Abstract

The short laser pulse generated from an active cw-injected ring cavity with Yb3+:YAG crystal, which is treated as the homogeneously broadened amplifier, is studied theoretically. Based on the derived results, the impacts of the amplifier length, the seeding laser intensity and frequency, the pump intensity, the efficiency of the acousto-optic modulator (AOM), and the frequency shift generated by the AOM on the performance of the laser pulse are analyzed.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. F. Krupke, "Ytterbium solid-state lasers--the first decade," IEEE. J. Sel. Top. Quantum Electron. 6, 1287-1296 (2000).
    [CrossRef]
  2. G. L. Bourdet, "Comparison of pulse amplification performances in longitudinally pumped ytterbium doped materials," Opt. Commun. 200, 331-341 (2001).
    [CrossRef]
  3. J. Dong, M. Bass, Y. Mao, P. Deng, and F. Gan, "Dependence of the Yb3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet," J. Opt. Soc. Am. B 20, 1975-1979 (2003).
    [CrossRef]
  4. G. L. Bourdet, R. A. Muller, G. M. Mullot, and J. Y. Vinet, "Short pulse generation by use of an active multipass interferometer," IEEE. J. Quantum Electron. 24, 580-584 (1988).
    [CrossRef]
  5. G. L. Bourdet, R. A. Muller, G. M. Mullot, and J. Y. Vinet, "Active mode locking of a high pressure CW waveguide CO2 laser," Appl. Phys. B 44, 107-110 (1987).
    [CrossRef]
  6. F. V. Kowalski, J. A. Squier, and J. T. Pinckey, "Pulse generation with an acousto-optic frequency shifter in a passive cavity," Appl. Phys. Lett. 50, 711-713 (1987).
    [CrossRef]
  7. G. L. Bourdet, "Short-pulse generation at 10 μm in an active cw-injected ring laser cavity," Appl. Opt. 42, 5457-5462 (2003).
    [CrossRef] [PubMed]
  8. G. L. Bourdet, "Theoretical investigation of quasi-three-level longitudinally pumped continuous wave lasers," Appl. Opt. 39, 966-971 (2000).
    [CrossRef]
  9. D. S. Sumida and T. Y. Fan, "Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media," Opt. Lett. 19, 1343-1345 (1994).
    [CrossRef] [PubMed]
  10. G. L. Bourdet, "Numerical simulation of the amplification of a short laser pulse by a ytterbium-doped amplifier longitudinally pumped by short pump pulses," Appl. Opt. 45, 4695-4700 (2006).
    [CrossRef] [PubMed]

2006 (1)

2003 (2)

2001 (1)

G. L. Bourdet, "Comparison of pulse amplification performances in longitudinally pumped ytterbium doped materials," Opt. Commun. 200, 331-341 (2001).
[CrossRef]

2000 (2)

W. F. Krupke, "Ytterbium solid-state lasers--the first decade," IEEE. J. Sel. Top. Quantum Electron. 6, 1287-1296 (2000).
[CrossRef]

G. L. Bourdet, "Theoretical investigation of quasi-three-level longitudinally pumped continuous wave lasers," Appl. Opt. 39, 966-971 (2000).
[CrossRef]

1994 (1)

1988 (1)

G. L. Bourdet, R. A. Muller, G. M. Mullot, and J. Y. Vinet, "Short pulse generation by use of an active multipass interferometer," IEEE. J. Quantum Electron. 24, 580-584 (1988).
[CrossRef]

1987 (2)

G. L. Bourdet, R. A. Muller, G. M. Mullot, and J. Y. Vinet, "Active mode locking of a high pressure CW waveguide CO2 laser," Appl. Phys. B 44, 107-110 (1987).
[CrossRef]

F. V. Kowalski, J. A. Squier, and J. T. Pinckey, "Pulse generation with an acousto-optic frequency shifter in a passive cavity," Appl. Phys. Lett. 50, 711-713 (1987).
[CrossRef]

Bass, M.

Bourdet, G. L.

G. L. Bourdet, "Numerical simulation of the amplification of a short laser pulse by a ytterbium-doped amplifier longitudinally pumped by short pump pulses," Appl. Opt. 45, 4695-4700 (2006).
[CrossRef] [PubMed]

G. L. Bourdet, "Short-pulse generation at 10 μm in an active cw-injected ring laser cavity," Appl. Opt. 42, 5457-5462 (2003).
[CrossRef] [PubMed]

G. L. Bourdet, "Comparison of pulse amplification performances in longitudinally pumped ytterbium doped materials," Opt. Commun. 200, 331-341 (2001).
[CrossRef]

G. L. Bourdet, "Theoretical investigation of quasi-three-level longitudinally pumped continuous wave lasers," Appl. Opt. 39, 966-971 (2000).
[CrossRef]

G. L. Bourdet, R. A. Muller, G. M. Mullot, and J. Y. Vinet, "Short pulse generation by use of an active multipass interferometer," IEEE. J. Quantum Electron. 24, 580-584 (1988).
[CrossRef]

G. L. Bourdet, R. A. Muller, G. M. Mullot, and J. Y. Vinet, "Active mode locking of a high pressure CW waveguide CO2 laser," Appl. Phys. B 44, 107-110 (1987).
[CrossRef]

Deng, P.

