Abstract

Polarization is an important addition to spectral imaging in detecting and identifying objects of interest, and simple linear polarization measurements are often inadequate. Full polarization analysis can give additional information for discrimination where the polarization state is completely described by the Stokes parameters. An acousto-optic tunable filter (AOTF) imaging system was built incorporating two liquid-crystal variable retarders (LCVRs) that can provide complete spectral-polarimetric analysis, and it is believed to be the first demonstration of a full Stokes polarimetric AOTF spectral imaging system with no moving parts. It is also shown that a single LCVR cannot provide all the Stokes parameters.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. L. Coulson, "Effects of reflection properties of natural surfaces in aerial reconnaissance," Appl. Opt. 5, 905-917 (1966).
    [CrossRef] [PubMed]
  2. V. C. Vanderbilt, L. Grant, L. L. Biehl, and B. F. Robinson, "Specular, diffuse, and polarized light scattered by two wheat canopies," Appl. Opt. 24, 2408-2418 (1985).
    [CrossRef] [PubMed]
  3. S. M. Haugland, E. Bahar, and A. H. Carrieri, "Identification of contaminant coatings over rough surfaces using polarized infrared scattering," Appl. Opt. 31, 3847-3852 (1992).
    [CrossRef] [PubMed]
  4. J. A. North and M. J. Duggin, "Stokes vector imaging of the polarized sky-dome," Appl. Opt. 36, 723-730 (1997).
    [CrossRef] [PubMed]
  5. D. E. Aspnes and A. A. Studna, "High precision scanning ellipsometer," Appl. Opt. 14, 220-228 (1975).
    [PubMed]
  6. R. W. Collins, "Automatic rotating element ellipsometers: calibration, operation, and real-time applications," Rev. Sci. Instrum. 61, 2029-2062 (1990).
    [CrossRef]
  7. C. C. Kim, P. M. Raccah, and J. W. Gerland, "The improvement of phase modulated spectroscopic ellipsometry," Rev. Sci. Instrum. 63, 2958-2966 (1992).
    [CrossRef]
  8. G. E. Gellison Jr. and F. A. Modine, "Two modulator generalized ellipsometry: experiment and calibration," Appl. Opt. 36, 8184-8189 (1997).
    [CrossRef]
  9. K. Postava, A. Maziewski, Y. Yamaguchi, R. Ossikovski, S. Visnovsky, and J. Pistora, "Null ellipsometer with phase modulation," Opt. Express 12, 6040-6045 (2004).
    [CrossRef] [PubMed]
  10. G. D. van Wiggeren and R. Roy, "High-speed fiber-optic polarization analyzer: measurements of the polarization dynamics of an erbium-doped fiber ring laser," Opt. Commun. 164, 107-120 (1999).
    [CrossRef]
  11. N. Gupta, L. J. Denes, M. Gottlieb, D. R. Suhre, B. Kaminski, and P. Metes, "Object detection with a field-portable spectropolarimetric imager," Appl. Opt. 40, 6626-6632 (2001).
    [CrossRef]
  12. N. Gupta, "Remote sensing using hyperspectral and polarization images," Proc. SPIE 4574, 184-192 (2001).
  13. N. Gupta, "Acousto-optic tunable filter-based spectropolarimetric imagers for medical diagnostic applications--instrument design point of view," J. Biomed. Opt. 10, 051802 (2005).
    [CrossRef] [PubMed]
  14. N. Gupta, R. Dahmani, and S. Choy, "Acousto-optic tunable filter based visible-to-near-infrared spectropolarimetric imager," Opt. Eng. 41, 1033-1038 (2002).
    [CrossRef]
  15. N. Gupta, "Hyperspectral and polarization imaging applications of acousto-optic tunable filters," in Proceedings of World Congress on Ultrasonics 2003 (2003), pp. 345-348, http://www.sfa.asso.fr/wcu2003/procs/website/articles/000518.pdf.
  16. N. Gupta, "Hyperspectral and polarization imaging applications of acousto-optic tunable filters," in Proceedings of 32nd AIPR Workshop (2003), pp. 21-26.
  17. D. R. Suhre, L. J. Denes, and N. Gupta, "Telecentric confocal optics for aberration correction of acousto-optic tunable filters," Appl. Opt. 43, 1255-1260 (2004).
    [CrossRef] [PubMed]
  18. Application note, "Stokes polarimetry using liquid crystal variable retarders," Meadowlark Optics, Inc. (2005), http://www.meadowlark.com.
  19. R. M. Craig, S. L. Gilbert, and P. D. Hale, "High-resolution, nonmechanical approach to polarization dependent transmission measurements," J. Lightwave Technol. 16, 1285-1294 (1998).
    [CrossRef]
  20. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980), pp. 544-554.
  21. E. Collett, Polarized Light(Marcel Dekker, 1992), p. 131.
  22. S. F. Nee, "Polarization measurement," in Measurement, Instrumentation, and Sensors Handbook CRCnetBase 1999, J. G. Webster, ed. (CRC Press, 2000), p. 60.3, http://www.autex.spb.ru/download/wavelet/books/sensor/CH60.PDF#search='Nee%20Polarimetry%20CRC.
  23. D. R. Suhre and N. Gupta, "Acousto-optic tunable sidelobe analysis and reduction with telecentric confocal optics," Appl. Opt. 44, 5797-5801 (2004).
    [CrossRef]
  24. N. J. Pust and J. A. Shaw, "Dual-field imaging polarimeter using liquid crystal variable retarders," Appl. Opt. 45, 5470-5478 (2006).
    [CrossRef] [PubMed]
  25. M. Leroy and A. Lifermann, "The POLDER instrument: mission and scientific results," in Proceedings of Geoscience and Remote Sensing Symposium (IEEE, 2000), Vol. 1, pp. 62-64, http://ieeexplore.ieee.org/iel5/6913/18663/00860422.pdf?arnumber=860422.

