Abstract

Hyperspectral imaging (HSI) sensors suffer from spatial misregistration, an artifact that prevents the accurate acquisition of the spectra. Physical considerations let us assume that the influence of the spatial misregistration on the acquired data depends both on the wavelength and on the across-track position. A scene-based method, based on edge detection, is therefore proposed. Such a procedure measures the variation on the spatial location of an edge between its various monochromatic projections, giving an estimation for spatial misregistration, and also allowing identification of misalignments. The method has been applied to several hyperspectral sensors, either prism, or grating-based designs. The results confirm the dependence assumptions on λ and θ, spectral wavelength and across-track pixel, respectively. Suggestions are also given to correct for spatial misregistration.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Nieke, H. Schwarzer, A. Neumann, and G. Zimmermann, "Imaging spaceborne and airborne systems in the beginning of the next century," in Sensors, Systems and Next-Generation Satellites, H. Fujisada, ed., Proc. SPIE 3221, 581-592 (1997).
    [CrossRef]
  2. J. Fisher, M. Baumback, J. Bowles, J. Grossmann, and J. Antoniades, "Comparison of low-cost hyperspectral sensors," in Imaging Spectrometry IV, M. Descour and S. Shen, eds., Proc. SPIE 3438, 23-30 (1998).
    [CrossRef]
  3. R. B. Gomez, "Hyperspectral imaging: a useful technology for transportation analysis," Opt. Eng. 41, 2137-2143 (2002).
    [CrossRef]
  4. S. E. Reichenbach, L. Cao, and R. M. Narayanan, "Information efficiency in hyperspectral imaging system," J. Electron. Imaging 11, 347-353 (2002).
    [CrossRef]
  5. Christophe, D. Léger, and C. Mailhes, "Quality criteria benchmark for hyperspectral imagery," IEEE Trans. Geosci. Remote Sens. 43, 2103-2113 (2005).
    [CrossRef]
  6. P. Mouroulis, R. O. Green, and T. G. Chrien, "Design of pushbroom imaging spectrometers for optimum recovery of spectroscopic and spatial information," Appl. Opt. 39, 2210-2220 (2000).
  7. W. Mao and Y. Xu, "Distortion of optical wedges with a large angle of incidence in a collimated beam," Opt. Eng. 38, 580-585 (1999).
    [CrossRef]
  8. J. M. Sasian, "Aberrations from a prism and a grating," Appl. Opt. 39, 34-39 (2000).
  9. J. M. Sasian, "How to approach the design of a bilateral symmetric optical system," Opt. Eng. 33, 2045-2061 (1994).
    [CrossRef]
  10. W. S. S. Blaschke, "Field aberrations in wide aperture optical systems," Proc. Phys. Soc. London Sect. B 67, 801-810 (1954).
    [CrossRef]
  11. C. Zhao and J. H. Burge, "Conditions for corrections of linear and quadratic field-dependent aberrations in plane-symmetric optical systems," J. Opt. Soc. Am. A 19, 2467-2472 (2002).
  12. W. Mao, "Error and adjustment of reflecting prisms," Opt. Eng. 36, 3367-3371 (1997).
    [CrossRef]
  13. D. Schläpfer, J. Nieke, and K. I. Itten, "Spatial PSF non-uniformity effects in airborne pushbroom imaging spectrometry data," IEEE Trans. Geosci. Remote Sens. (to be published).
  14. P. Mouroulis, D. A. Thomas, T. G. Chrien, V. Duval, R. O. Green, J. J. Simmonds, and A. H. Vaughan, "Trade studies in multi/hyperspectral imaging systems final report," Jet Propulsion Laboratory files (29 October 1998).
  15. R. O. Green, "Spectral calibration requirement for Earth-looking imaging spectrometers in the solar-reflected spectrum," Appl. Opt. 37, 683-690 (1998).
  16. D. R. Lobb, "Theory of concentric designs for grating spectrometers," Appl. Opt. 33, 2648-2658 (1994).
  17. M. J. Barnsley, J. J. Settle, M. A. Cutter, D. R. Lobb, and F. Teston, "The PROBA/CHRIS mission: A low-cost smallsat for hyperspectral, multi-angle, observations of the Earth surface and atmosphere," IEEE Trans. Geosci. Remote Sen. 42, 1512-1520 (2004).
    [CrossRef]
  18. D. R. Lobb, "Imaging spectrometers using concentric optics," in Imaging Spectrometry III, M. R. Descour and S. S. Shen, eds., Proc. SPIE 3118, 339-347 (1997).
    [CrossRef]
  19. J. Nieke, M. Solbring, and A. Neumann, "Noise contributions for imaging spectrometers," Appl. Opt. 38, 5191-5194 (1999).
  20. P. Mouroulis and M. M. McKerns, "Pushbroom imaging spectrometer with high spectroscopic data fidelity: experimental demonstration," Opt. Eng. 39, 808-816 (2000).
    [CrossRef]
  21. M. E. Winter, P. G. Lucey, T. Williams, and M. Wood, "Calibration of the University of Hawaii's airborne hyperspectral imager," in Imaging Spectrometry IX, S. S. Shen and P. E. Lewis, eds., Proc. SPIE 5159, 370-379 (2003).
    [CrossRef]
  22. R. A. Neville, L. Sun, and K. Staenz, "Detection of keystone in imaging spectrometer data," in Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery X, S. Shen and P. Lewis, eds., Proc. SPIE 5425, 208-217 (2004).
    [CrossRef]
  23. J. C. Russ, The Image Processing Handbook, 4th ed. (CRC Press, 2002).
  24. W. Frei and C. Chen, "Fast boundary detection: A generalization and a new algorithm," IEEE Trans. Comput. 10, 988-998 (1977).
  25. J. M. S. Prewitt, "Object enhancement and extraction," in Picture Processing and Psychopictorics, B. S. Lipkind and A. Rosenfeld, eds. (Academic, 1970).
  26. I. Abdou, Quantitative Methods of Edge Detection, USCIPI Report 830, Image Processing Institute (University of Southern California, Los Angeles, 1973).
  27. T. G. Chrien, R. O. Green, and M. L. Eastwood, "Accuracy of the spectral and radiometric laboratory calibration of the airborne visible/infrared imaging spectrometer (AVIRIS)," in Imaging Spectroscopy of the Terrestrial Environment, G. Vane, ed., Proc. SPIE 1298, 37-49 (1990).
    [CrossRef]
  28. I. Baarstad, T. Løke, and P. Kaspersen, "ASI-A new airborne hyperspectral imager," in Proceedings of the Fourth EARSel Workshop on Imaging Spectroscopy-New Quality in Environmental Studies (Warsaw, 2005), pp. 107-110.
  29. C. O. Davis, J. Bowles, R. A. Leathers, D. Korwan, T. V. Downes, W. Snyder, W. Rhea, W. Chen, J. Fisher, P. Bissett, and R. A. Reisse, "Ocean PHILLS hyperspectral imager: design, characterization, and calibration," in Opt. Express 10, 210-221 (2002).
  30. R. Bärs, L. Watson, and O. Weatherbee, "AISA as a Tool for Timely Commercial Remote Sensing," in Fourth International Airborne Remote Sensing Conference and Exhibition (ERIM, 1999), Vol. I, pp. 239-246.
  31. M. A. Folkman, J. Pearlman, B. L. Liao, and P. J. Jarecke, "EO-1/Hyperion hyperspectral imager design, development, characterization, and calibration," in Hyperspectral Remote Sensing of the Land and Atmosphere, W. L. Smith and Y. Yasuoka, eds., Proc. SPIE 4151, 40-51 (2001).
    [CrossRef]
  32. S. K. Babey and C. D. Anger, "Compact airborne spectrographic imager (CASI): a progress review," in Imaging Spectrometry of the Terrestrial Environment, G. Vane, ed. Proc. SPIE 1937, 152-163 (1993).
    [CrossRef]
  33. J. Nieke, K. I. Itten, W. Debruyn, and the APEX team, "The Airborne Imaging Spectrometer APEX: from concept to realization," in Proceedings of the Fourth EARSel Workshop on Imaging Spectroscopy--New Quality in Environmental Studies (Warsaw, 2005), pp. 47-53.

