossRef]

Pacey, C. G.

Park, S. N.

J. Fischer, M. Battuello, M. Sadli, M. Ballico, S. N. Park, P. Saunders, Y. Zundong, B. C. Johnson, E. Van der Ham, F. Sakuma, G. Machin, N. Fox, W. Li, S. Ugur, and M. Matveyev, "Uncertainty budgets for realization of ITS-90 by radiation thermometry," in Temperature: Its Measurement and Control in Science and Industry, D. C. Ripple, ed. (AIP, 2003), Vol. 7, pp. 631-638.

Prokhorov, A. V.

Quinn, T. J.

T. J. Quinn and J. E. Martin, "A radiometric determination of the Stefan-Boltzmann constant and thermodynamic temperatures between −40 °C and +100 °C," Philos. Trans. R. Soc. 316, 85-189 (1985).
[CrossRef]

T. J. Quinn, Temperature (Academic, 1990), pp. 20-22.

Reesink, A. L.

D. R. White, R. Galleano, A. Actis, H. Brixy, M. De Groot, J. Dubbeldam, A. L. Reesink, F. Edler, H. Sakurai, R. L. Shepard, and J. C. Gallop, "The status of Johnson noise thermometry," Metrologia 33, 325-335 (1996).
[CrossRef]

Rusby, R. L.

R. L. Rusby, R. P. Hudson, M. Durieux, J. F. Schooley, P. P. M. Steur, and C. A. Swenson, "Thermodynamic basis of the ITS-90," Metrologia 28, 9-18 (1991).
[CrossRef]

Sadli, M.

J. Fischer, M. Battuello, M. Sadli, M. Ballico, S. N. Park, P. Saunders, Y. Zundong, B. C. Johnson, E. Van der Ham, F. Sakuma, G. Machin, N. Fox, W. Li, S. Ugur, and M. Matveyev, "Uncertainty budgets for realization of ITS-90 by radiation thermometry," in Temperature: Its Measurement and Control in Science and Industry, D. C. Ripple, ed. (AIP, 2003), Vol. 7, pp. 631-638.

Sainty, W. G.

Sakuma, F.

F. Sakuma and S. Hattori, "Establishing a practical temperature standard by using a narrow-band radiation thermometer with a silicon detector," in Temperature: Its Measurement and Control in Science and Industry, J. F. Schooley, ed. (AIP, 1982), Vol. 5, pp. 421-427.

J. Fischer, M. Battuello, M. Sadli, M. Ballico, S. N. Park, P. Saunders, Y. Zundong, B. C. Johnson, E. Van der Ham, F. Sakuma, G. Machin, N. Fox, W. Li, S. Ugur, and M. Matveyev, "Uncertainty budgets for realization of ITS-90 by radiation thermometry," in Temperature: Its Measurement and Control in Science and Industry, D. C. Ripple, ed. (AIP, 2003), Vol. 7, pp. 631-638.

F. Sakuma and L. Ma, "Evaluation of the fixed-point cavity emissivity at NMIJ," in Proceedings of TEMPMEKO'04, D. Zvizdic, ed. (Laboratory for Process Measurement, Zagreb, 2005), pp. 563-568.

Sakurai, H.

D. R. White, R. Galleano, A. Actis, H. Brixy, M. De Groot, J. Dubbeldam, A. L. Reesink, F. Edler, H. Sakurai, R. L. Shepard, and J. C. Gallop, "The status of Johnson noise thermometry," Metrologia 33, 325-335 (1996).
[CrossRef]

Sapritsky, V. I.

Saunders, P.

J. Fischer, M. Battuello, M. Sadli, M. Ballico, S. N. Park, P. Saunders, Y. Zundong, B. C. Johnson, E. Van der Ham, F. Sakuma, G. Machin, N. Fox, W. Li, S. Ugur, and M. Matveyev, "Uncertainty budgets for realization of ITS-90 by radiation thermometry," in Temperature: Its Measurement and Control in Science and Industry, D. C. Ripple, ed. (AIP, 2003), Vol. 7, pp. 631-638.