Dong, J.

Fan, T. Y.

Gan, F.

Kowalski, F. V.

F. V. Kowalski, J. A. Squier, and J. T. Pinckey, "Pulse generation with an acousto-optic frequency shifter in a passive cavity," Appl. Phys. Lett. 50, 711-713 (1987).
[CrossRef]

Krupke, W. F.

W. F. Krupke, "Ytterbium solid-state lasers--the first decade," IEEE. J. Sel. Top. Quantum Electron. 6, 1287-1296 (2000).
[CrossRef]

Mao, Y.

Muller, R. A.

G. L. Bourdet, R. A. Muller, G. M. Mullot, and J. Y. Vinet, "Short pulse generation by use of an active multipass interferometer," IEEE. J. Quantum Electron. 24, 580-584 (1988).
[CrossRef]

G. L. Bourdet, R. A. Muller, G. M. Mullot, and J. Y. Vinet, "Active mode locking of a high pressure CW waveguide CO2 laser," Appl. Phys. B 44, 107-110 (1987).
[CrossRef]

Mullot, G. M.

G. L. Bourdet, R. A. Muller, G. M. Mullot, and J. Y. Vinet, "Short pulse generation by use of an active multipass interferometer," IEEE. J. Quantum Electron. 24, 580-584 (1988).
[CrossRef]

G. L. Bourdet, R. A. Muller, G. M. Mullot, and J. Y. Vinet, "Active mode locking of a high pressure CW waveguide CO2 laser," Appl. Phys. B 44, 107-110 (1987).
[CrossRef]

Pinckey, J. T.

F. V. Kowalski, J. A. Squier, and J. T. Pinckey, "Pulse generation with an acousto-optic frequency shifter in a passive cavity," Appl. Phys. Lett. 50, 711-713 (1987).
[CrossRef]

Squier, J. A.

F. V. Kowalski, J. A. Squier, and J. T. Pinckey, "Pulse generation with an acousto-optic frequency shifter in a passive cavity," Appl. Phys. Lett. 50, 711-713 (1987).
[CrossRef]

Sumida, D. S.

Vinet, J. Y.

G. L. Bourdet, R. A. Muller, G. M. Mullot, and J. Y. Vinet, "Short pulse generation by use of an active multipass interferometer," IEEE. J. Quantum Electron. 24, 580-584 (1988).
[CrossRef]

G. L. Bourdet, R. A. Muller, G. M. Mullot, and J. Y. Vinet, "Active mode locking of a high pressure CW waveguide CO2 laser," Appl. Phys. B 44, 107-110 (1987).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. B (1)

G. L. Bourdet, R. A. Muller, G. M. Mullot, and J. Y. Vinet, "Active mode locking of a high pressure CW waveguide CO2 laser," Appl. Phys. B 44, 107-110 (1987).
[CrossRef]

Appl. Phys. Lett. (1)

F. V. Kowalski, J. A. Squier, and J. T. Pinckey, "Pulse generation with an acousto-optic frequency shifter in a passive cavity," Appl. Phys. Lett. 50, 711-713 (1987).
[CrossRef]

IEEE. J. Quantum Electron. (1)

G. L. Bourdet, R. A. Muller, G. M. Mullot, and J. Y. Vinet, "Short pulse generation by use of an active multipass interferometer," IEEE. J. Quantum Electron. 24, 580-584 (1988).
[CrossRef]

IEEE. J. Sel. Top. Quantum Electron. (1)

W. F. Krupke, "Ytterbium solid-state lasers--the first decade," IEEE. J. Sel. Top. Quantum Electron. 6, 1287-1296 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

G. L. Bourdet, "Comparison of pulse amplification performances in longitudinally pumped ytterbium doped materials," Opt. Commun. 200, 331-341 (2001).
[CrossRef]

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Energy diagram of the Yb 3+ : YAG crystal.

Fig. 2
Fig. 2

Scheme of the ring cavity with the Yb 3+ : YAG crystal.

Fig. 3
Fig. 3

Peak intensities vary with the seeding frequency where the curves are (1) the parameters in Table 1, (2) η = 0.90 , (3) I 0 = 20 kW / cm 2 , (4) L = 1 cm , and (5) δ ν = 200 MHz .

Fig. 4
Fig. 4

Peak intensity versus the seeding intensity where the curves are (1) the parameters in Table 1, (2) η = 0.90 , (3) δ ν = 200 MHz , (4) L = 1 c m , and (5) λ 0 = 1035 nm .