2005 (1)

Christophe, D. Léger, and C. Mailhes, "Quality criteria benchmark for hyperspectral imagery," IEEE Trans. Geosci. Remote Sens. 43, 2103-2113 (2005).
[CrossRef]

2004 (2)

M. J. Barnsley, J. J. Settle, M. A. Cutter, D. R. Lobb, and F. Teston, "The PROBA/CHRIS mission: A low-cost smallsat for hyperspectral, multi-angle, observations of the Earth surface and atmosphere," IEEE Trans. Geosci. Remote Sen. 42, 1512-1520 (2004).
[CrossRef]

R. A. Neville, L. Sun, and K. Staenz, "Detection of keystone in imaging spectrometer data," in Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery X, S. Shen and P. Lewis, eds., Proc. SPIE 5425, 208-217 (2004).
[CrossRef]

2003 (1)

M. E. Winter, P. G. Lucey, T. Williams, and M. Wood, "Calibration of the University of Hawaii's airborne hyperspectral imager," in Imaging Spectrometry IX, S. S. Shen and P. E. Lewis, eds., Proc. SPIE 5159, 370-379 (2003).
[CrossRef]

2002 (4)

2001 (1)

M. A. Folkman, J. Pearlman, B. L. Liao, and P. J. Jarecke, "EO-1/Hyperion hyperspectral imager design, development, characterization, and calibration," in Hyperspectral Remote Sensing of the Land and Atmosphere, W. L. Smith and Y. Yasuoka, eds., Proc. SPIE 4151, 40-51 (2001).
[CrossRef]

2000 (3)

1999 (2)

W. Mao and Y. Xu, "Distortion of optical wedges with a large angle of incidence in a collimated beam," Opt. Eng. 38, 580-585 (1999).
[CrossRef]

J. Nieke, M. Solbring, and A. Neumann, "Noise contributions for imaging spectrometers," Appl. Opt. 38, 5191-5194 (1999).

1998 (2)

R. O. Green, "Spectral calibration requirement for Earth-looking imaging spectrometers in the solar-reflected spectrum," Appl. Opt. 37, 683-690 (1998).

J. Fisher, M. Baumback, J. Bowles, J. Grossmann, and J. Antoniades, "Comparison of low-cost hyperspectral sensors," in Imaging Spectrometry IV, M. Descour and S. Shen, eds., Proc. SPIE 3438, 23-30 (1998).
[CrossRef]

1997 (3)

J. Nieke, H. Schwarzer, A. Neumann, and G. Zimmermann, "Imaging spaceborne and airborne systems in the beginning of the next century," in Sensors, Systems and Next-Generation Satellites, H. Fujisada, ed., Proc. SPIE 3221, 581-592 (1997).
[CrossRef]

W. Mao, "Error and adjustment of reflecting prisms," Opt. Eng. 36, 3367-3371 (1997).
[CrossRef]

D. R. Lobb, "Imaging spectrometers using concentric optics," in Imaging Spectrometry III, M. R. Descour and S. S. Shen, eds., Proc. SPIE 3118, 339-347 (1997).
[CrossRef]