2006

2005

N. Gupta, "Acousto-optic tunable filter-based spectropolarimetric imagers for medical diagnostic applications--instrument design point of view," J. Biomed. Opt. 10, 051802 (2005).
[CrossRef] [PubMed]

2004

2002

N. Gupta, R. Dahmani, and S. Choy, "Acousto-optic tunable filter based visible-to-near-infrared spectropolarimetric imager," Opt. Eng. 41, 1033-1038 (2002).
[CrossRef]

2001

1999

G. D. van Wiggeren and R. Roy, "High-speed fiber-optic polarization analyzer: measurements of the polarization dynamics of an erbium-doped fiber ring laser," Opt. Commun. 164, 107-120 (1999).
[CrossRef]

1998

1997

1992

S. M. Haugland, E. Bahar, and A. H. Carrieri, "Identification of contaminant coatings over rough surfaces using polarized infrared scattering," Appl. Opt. 31, 3847-3852 (1992).
[CrossRef] [PubMed]

C. C. Kim, P. M. Raccah, and J. W. Gerland, "The improvement of phase modulated spectroscopic ellipsometry," Rev. Sci. Instrum. 63, 2958-2966 (1992).
[CrossRef]

1990

R. W. Collins, "Automatic rotating element ellipsometers: calibration, operation, and real-time applications," Rev. Sci. Instrum. 61, 2029-2062 (1990).
[CrossRef]

1985

1975

1966

Aspnes, D. E.

Bahar, E.

Biehl, L. L.

Born, M.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980), pp. 544-554.

Carrieri, A. H.

Choy, S.

N. Gupta, R. Dahmani, and S. Choy, "Acousto-optic tunable filter based visible-to-near-infrared spectropolarimetric imager," Opt. Eng. 41, 1033-1038 (2002).
[CrossRef]

Collett, E.

E. Collett, Polarized Light(Marcel Dekker, 1992), p. 131.

Collins, R. W.

R. W. Collins, "Automatic rotating element ellipsometers: calibration, operation, and real-time applications," Rev. Sci. Instrum. 61, 2029-2062 (1990).
[CrossRef]

Coulson, K. L.

Craig, R. M.

Dahmani, R.

N. Gupta, R. Dahmani, and S. Choy, "Acousto-optic tunable filter based visible-to-near-infrared spectropolarimetric imager," Opt. Eng. 41, 1033-1038 (2002).
[CrossRef]

Denes, L. J.

Duggin, M. J.

Gellison, G. E.

Gerland, J. W.

C. C. Kim, P. M. Raccah, and J. W. Gerland, "The improvement of phase modulated spectroscopic ellipsometry," Rev. Sci. Instrum. 63, 2958-2966 (1992).
[CrossRef]

Gilbert, S. L.

Gottlieb, M.

Grant, L.

Gupta, N.