Saunders, R. D.

K. D. Mielenz, R. D. Saunders, and J. B. Shumaker, "Spectroradiometric determination of the freezing temperature of gold," J. Res. Natl. Inst. Stand. Technol. 95, 49-67 (1990).

Schooley, J. F.

R. L. Rusby, R. P. Hudson, M. Durieux, J. F. Schooley, P. P. M. Steur, and C. A. Swenson, "Thermodynamic basis of the ITS-90," Metrologia 28, 9-18 (1991).
[CrossRef]

R. E. Edsinger and J. F. Schooley, "Differences between thermodynamic temperature and t (IPTS-68) in the range 230 °C to 660 °C," Metrologia 26, 95-106 (1989).
[CrossRef]

Shepard, R. L.

D. R. White, R. Galleano, A. Actis, H. Brixy, M. De Groot, J. Dubbeldam, A. L. Reesink, F. Edler, H. Sakurai, R. L. Shepard, and J. C. Gallop, "The status of Johnson noise thermometry," Metrologia 33, 325-335 (1996).
[CrossRef]

Shumaker, J. B.

K. D. Mielenz, R. D. Saunders, and J. B. Shumaker, "Spectroradiometric determination of the freezing temperature of gold," J. Res. Natl. Inst. Stand. Technol. 95, 49-67 (1990).

Steiner, B.

W. R. Blevin and B. Steiner, "Redefinition of the candela and lumen," Metrologia 11, 97-104 (1975).
[CrossRef]

Steur, P. P. M.

R. L. Rusby, R. P. Hudson, M. Durieux, J. F. Schooley, P. P. M. Steur, and C. A. Swenson, "Thermodynamic basis of the ITS-90," Metrologia 28, 9-18 (1991).
[CrossRef]

Swenson, C. A.

R. L. Rusby, R. P. Hudson, M. Durieux, J. F. Schooley, P. P. M. Steur, and C. A. Swenson, "Thermodynamic basis of the ITS-90," Metrologia 28, 9-18 (1991).
[CrossRef]

Taylor, B. N.

P. J. Mohr and B. N. Taylor, "CODATA recommended values of the fundamental physical constants: 2002," Rev. Mod. Phys. 77, 1-108 (2005).
[CrossRef]

Ugur, S.

J. Fischer, M. Battuello, M. Sadli, M. Ballico, S. N. Park, P. Saunders, Y. Zundong, B. C. Johnson, E. Van der Ham, F. Sakuma, G. Machin, N. Fox, W. Li, S. Ugur, and M. Matveyev, "Uncertainty budgets for realization of ITS-90 by radiation thermometry," in Temperature: Its Measurement and Control in Science and Industry, D. C. Ripple, ed. (AIP, 2003), Vol. 7, pp. 631-638.

Van der Ham, E.

J. Fischer, M. Battuello, M. Sadli, M. Ballico, S. N. Park, P. Saunders, Y. Zundong, B. C. Johnson, E. Van der Ham, F. Sakuma, G. Machin, N. Fox, W. Li, S. Ugur, and M. Matveyev, "Uncertainty budgets for realization of ITS-90 by radiation thermometry," in Temperature: Its Measurement and Control in Science and Industry, D. C. Ripple, ed. (AIP, 2003), Vol. 7, pp. 631-638.

White, D. R.

D. R. White, R. Galleano, A. Actis, H. Brixy, M. De Groot, J. Dubbeldam, A. L. Reesink, F. Edler, H. Sakurai, R. L. Shepard, and J. C. Gallop, "The status of Johnson noise thermometry," Metrologia 33, 325-335 (1996).
[CrossRef]

Yoon, H. W.

H. W. Yoon and C. E. Gibson, in Proceedings of TEMPMEKO'99, J. F. Dubbledam and M. J. de Groot, eds., Vol. II (IMEKO/Nmi Van Swinden Laboratorium, Delft, 1999, pp. 737-742.

Zundong, Y.