1994 (2)

J. M. Sasian, "How to approach the design of a bilateral symmetric optical system," Opt. Eng. 33, 2045-2061 (1994).
[CrossRef]

D. R. Lobb, "Theory of concentric designs for grating spectrometers," Appl. Opt. 33, 2648-2658 (1994).

1993 (1)

S. K. Babey and C. D. Anger, "Compact airborne spectrographic imager (CASI): a progress review," in Imaging Spectrometry of the Terrestrial Environment, G. Vane, ed. Proc. SPIE 1937, 152-163 (1993).
[CrossRef]

1990 (1)

T. G. Chrien, R. O. Green, and M. L. Eastwood, "Accuracy of the spectral and radiometric laboratory calibration of the airborne visible/infrared imaging spectrometer (AVIRIS)," in Imaging Spectroscopy of the Terrestrial Environment, G. Vane, ed., Proc. SPIE 1298, 37-49 (1990).
[CrossRef]

1977 (1)

W. Frei and C. Chen, "Fast boundary detection: A generalization and a new algorithm," IEEE Trans. Comput. 10, 988-998 (1977).

1954 (1)

W. S. S. Blaschke, "Field aberrations in wide aperture optical systems," Proc. Phys. Soc. London Sect. B 67, 801-810 (1954).
[CrossRef]

Abdou, I.

I. Abdou, Quantitative Methods of Edge Detection, USCIPI Report 830, Image Processing Institute (University of Southern California, Los Angeles, 1973).

Anger, C. D.

S. K. Babey and C. D. Anger, "Compact airborne spectrographic imager (CASI): a progress review," in Imaging Spectrometry of the Terrestrial Environment, G. Vane, ed. Proc. SPIE 1937, 152-163 (1993).
[CrossRef]

Antoniades, J.

J. Fisher, M. Baumback, J. Bowles, J. Grossmann, and J. Antoniades, "Comparison of low-cost hyperspectral sensors," in Imaging Spectrometry IV, M. Descour and S. Shen, eds., Proc. SPIE 3438, 23-30 (1998).
[CrossRef]

Baarstad, I.

I. Baarstad, T. Løke, and P. Kaspersen, "ASI-A new airborne hyperspectral imager," in Proceedings of the Fourth EARSel Workshop on Imaging Spectroscopy-New Quality in Environmental Studies (Warsaw, 2005), pp. 107-110.

Babey, S. K.

S. K. Babey and C. D. Anger, "Compact airborne spectrographic imager (CASI): a progress review," in Imaging Spectrometry of the Terrestrial Environment, G. Vane, ed. Proc. SPIE 1937, 152-163 (1993).
[CrossRef]

Barnsley, M. J.

M. J. Barnsley, J. J. Settle, M. A. Cutter, D. R. Lobb, and F. Teston, "The PROBA/CHRIS mission: A low-cost smallsat for hyperspectral, multi-angle, observations of the Earth surface and atmosphere," IEEE Trans. Geosci. Remote Sen. 42, 1512-1520 (2004).
[CrossRef]

Bärs, R.

R. Bärs, L. Watson, and O. Weatherbee, "AISA as a Tool for Timely Commercial Remote Sensing," in Fourth International Airborne Remote Sensing Conference and Exhibition (ERIM, 1999), Vol. I, pp. 239-246.

Baumback, M.

J. Fisher, M. Baumback, J. Bowles, J. Grossmann, and J. Antoniades, "Comparison of low-cost hyperspectral sensors," in Imaging Spectrometry IV, M. Descour and S. Shen, eds., Proc. SPIE 3438, 23-30 (1998).
[CrossRef]

Bissett, P.

Blaschke, W. S. S.

W. S. S. Blaschke, "Field aberrations in wide aperture optical systems," Proc. Phys. Soc. London Sect. B 67, 801-810 (1954).
[CrossRef]

Bowles, J.

C. O. Davis, J. Bowles, R. A. Leathers, D. Korwan, T. V. Downes, W. Snyder, W. Rhea, W. Chen, J. Fisher, P. Bissett, and R. A. Reisse, "Ocean PHILLS hyperspectral imager: design, characterization, and calibration," in Opt. Express 10, 210-221 (2002).

J. Fisher, M. Baumback, J. Bowles, J. Grossmann, and J. Antoniades, "Comparison of low-cost hyperspectral sensors," in Imaging Spectrometry IV, M. Descour and S. Shen, eds., Proc. SPIE 3438, 23-30 (1998).
[CrossRef]

Burge, J. H.

Cao, L.

S. E. Reichenbach, L. Cao, and R. M. Narayanan, "Information efficiency in hyperspectral imaging system," J. Electron. Imaging 11, 347-353 (2002).
[CrossRef]

Chen, C.

W. Frei and C. Chen, "Fast boundary detection: A generalization and a new algorithm," IEEE Trans. Comput. 10, 988-998 (1977).

Chen, W.

Chrien, T. G.

P. Mouroulis, R. O. Green, and T. G. Chrien, "Design of pushbroom imaging spectrometers for optimum recovery of spectroscopic and spatial information," Appl. Opt. 39, 2210-2220 (2000).

T. G. Chrien, R. O. Green, and M. L. Eastwood, "Accuracy of the spectral and radiometric laboratory calibration of the airborne visible/infrared imaging spectrometer (AVIRIS)," in Imaging Spectroscopy of the Terrestrial Environment, G. Vane, ed., Proc. SPIE 1298, 37-49 (1990).
[CrossRef]

P. Mouroulis, D. A. Thomas, T. G. Chrien, V. Duval, R. O. Green, J. J. Simmonds, and A. H. Vaughan, "Trade studies in multi/hyperspectral imaging systems final report," Jet Propulsion Laboratory files (29 October 1998).