Fig. 5
Fig. 5

Impact of the amplifier length on the peak intensity where the curves are (1) the parameters in Table 1, (2) η = 0.90 , (3) I 0 = 20 kW / cm 2 , and (4) δ ν = 200 MHz .

Fig. 6
Fig. 6

Intensity distributions of the seeding laser and laser pulse where the parameters are shown in Table 1.

Fig. 7
Fig. 7

Pulse shapes in some cases where the curves are (1) the parameters in Table 1, τ = 4.2 ps; (2) η = 0.90 , τ = 49 ps ; (3) I 0 = 20 kW / cm 2 , τ = 12.5 ps ; (4) δ ν = 200 MHz , τ = 1.8 ps ; (5) L = 1 cm , τ = 8.4 ps ; and (6) λ 0 = 1035 nm , τ = 2.8 ps .

Tables (1)

Tables Icon

Table 1 Spectral Parameters of Yb3+:YAG and Other Parameters

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

τ f d X u ( ρ , z ) d t = β p ( ρ , z ) [ f p X u ( ρ , z ) ] X u ( ρ , z ) [ X u ( ρ , z ) f l ] n β ( ν n , ρ , z ) = 0 ,
Δ N ( ρ , z ) = N 0 ( f l m + f u n ) β p ( ρ , z ) ( f p f l ) f l 1 + β p ( ρ , z ) + n β ( ν n , ρ , z ) .
1 I ( ν n , ρ , z ) d I ( ν n , ρ , z ) d z = σ e ( ν n ) Δ N ( ρ , z ) δ = σ e ( ν n ) N 0 ( f l m + f u n ) × β p ( ρ , z ) ( f p f l ) f l 1 + β p ( ρ , z ) + n β ( ν n , ρ , z ) δ ,
d [ ln ( I ( ν n , ρ , z ) ) ξ ( ν n ) ln ( I ( ν c , ρ , z ) ) ] = δ ( ξ ( ν n ) 1 ) d z ,
g ( ν n , ρ , z ) = δ z ( ξ ( ν n ) 1 ) + ξ ( ν n ) g ( ν c , ρ , z ) .
I ( ν n , ρ , z ) = ( 1 η ) η n I s d ( ν 0 , ρ ) exp ( γ ( ν c , ρ , z ) ξ ( ν n ) δ ( z + n L ) + γ ( ν c , ρ , L ) i = 0 n 1 ξ ( ν i ) ) ,
I ( ν n , ρ , L ) = ( 1 η ) η n I s d ( ν 0 , ρ ) exp ( ( n + 1 ) δ L + γ ( ν c , ρ , L ) i = 0 n ξ ( ν i ) ) .
γ ( ν c , ρ , L ) = 0 L σ e ( ν c ) N 0 ( f l m + f u n ) [ ( f p f l ) I p ( ρ , z ) / I p s f l ] d z 1 + I p ( ρ , z ) / I p s + ( 1 η ) I s d ( ν 0 , ρ ) n ψ ( ν n , ρ , z , n ) / I s ( ν n ) , ψ ( ν n , ρ , z , n ) = η n exp ( γ ( ν c , ρ , z ) ξ ( ν n ) δ ( z + n L ) + γ ( ν c , ρ , L ) i = 0 n 1 ξ ( ν i ) ) ,
E ( ρ , t ) = E s d ( ν 0 , ρ ) ( η cos ( 2 π ν 1 t ) + ( 1 η ) × n ψ ( ν n , ρ , L , n ) 0.5 cos ( 2 π ν n t + ϕ n ) ) ,
F ( ρ , t ) = I s d ( ν 0 , ρ ) | η cos ( 2 π ν 1 t ) + ( 1 η ) × n ψ ( ν n , ρ , L , n ) 0.5 cos ( 2 π ν n t + ϕ n ) | 2 .
ϕ n = i = 0 n 1 k i L c = n 2 π L c c ( ν 0 + ( n 1 ) 2 δ ν ) .
g ( ν n , ρ , z ) = ξ ( ν n ) g ( ν c , ρ , z ) ,
g ( ν c , ρ , L ) = 0 L σ e ( ν c ) N 0 ( f l m + f u n ) [ ( f p f l ) I p ( ρ , z ) / I p s f l ] d z 1 + I p ( ρ , z ) / I p s + ( 1 η ) I s d ( ν 0 , ρ ) n ψ ( ν n , ρ , z , n ) / I s ( ν n ) ,
F ( ρ , t ) = I s d ( ν 0 , ρ ) | η cos ( 2 π ν 1 t ) + ( 1 η ) × n ψ ( ν n , ρ , L , n ) cos ( 2 π ν n t + ϕ n ) | 2 ,
ψ ( ν n , ρ , z , n ) = η n exp ( g ( ν c , ρ , z ) ξ ( ν n ) + g ( ν c , ρ , L ) i = 0 n 1 ξ ( ν i ) ) .

Metrics