J. Fischer, M. Battuello, M. Sadli, M. Ballico, S. N. Park, P. Saunders, Y. Zundong, B. C. Johnson, E. Van der Ham, F. Sakuma, G. Machin, N. Fox, W. Li, S. Ugur, and M. Matveyev, "Uncertainty budgets for realization of ITS-90 by radiation thermometry," in Temperature: Its Measurement and Control in Science and Industry, D. C. Ripple, ed. (AIP, 2003), Vol. 7, pp. 631-638.

Appl. Opt.

J. Res. Natl. Bur. Stand.

L. A. Guildner and R. E. Edsinger, "Deviation of the international practical temperatures from thermodynamic temperatures in the temperature range from 273.16 K to 730 K," J. Res. Natl. Bur. Stand. 80A, 703-738 (1976).

J. Res. Natl. Inst. Stand. Technol

M. R. Moldover, S. J. Boyes, C. W. Meyer, and A. R. H. Goodwin, "Thermodynamic temperatures of the triplepoints of mercury and Gallium in the interal 217 K to 303 K," J. Res. Natl. Inst. Stand. Technol . 104, 11-46 (1999).

J. Res. Natl. Inst. Stand. Technol.

K. D. Mielenz, R. D. Saunders, and J. B. Shumaker, "Spectroradiometric determination of the freezing temperature of gold," J. Res. Natl. Inst. Stand. Technol. 95, 49-67 (1990).

Metrologia

R. L. Rusby, R. P. Hudson, M. Durieux, J. F. Schooley, P. P. M. Steur, and C. A. Swenson, "Thermodynamic basis of the ITS-90," Metrologia 28, 9-18 (1991).
[CrossRef]

L. Crovini and A. Actis, "Noise thermometry in the range 630 °C to 962 °C," Metrologia 14, 69-78 (1978).
[CrossRef]

R. E. Edsinger and J. F. Schooley, "Differences between thermodynamic temperature and t (IPTS-68) in the range 230 °C to 660 °C," Metrologia 26, 95-106 (1989).
[CrossRef]

D. R. White, R. Galleano, A. Actis, H. Brixy, M. De Groot, J. Dubbeldam, A. L. Reesink, F. Edler, H. Sakurai, R. L. Shepard, and J. C. Gallop, "The status of Johnson noise thermometry," Metrologia 33, 325-335 (1996).
[CrossRef]

N. P. Fox, J. E. Martin, and D. H. Nettleton, "Radiometric aspects of an experiment to determine the melting/freezing temperature of gold," Metrologia 28, 221-227 (1991).
[CrossRef]

W. R. Blevin and B. Steiner, "Redefinition of the candela and lumen," Metrologia 11, 97-104 (1975).
[CrossRef]

N. P. Fox, J. E. Martin, and D. H. Nettleton, "Absolute spectral radiometric determination of the thermodynamic temperatures of the melting/freezing points of gold, silver, and aluminum," Metrologia 28, 357-374 (1991).
[CrossRef]

Philos. Trans. R. Soc.

T. J. Quinn and J. E. Martin, "A radiometric determination of the Stefan-Boltzmann constant and thermodynamic temperatures between −40 °C and +100 °C," Philos. Trans. R. Soc. 316, 85-189 (1985).
[CrossRef]

Rev. Mod. Phys.

P. J. Mohr and B. N. Taylor, "CODATA recommended values of the fundamental physical constants: 2002," Rev. Mod. Phys. 77, 1-108 (2005).
[CrossRef]

Other

F. Sakuma and S. Hattori, "Establishing a practical temperature standard by using a narrow-band radiation thermometer with a silicon detector," in Temperature: Its Measurement and Control in Science and Industry, J. F. Schooley, ed. (AIP, 1982), Vol. 5, pp. 421-427.

C. K. Ma, "Method for the measurement of the effective emissivity of a cavity," in Proceedings of TEMPMEKO'04, D. Zvizdic, ed. (Laboratory for Process Measurement, Zagreb, 2005), pp. 575-580.