Cutter, M. A.

M. J. Barnsley, J. J. Settle, M. A. Cutter, D. R. Lobb, and F. Teston, "The PROBA/CHRIS mission: A low-cost smallsat for hyperspectral, multi-angle, observations of the Earth surface and atmosphere," IEEE Trans. Geosci. Remote Sen. 42, 1512-1520 (2004).
[CrossRef]

Davis, C. O.

Debruyn, W.

J. Nieke, K. I. Itten, W. Debruyn, and the APEX team, "The Airborne Imaging Spectrometer APEX: from concept to realization," in Proceedings of the Fourth EARSel Workshop on Imaging Spectroscopy--New Quality in Environmental Studies (Warsaw, 2005), pp. 47-53.

Downes, T. V.

Duval, V.

P. Mouroulis, D. A. Thomas, T. G. Chrien, V. Duval, R. O. Green, J. J. Simmonds, and A. H. Vaughan, "Trade studies in multi/hyperspectral imaging systems final report," Jet Propulsion Laboratory files (29 October 1998).

Eastwood, M. L.

T. G. Chrien, R. O. Green, and M. L. Eastwood, "Accuracy of the spectral and radiometric laboratory calibration of the airborne visible/infrared imaging spectrometer (AVIRIS)," in Imaging Spectroscopy of the Terrestrial Environment, G. Vane, ed., Proc. SPIE 1298, 37-49 (1990).
[CrossRef]

Fisher, J.

C. O. Davis, J. Bowles, R. A. Leathers, D. Korwan, T. V. Downes, W. Snyder, W. Rhea, W. Chen, J. Fisher, P. Bissett, and R. A. Reisse, "Ocean PHILLS hyperspectral imager: design, characterization, and calibration," in Opt. Express 10, 210-221 (2002).

J. Fisher, M. Baumback, J. Bowles, J. Grossmann, and J. Antoniades, "Comparison of low-cost hyperspectral sensors," in Imaging Spectrometry IV, M. Descour and S. Shen, eds., Proc. SPIE 3438, 23-30 (1998).
[CrossRef]

Folkman, M. A.

M. A. Folkman, J. Pearlman, B. L. Liao, and P. J. Jarecke, "EO-1/Hyperion hyperspectral imager design, development, characterization, and calibration," in Hyperspectral Remote Sensing of the Land and Atmosphere, W. L. Smith and Y. Yasuoka, eds., Proc. SPIE 4151, 40-51 (2001).
[CrossRef]

Frei, W.

W. Frei and C. Chen, "Fast boundary detection: A generalization and a new algorithm," IEEE Trans. Comput. 10, 988-998 (1977).

Gomez, R. B.

R. B. Gomez, "Hyperspectral imaging: a useful technology for transportation analysis," Opt. Eng. 41, 2137-2143 (2002).
[CrossRef]

Green, R. O.

P. Mouroulis, R. O. Green, and T. G. Chrien, "Design of pushbroom imaging spectrometers for optimum recovery of spectroscopic and spatial information," Appl. Opt. 39, 2210-2220 (2000).

R. O. Green, "Spectral calibration requirement for Earth-looking imaging spectrometers in the solar-reflected spectrum," Appl. Opt. 37, 683-690 (1998).

T. G. Chrien, R. O. Green, and M. L. Eastwood, "Accuracy of the spectral and radiometric laboratory calibration of the airborne visible/infrared imaging spectrometer (AVIRIS)," in Imaging Spectroscopy of the Terrestrial Environment, G. Vane, ed., Proc. SPIE 1298, 37-49 (1990).
[CrossRef]

P. Mouroulis, D. A. Thomas, T. G. Chrien, V. Duval, R. O. Green, J. J. Simmonds, and A. H. Vaughan, "Trade studies in multi/hyperspectral imaging systems final report," Jet Propulsion Laboratory files (29 October 1998).

Grossmann, J.

J. Fisher, M. Baumback, J. Bowles, J. Grossmann, and J. Antoniades, "Comparison of low-cost hyperspectral sensors," in Imaging Spectrometry IV, M. Descour and S. Shen, eds., Proc. SPIE 3438, 23-30 (1998).
[CrossRef]

Itten, K. I.

D. Schläpfer, J. Nieke, and K. I. Itten, "Spatial PSF non-uniformity effects in airborne pushbroom imaging spectrometry data," IEEE Trans. Geosci. Remote Sens. (to be published).

J. Nieke, K. I. Itten, W. Debruyn, and the APEX team, "The Airborne Imaging Spectrometer APEX: from concept to realization," in Proceedings of the Fourth EARSel Workshop on Imaging Spectroscopy--New Quality in Environmental Studies (Warsaw, 2005), pp. 47-53.

Jarecke, P. J.

M. A. Folkman, J. Pearlman, B. L. Liao, and P. J. Jarecke, "EO-1/Hyperion hyperspectral imager design, development, characterization, and calibration," in Hyperspectral Remote Sensing of the Land and Atmosphere, W. L. Smith and Y. Yasuoka, eds., Proc. SPIE 4151, 40-51 (2001).
[CrossRef]

Kaspersen, P.

I. Baarstad, T. Løke, and P. Kaspersen, "ASI-A new airborne hyperspectral imager," in Proceedings of the Fourth EARSel Workshop on Imaging Spectroscopy-New Quality in Environmental Studies (Warsaw, 2005), pp. 107-110.

Korwan, D.