F. Sakuma and L. Ma, "Evaluation of the fixed-point cavity emissivity at NMIJ," in Proceedings of TEMPMEKO'04, D. Zvizdic, ed. (Laboratory for Process Measurement, Zagreb, 2005), pp. 563-568.

Supplementary Information for the International Temperature Scale of 1990, Sèvres, Bureau International des Poids et Mesures, 1990.

H. W. Yoon and C. E. Gibson, in Proceedings of TEMPMEKO'99, J. F. Dubbledam and M. J. de Groot, eds., Vol. II (IMEKO/Nmi Van Swinden Laboratorium, Delft, 1999, pp. 737-742.

T. J. Quinn, Temperature (Academic, 1990), pp. 20-22.

J. Fischer, M. Battuello, M. Sadli, M. Ballico, S. N. Park, P. Saunders, Y. Zundong, B. C. Johnson, E. Van der Ham, F. Sakuma, G. Machin, N. Fox, W. Li, S. Ugur, and M. Matveyev, "Uncertainty budgets for realization of ITS-90 by radiation thermometry," in Temperature: Its Measurement and Control in Science and Industry, D. C. Ripple, ed. (AIP, 2003), Vol. 7, pp. 631-638.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

(Color online) Schematic of the AP1 placed in front of the gold-point blackbody. The aperture stop (AS), field stop (FS), relay lens (RL), interference filter (IF), and the photodiode (PD) are shown.

Fig. 2
Fig. 2

(Color online) Procedure for detector-based spectral radiance responsivity calibrations with the use of the electrical substitution radiometer. (a) Measurement of the spectral power of the laser with the cryogenic electrical substitution radiometer; (b) determination of the spectral power responsivity of the Si-trap detector; (c) measurement of the spectral irradiance of the integrating sphere source; (d) determination of the radiance responsivity of the radiation thermometer as a system.

Fig. 3
Fig. 3

(Color online) Radiance responsivity of the AP1 measured in the SIRCUS facility plotted with the Planck radiance at 1337.33 K. The center wavelength is 650 nm with a FWHM of 10 nm . The out-of-band suppression of < 1 × 10 7 is achieved in the wavelength region from 700 to 1000 nm .

Fig. 4
Fig. 4

(Color online) Spectral radiance responsivity near the peak of the responsivity function showing the interference fringes. The fringes arise from the interference of the radiation with the planar reflective surfaces in the AP1. The presences of the fringes require measurements at sufficient wavelength intervals to resolve them.

Fig. 5
Fig. 5

(Color online) Calculated photocurrent as a function of the blackbody temperature. The calculation is performed with no adjustable parameters.

Fig. 6
Fig. 6

(Color online) Spatial responsivity of the AP1 measured using an illuminated 10 μ m pinhole scanned across the object plane.

Fig. 7
Fig. 7

(Color online) SSE measured for the AP1 using an LED radiance source with a 5   mm diameter central obscuration.

Fig. 8
Fig. 8

(Color online) Spatial scans of the Au-freezing temperature blackbody during the freeze for use in SSE corrections.

Fig. 9
Fig. 9

Schematic of the NIST furnace showing the (1) graphite cavity and the (2) crucible, which is surrounded by the (3) cylindrical heat pipe, which is heated by the (4) semicylindrical heater elements. The alumina tube separates the crucible from the Inconel liner, and the argon purge enters from the rear and exits at the front opening of the furnace to reduce oxidation of the graphite elements.

Fig. 10
Fig. 10

(Color online) Design of the Ag- and Au-freezing temperature crucibles. The graphite crucible is operated inside a furnace with Na-heatpipe liner for temperature uniformity. The conical cavity has an apex angle of 57°.

Fig. 11
Fig. 11

(Color online) Repeat temperature cycle of melts and freezes of the Au-point blackbody measured with the AP1 showing the melt, slight supercool, and the freeze.

Fig. 12
Fig. 12

(Color online) Plot of the melts and freezes of the Au point on an expanded temperature scale. The slight drift in the temperatures is attributable to the changes in the dark signal of the AP1.

Fig. 13
Fig. 13

(Color online) Representative Au melt and freeze temperatures measured using the AP1. The slight positive slope in the melt and the negative slope in the freeze is likely attributable to the size- of-source effect of the AP1.

Fig. 14
Fig. 14

(Color online) Summary of the Au-point measurements with the AP1 with the line indicating the ITS-90 assigned temperature.

Fig. 15
Fig. 15

(Color online) Summary of AP1 measurements of the Ag point along with the ITS-90 assigned temperature.

Tables (7)

Tables Icon

Table 1 AP1 Preamplifier Gain Corrections Measured 11 June 2002

Tables Icon

Table 2 Calculated Emissivity of the Graphite Blackbody Cavity with 50 mm Depth and 57° Conical Bottom and λ = 650 nm with Two Different Initial Conditions for the Graphite Emissivity

Tables Icon

Table 3 Systematic Correction Factors to the AP1 Signal

Tables Icon

Table 4 Summary of the Au-Freezing Temperature Measurements

Tables Icon

Table 5 Summary of the Ag-Freezing Temperature Measurements

Tables Icon

Table 6 Total Uncertainty of the Spectral Radiance Responsivity Calibrations in the NIST SIRCUS Facility Broken Down into the Component Uncertainties

Tables Icon

Table 7 Uncertainty Components for the Ag- and Au-Freezing Temperature Measurements

Equations (101)

Equations on this page are rendered with MathJax. Learn more.

0.15 % ( k = 2 )
1234.956   K   ( ± 0.110   K ) ( k = 2 )
1337.344   K
( ± 0.129   K ) ( k = 2 )
26 mK
14 mK
53 cm
50 cm
12.5 mm
( focal length = 20 cm )
50 mm
50.0 cm
33.3 cm
0.5 mm
0.75 mm
5.8 mm
5.8 mm
5 mm
650 nm
10 7
1100 nm
15 ° C
< 10   f W
38.1 mm
5 mm
6 mm
> 1 × 10 7
10 nm
649.115 nm
0.15 % ( k = 2 )
< 1 %
i c = S L L ( λ , T ) d λ ,
i c
L ( λ , T )
L ( λ , T ) = c 1L n 2 λ 5 1 exp [ c 2 / ( n λ T ) ] 1 ,
c 1L
c 2
n = 1.00029
1 × 10 11   A
1 × 10 6   A
10 8 V / A
10 8 V / A
10 1 0
10 8 V / A
1.00170 × 10 2 [ ± 0.022 % ( k = 2 ) ]
10 μ m
650 nm
10 μ m
100 μ m
0.78 mm ( ± 0 .01 mm )
0.11 mm ( ± 0 .01 mm )
5 mm
σ ( d , d o ) = v ( L , d ) v ( L , d o ) v ( L ) ,
d o
v ( L )
v ( L , d )
d o
v ( L , d o )
7 mm
σ ( r , r o ) = i L ( ρ ) L o ( Δ σ i ( ρ , r o ) Δ ρ ) Δ ρ ,
σ
Δ σ i
L ( ρ )
6 mm
i = G σ ε i m ,
i m
10 10
10 8
10 8
10 10
5 mm
< 2 mK
10 10 V / A
10 mK
5 mK
< 4 fW
0.15 % ( k = 2 )
d L L = c 2 λ d T T 2 ,
c 2
1235.009   K   ( ± 0 .088   K )
1337.330   K   ( ± 0 .098   K )
Δ T a = T a 2 T b 2 Δ T b ,
Δ T a
Δ T b
T a
T b
( 99.999 % )
50 mK ( k = 2 )
0.05 % ( k = 2 )
50 mK ( k = 2 )
1234.956   K   [ ± 0 .110   K   ( k = 2 ) ]
1337.344   K [ ± 0 .129   K   ( k = 2 ) ]
1234.93   K   [ ± 80 mK ( k = 2 ) ]
1337.33   K   [ ± 90 mK ( k = 2 ) ]
ε = 0.86
ε = 0.80
10 nm
< 1 × 10 7
1000 nm
10 μ m
5   mm

Metrics