Leathers, R. A.

Léger, Christophe D.

Christophe, D. Léger, and C. Mailhes, "Quality criteria benchmark for hyperspectral imagery," IEEE Trans. Geosci. Remote Sens. 43, 2103-2113 (2005).
[CrossRef]

Liao, B. L.

M. A. Folkman, J. Pearlman, B. L. Liao, and P. J. Jarecke, "EO-1/Hyperion hyperspectral imager design, development, characterization, and calibration," in Hyperspectral Remote Sensing of the Land and Atmosphere, W. L. Smith and Y. Yasuoka, eds., Proc. SPIE 4151, 40-51 (2001).
[CrossRef]

Lobb, D. R.

M. J. Barnsley, J. J. Settle, M. A. Cutter, D. R. Lobb, and F. Teston, "The PROBA/CHRIS mission: A low-cost smallsat for hyperspectral, multi-angle, observations of the Earth surface and atmosphere," IEEE Trans. Geosci. Remote Sen. 42, 1512-1520 (2004).
[CrossRef]

D. R. Lobb, "Imaging spectrometers using concentric optics," in Imaging Spectrometry III, M. R. Descour and S. S. Shen, eds., Proc. SPIE 3118, 339-347 (1997).
[CrossRef]

D. R. Lobb, "Theory of concentric designs for grating spectrometers," Appl. Opt. 33, 2648-2658 (1994).

Løke, T.

I. Baarstad, T. Løke, and P. Kaspersen, "ASI-A new airborne hyperspectral imager," in Proceedings of the Fourth EARSel Workshop on Imaging Spectroscopy-New Quality in Environmental Studies (Warsaw, 2005), pp. 107-110.

Lucey, P. G.

M. E. Winter, P. G. Lucey, T. Williams, and M. Wood, "Calibration of the University of Hawaii's airborne hyperspectral imager," in Imaging Spectrometry IX, S. S. Shen and P. E. Lewis, eds., Proc. SPIE 5159, 370-379 (2003).
[CrossRef]

Mailhes, C.

Christophe, D. Léger, and C. Mailhes, "Quality criteria benchmark for hyperspectral imagery," IEEE Trans. Geosci. Remote Sens. 43, 2103-2113 (2005).
[CrossRef]

Mao, W.

W. Mao and Y. Xu, "Distortion of optical wedges with a large angle of incidence in a collimated beam," Opt. Eng. 38, 580-585 (1999).
[CrossRef]

W. Mao, "Error and adjustment of reflecting prisms," Opt. Eng. 36, 3367-3371 (1997).
[CrossRef]

McKerns, M. M.

P. Mouroulis and M. M. McKerns, "Pushbroom imaging spectrometer with high spectroscopic data fidelity: experimental demonstration," Opt. Eng. 39, 808-816 (2000).
[CrossRef]

Mouroulis, P.

P. Mouroulis and M. M. McKerns, "Pushbroom imaging spectrometer with high spectroscopic data fidelity: experimental demonstration," Opt. Eng. 39, 808-816 (2000).
[CrossRef]

P. Mouroulis, R. O. Green, and T. G. Chrien, "Design of pushbroom imaging spectrometers for optimum recovery of spectroscopic and spatial information," Appl. Opt. 39, 2210-2220 (2000).

P. Mouroulis, D. A. Thomas, T. G. Chrien, V. Duval, R. O. Green, J. J. Simmonds, and A. H. Vaughan, "Trade studies in multi/hyperspectral imaging systems final report," Jet Propulsion Laboratory files (29 October 1998).

Narayanan, R. M.

S. E. Reichenbach, L. Cao, and R. M. Narayanan, "Information efficiency in hyperspectral imaging system," J. Electron. Imaging 11, 347-353 (2002).
[CrossRef]

Neumann, A.

J. Nieke, M. Solbring, and A. Neumann, "Noise contributions for imaging spectrometers," Appl. Opt. 38, 5191-5194 (1999).

J. Nieke, H. Schwarzer, A. Neumann, and G. Zimmermann, "Imaging spaceborne and airborne systems in the beginning of the next century," in Sensors, Systems and Next-Generation Satellites, H. Fujisada, ed., Proc. SPIE 3221, 581-592 (1997).
[CrossRef]

Neville, R. A.

R. A. Neville, L. Sun, and K. Staenz, "Detection of keystone in imaging spectrometer data," in Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery X, S. Shen and P. Lewis, eds., Proc. SPIE 5425, 208-217 (2004).
[CrossRef]

Nieke, J.

J. Nieke, M. Solbring, and A. Neumann, "Noise contributions for imaging spectrometers," Appl. Opt. 38, 5191-5194 (1999).

J. Nieke, H. Schwarzer, A. Neumann, and G. Zimmermann, "Imaging spaceborne and airborne systems in the beginning of the next century," in Sensors, Systems and Next-Generation Satellites, H. Fujisada, ed., Proc. SPIE 3221, 581-592 (1997).
[CrossRef]

D. Schläpfer, J. Nieke, and K. I. Itten, "Spatial PSF non-uniformity effects in airborne pushbroom imaging spectrometry data," IEEE Trans. Geosci. Remote Sens. (to be published).

J. Nieke, K. I. Itten, W. Debruyn, and the APEX team, "The Airborne Imaging Spectrometer APEX: from concept to realization," in Proceedings of the Fourth EARSel Workshop on Imaging Spectroscopy--New Quality in Environmental Studies (Warsaw, 2005), pp. 47-53.

Pearlman, J.

M. A. Folkman, J. Pearlman, B. L. Liao, and P. J. Jarecke, "EO-1/Hyperion hyperspectral imager design, development, characterization, and calibration," in Hyperspectral Remote Sensing of the Land and Atmosphere, W. L. Smith and Y. Yasuoka, eds., Proc. SPIE 4151, 40-51 (2001).
[CrossRef]

Prewitt, J. M. S.

J. M. S. Prewitt, "Object enhancement and extraction," in Picture Processing and Psychopictorics, B. S. Lipkind and A. Rosenfeld, eds. (Academic, 1970).

Reichenbach, S. E.

S. E. Reichenbach, L. Cao, and R. M. Narayanan, "Information efficiency in hyperspectral imaging system," J. Electron. Imaging 11, 347-353 (2002).
[CrossRef]

Reisse, R. A.

Rhea, W.

Russ, J. C.

J. C. Russ, The Image Processing Handbook, 4th ed. (CRC Press, 2002).

Sasian, J. M.

J. M. Sasian, "Aberrations from a prism and a grating," Appl. Opt. 39, 34-39 (2000).

J. M. Sasian, "How to approach the design of a bilateral symmetric optical system," Opt. Eng. 33, 2045-2061 (1994).
[CrossRef]

Schläpfer, D.

D. Schläpfer, J. Nieke, and K. I. Itten, "Spatial PSF non-uniformity effects in airborne pushbroom imaging spectrometry data," IEEE Trans. Geosci. Remote Sens. (to be published).

Schwarzer, H.

J. Nieke, H. Schwarzer, A. Neumann, and G. Zimmermann, "Imaging spaceborne and airborne systems in the beginning of the next century," in Sensors, Systems and Next-Generation Satellites, H. Fujisada, ed., Proc. SPIE 3221, 581-592 (1997).
[CrossRef]

Settle, J. J.

M. J. Barnsley, J. J. Settle, M. A. Cutter, D. R. Lobb, and F. Teston, "The PROBA/CHRIS mission: A low-cost smallsat for hyperspectral, multi-angle, observations of the Earth surface and atmosphere," IEEE Trans. Geosci. Remote Sen. 42, 1512-1520 (2004).
[CrossRef]

Simmonds, J. J.

P. Mouroulis, D. A. Thomas, T. G. Chrien, V. Duval, R. O. Green, J. J. Simmonds, and A. H. Vaughan, "Trade studies in multi/hyperspectral imaging systems final report," Jet Propulsion Laboratory files (29 October 1998).

Snyder, W.

Solbring, M.

Staenz, K.

R. A. Neville, L. Sun, and K. Staenz, "Detection of keystone in imaging spectrometer data," in Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery X, S. Shen and P. Lewis, eds., Proc. SPIE 5425, 208-217 (2004).
[CrossRef]

Sun, L.

R. A. Neville, L. Sun, and K. Staenz, "Detection of keystone in imaging spectrometer data," in Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery X, S. Shen and P. Lewis, eds., Proc. SPIE 5425, 208-217 (2004).
[CrossRef]

Teston, F.

M. J. Barnsley, J. J. Settle, M. A. Cutter, D. R. Lobb, and F. Teston, "The PROBA/CHRIS mission: A low-cost smallsat for hyperspectral, multi-angle, observations of the Earth surface and atmosphere," IEEE Trans. Geosci. Remote Sen. 42, 1512-1520 (2004).
[CrossRef]

Thomas, D. A.

P. Mouroulis, D. A. Thomas, T. G. Chrien, V. Duval, R. O. Green, J. J. Simmonds, and A. H. Vaughan, "Trade studies in multi/hyperspectral imaging systems final report," Jet Propulsion Laboratory files (29 October 1998).

Vaughan, A. H.

P. Mouroulis, D. A. Thomas, T. G. Chrien, V. Duval, R. O. Green, J. J. Simmonds, and A. H. Vaughan, "Trade studies in multi/hyperspectral imaging systems final report," Jet Propulsion Laboratory files (29 October 1998).

Watson, L.

R. Bärs, L. Watson, and O. Weatherbee, "AISA as a Tool for Timely Commercial Remote Sensing," in Fourth International Airborne Remote Sensing Conference and Exhibition (ERIM, 1999), Vol. I, pp. 239-246.

Weatherbee, O.

R. Bärs, L. Watson, and O. Weatherbee, "AISA as a Tool for Timely Commercial Remote Sensing," in Fourth International Airborne Remote Sensing Conference and Exhibition (ERIM, 1999), Vol. I, pp. 239-246.

Williams, T.

M. E. Winter, P. G. Lucey, T. Williams, and M. Wood, "Calibration of the University of Hawaii's airborne hyperspectral imager," in Imaging Spectrometry IX, S. S. Shen and P. E. Lewis, eds., Proc. SPIE 5159, 370-379 (2003).
[CrossRef]

Winter, M. E.

M. E. Winter, P. G. Lucey, T. Williams, and M. Wood, "Calibration of the University of Hawaii's airborne hyperspectral imager," in Imaging Spectrometry IX, S. S. Shen and P. E. Lewis, eds., Proc. SPIE 5159, 370-379 (2003).
[CrossRef]

Wood, M.

M. E. Winter, P. G. Lucey, T. Williams, and M. Wood, "Calibration of the University of Hawaii's airborne hyperspectral imager," in Imaging Spectrometry IX, S. S. Shen and P. E. Lewis, eds., Proc. SPIE 5159, 370-379 (2003).
[CrossRef]

Xu, Y.

W. Mao and Y. Xu, "Distortion of optical wedges with a large angle of incidence in a collimated beam," Opt. Eng. 38, 580-585 (1999).
[CrossRef]

Zhao, C.

Zimmermann, G.

J. Nieke, H. Schwarzer, A. Neumann, and G. Zimmermann, "Imaging spaceborne and airborne systems in the beginning of the next century," in Sensors, Systems and Next-Generation Satellites, H. Fujisada, ed., Proc. SPIE 3221, 581-592 (1997).
[CrossRef]

Appl. Opt. (5)

IEEE Trans. Comput. (1)

W. Frei and C. Chen, "Fast boundary detection: A generalization and a new algorithm," IEEE Trans. Comput. 10, 988-998 (1977).

IEEE Trans. Geosci. Remote Sen. (1)

M. J. Barnsley, J. J. Settle, M. A. Cutter, D. R. Lobb, and F. Teston, "The PROBA/CHRIS mission: A low-cost smallsat for hyperspectral, multi-angle, observations of the Earth surface and atmosphere," IEEE Trans. Geosci. Remote Sen. 42, 1512-1520 (2004).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (2)

D. Schläpfer, J. Nieke, and K. I. Itten, "Spatial PSF non-uniformity effects in airborne pushbroom imaging spectrometry data," IEEE Trans. Geosci. Remote Sens. (to be published).

Christophe, D. Léger, and C. Mailhes, "Quality criteria benchmark for hyperspectral imagery," IEEE Trans. Geosci. Remote Sens. 43, 2103-2113 (2005).
[CrossRef]

J. Electron. Imaging (1)

S. E. Reichenbach, L. Cao, and R. M. Narayanan, "Information efficiency in hyperspectral imaging system," J. Electron. Imaging 11, 347-353 (2002).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Eng. (5)

W. Mao, "Error and adjustment of reflecting prisms," Opt. Eng. 36, 3367-3371 (1997).
[CrossRef]

R. B. Gomez, "Hyperspectral imaging: a useful technology for transportation analysis," Opt. Eng. 41, 2137-2143 (2002).
[CrossRef]

W. Mao and Y. Xu, "Distortion of optical wedges with a large angle of incidence in a collimated beam," Opt. Eng. 38, 580-585 (1999).
[CrossRef]

J. M. Sasian, "How to approach the design of a bilateral symmetric optical system," Opt. Eng. 33, 2045-2061 (1994).
[CrossRef]

P. Mouroulis and M. M. McKerns, "Pushbroom imaging spectrometer with high spectroscopic data fidelity: experimental demonstration," Opt. Eng. 39, 808-816 (2000).
[CrossRef]

Opt. Express (1)

Proc. Phys. Soc. London Sect. B (1)

W. S. S. Blaschke, "Field aberrations in wide aperture optical systems," Proc. Phys. Soc. London Sect. B 67, 801-810 (1954).
[CrossRef]

Proc. SPIE (8)

J. Nieke, H. Schwarzer, A. Neumann, and G. Zimmermann, "Imaging spaceborne and airborne systems in the beginning of the next century," in Sensors, Systems and Next-Generation Satellites, H. Fujisada, ed., Proc. SPIE 3221, 581-592 (1997).
[CrossRef]

J. Fisher, M. Baumback, J. Bowles, J. Grossmann, and J. Antoniades, "Comparison of low-cost hyperspectral sensors," in Imaging Spectrometry IV, M. Descour and S. Shen, eds., Proc. SPIE 3438, 23-30 (1998).
[CrossRef]

M. E. Winter, P. G. Lucey, T. Williams, and M. Wood, "Calibration of the University of Hawaii's airborne hyperspectral imager," in Imaging Spectrometry IX, S. S. Shen and P. E. Lewis, eds., Proc. SPIE 5159, 370-379 (2003).
[CrossRef]

R. A. Neville, L. Sun, and K. Staenz, "Detection of keystone in imaging spectrometer data," in Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery X, S. Shen and P. Lewis, eds., Proc. SPIE 5425, 208-217 (2004).
[CrossRef]

T. G. Chrien, R. O. Green, and M. L. Eastwood, "Accuracy of the spectral and radiometric laboratory calibration of the airborne visible/infrared imaging spectrometer (AVIRIS)," in Imaging Spectroscopy of the Terrestrial Environment, G. Vane, ed., Proc. SPIE 1298, 37-49 (1990).
[CrossRef]

M. A. Folkman, J. Pearlman, B. L. Liao, and P. J. Jarecke, "EO-1/Hyperion hyperspectral imager design, development, characterization, and calibration," in Hyperspectral Remote Sensing of the Land and Atmosphere, W. L. Smith and Y. Yasuoka, eds., Proc. SPIE 4151, 40-51 (2001).
[CrossRef]

S. K. Babey and C. D. Anger, "Compact airborne spectrographic imager (CASI): a progress review," in Imaging Spectrometry of the Terrestrial Environment, G. Vane, ed. Proc. SPIE 1937, 152-163 (1993).
[CrossRef]

D. R. Lobb, "Imaging spectrometers using concentric optics," in Imaging Spectrometry III, M. R. Descour and S. S. Shen, eds., Proc. SPIE 3118, 339-347 (1997).
[CrossRef]

Other (7)

J. Nieke, K. I. Itten, W. Debruyn, and the APEX team, "The Airborne Imaging Spectrometer APEX: from concept to realization," in Proceedings of the Fourth EARSel Workshop on Imaging Spectroscopy--New Quality in Environmental Studies (Warsaw, 2005), pp. 47-53.

P. Mouroulis, D. A. Thomas, T. G. Chrien, V. Duval, R. O. Green, J. J. Simmonds, and A. H. Vaughan, "Trade studies in multi/hyperspectral imaging systems final report," Jet Propulsion Laboratory files (29 October 1998).

R. Bärs, L. Watson, and O. Weatherbee, "AISA as a Tool for Timely Commercial Remote Sensing," in Fourth International Airborne Remote Sensing Conference and Exhibition (ERIM, 1999), Vol. I, pp. 239-246.

I. Baarstad, T. Løke, and P. Kaspersen, "ASI-A new airborne hyperspectral imager," in Proceedings of the Fourth EARSel Workshop on Imaging Spectroscopy-New Quality in Environmental Studies (Warsaw, 2005), pp. 107-110.

J. M. S. Prewitt, "Object enhancement and extraction," in Picture Processing and Psychopictorics, B. S. Lipkind and A. Rosenfeld, eds. (Academic, 1970).

I. Abdou, Quantitative Methods of Edge Detection, USCIPI Report 830, Image Processing Institute (University of Southern California, Los Angeles, 1973).

J. C. Russ, The Image Processing Handbook, 4th ed. (CRC Press, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(a) Various layers in a hyperspectral cube, (b) basic elements in a hyperspectral scanner. The yz plane is the main reference of this work.

Fig. 2
Fig. 2

(Color online) (a) Keystone variation with wavelength: Each curve corresponds to one spatial location. (b) Keystone variation with across-track position: Each curve corresponds to one band number. (c) The whole keystone variation over the focal plane.

Fig. 3
Fig. 3

(a) Vertical misalignment m V , (b) rotational misalignment m R .

Fig. 4
Fig. 4

(Color online) Two views of a CCD with 4 across-track pixels and 7 bands. The 2 across-track pixels at the right of the image do not have any SM because the peaks are all aligned. In the left-side pixels, there is some SM: In fact, the peaks are not aligned, but they are located on a curved line.

Fig. 5
Fig. 5

An edge at different wavelengths, from the HYSPEX sensor. The edge is prominent from band 1 to band 110. In the last bands the derivative maximum disappears, and the edge is not detectable anymore.

Fig. 6
Fig. 6

(a) HYSPEX laboratory measurements: the three curves, starting from the left side, represent the spatial misregistration at +FOV∕2, NADIR, and FOV / 2 , respectively. (b) HYSPEX method analysis: plotting of the spatial misregistration data retrieved using the proposed procedure. (c) HYSPEX fittings: the thicker fittings represent laboratory data. The +FOV / 2 curves have been plotted not considering the step attributable to the filter mask. The method overestimates the spatial misregistration.

Fig. 7
Fig. 7

(a) The sets of laboratory measurements: The blocking filter influence is evident after band number 64. (b) The data retrieved from the method: spatial misregistration at +FOV / 2 is higher that that at FOV / 2 . (c) Comparison between fittings.

Fig. 8
Fig. 8

AISA analysis. The plot shows a quadratic dependence of keystone on the focal plane and symmetry around the nadir axis. The focal plane has no rotational misalignment, but a slightly negative vertical misalignment.

Fig. 9
Fig. 9

(a) HYPERION SWIR analysis: SM is positive toward FOV / 2 , and negative toward +FOV / 2 . The SWIR detector is well aligned, and also centered. Some bands are missing because of a low SNR. (b) HYPERION VNIR analysis: Spatial misregistration is higher than in the HYPERION SWIR detector. This detector has no rotational misalignment.

Fig. 10
Fig. 10

CHRIS analysis: Nadir line does not coincide with the nadir direction, but it is slightly shifted aside; we may suppose that the instrument is slightly misaligned with the other optical components.

Fig. 11
Fig. 11

CASI-3 analysis: Spatial misregistration profile shows a symmetry, which implies that the sensor is well aligned to the other optical parts, with no misalignments.

Fig. 12
Fig. 12

AVIRIS analysis: Spatial misregistration in this whiskbroom detector is very low, namely under 3% both in the VNIR and in the NIR detectors. The two SWIR detectors present some curvature especially in the positive part of the field of view, and this is probably attributable to some instability. SM is also very low in these two detectors.

Tables (2)

Tables Icon

Table 1 List of the Analyzed Sensors

Tables Icon

Table 2 Spatial Misregistration in Different Sensors Expressed as Fraction of a Pixel Size

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

W QAII = ( 1 n 2 ) n 2 u ¯ [ u ¯ ( sin I 1 sin I 2 ) y 1 2 ( sin I 1 + sin I 2 ) u t n Ψ ( sin I 1 sin I 2 ) ] ,
W QAII = u ¯ 2 ( m λ d ) y + u ¯ Ψ ( m λ d ) .
β ( y , z ) = d ( y , z ) W QAII ,
d ( y , z ) = y ( c 1 z 2 + c 2 ) ,
s ( y , z ) = β ( y , z ) + m V + m R ,
If b ( i , j , k ) = u ,   then d ( i , j , k ) = 0
else d ( i , j , k ) = b ( i , j , k ) ,
G = 1 1 1 0 1 1 1 1 2 2 0 2 2 1 1 2 3 0 3 2 1 1 2 3 0 3 2 1 1 2 3 0 3 2 1 1 2 2 0 3 2 1 1 1 1 0 1 1 1 .
T = G D ,
F = T 2 .
m ( i ) k ¯ = max j f ( i , j , k ¯ ) i = 1 , 2 , , p .
v ( i ) k ¯ = u = i 3 i + 3 j = m ( i ) 3 m ( i ) + 3 c ( j ) · ( f ( e , j , k ¯ ) ) [ u = i 3 i + 3 j = m ( i ) 3 m ( i ) + 3 ( f ( e , j , k ¯ ) ) ] ,
z ( k ) = i = 1 p v ( i ) k p k = 1 , 2 , , r .

Metrics