N. Gupta, "Acousto-optic tunable filter-based spectropolarimetric imagers for medical diagnostic applications--instrument design point of view," J. Biomed. Opt. 10, 051802 (2005).
[CrossRef] [PubMed]

D. R. Suhre, L. J. Denes, and N. Gupta, "Telecentric confocal optics for aberration correction of acousto-optic tunable filters," Appl. Opt. 43, 1255-1260 (2004).
[CrossRef] [PubMed]

D. R. Suhre and N. Gupta, "Acousto-optic tunable sidelobe analysis and reduction with telecentric confocal optics," Appl. Opt. 44, 5797-5801 (2004).
[CrossRef]

N. Gupta, R. Dahmani, and S. Choy, "Acousto-optic tunable filter based visible-to-near-infrared spectropolarimetric imager," Opt. Eng. 41, 1033-1038 (2002).
[CrossRef]

N. Gupta, "Remote sensing using hyperspectral and polarization images," Proc. SPIE 4574, 184-192 (2001).

N. Gupta, L. J. Denes, M. Gottlieb, D. R. Suhre, B. Kaminski, and P. Metes, "Object detection with a field-portable spectropolarimetric imager," Appl. Opt. 40, 6626-6632 (2001).
[CrossRef]

N. Gupta, "Hyperspectral and polarization imaging applications of acousto-optic tunable filters," in Proceedings of World Congress on Ultrasonics 2003 (2003), pp. 345-348, http://www.sfa.asso.fr/wcu2003/procs/website/articles/000518.pdf.

N. Gupta, "Hyperspectral and polarization imaging applications of acousto-optic tunable filters," in Proceedings of 32nd AIPR Workshop (2003), pp. 21-26.

Hale, P. D.

Haugland, S. M.

Kaminski, B.

Kim, C. C.

C. C. Kim, P. M. Raccah, and J. W. Gerland, "The improvement of phase modulated spectroscopic ellipsometry," Rev. Sci. Instrum. 63, 2958-2966 (1992).
[CrossRef]

Leroy, M.

M. Leroy and A. Lifermann, "The POLDER instrument: mission and scientific results," in Proceedings of Geoscience and Remote Sensing Symposium (IEEE, 2000), Vol. 1, pp. 62-64, http://ieeexplore.ieee.org/iel5/6913/18663/00860422.pdf?arnumber=860422.

Lifermann, A.

M. Leroy and A. Lifermann, "The POLDER instrument: mission and scientific results," in Proceedings of Geoscience and Remote Sensing Symposium (IEEE, 2000), Vol. 1, pp. 62-64, http://ieeexplore.ieee.org/iel5/6913/18663/00860422.pdf?arnumber=860422.

Maziewski, A.

Metes, P.

Modine, F. A.

Nee, S. F.

S. F. Nee, "Polarization measurement," in Measurement, Instrumentation, and Sensors Handbook CRCnetBase 1999, J. G. Webster, ed. (CRC Press, 2000), p. 60.3, http://www.autex.spb.ru/download/wavelet/books/sensor/CH60.PDF#search='Nee%20Polarimetry%20CRC.

North, J. A.

Ossikovski, R.

Pistora, J.

Postava, K.

Pust, N. J.

Raccah, P. M.

C. C. Kim, P. M. Raccah, and J. W. Gerland, "The improvement of phase modulated spectroscopic ellipsometry," Rev. Sci. Instrum. 63, 2958-2966 (1992).
[CrossRef]

Robinson, B. F.

Roy, R.

G. D. van Wiggeren and R. Roy, "High-speed fiber-optic polarization analyzer: measurements of the polarization dynamics of an erbium-doped fiber ring laser," Opt. Commun. 164, 107-120 (1999).
[CrossRef]

Shaw, J. A.

Studna, A. A.

Suhre, D. R.

van Wiggeren, G. D.

G. D. van Wiggeren and R. Roy, "High-speed fiber-optic polarization analyzer: measurements of the polarization dynamics of an erbium-doped fiber ring laser," Opt. Commun. 164, 107-120 (1999).
[CrossRef]

Vanderbilt, V. C.

Visnovsky, S.

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980), pp. 544-554.

Yamaguchi, Y.

Appl. Opt.

K. L. Coulson, "Effects of reflection properties of natural surfaces in aerial reconnaissance," Appl. Opt. 5, 905-917 (1966).
[CrossRef] [PubMed]

D. E. Aspnes and A. A. Studna, "High precision scanning ellipsometer," Appl. Opt. 14, 220-228 (1975).
[PubMed]

V. C. Vanderbilt, L. Grant, L. L. Biehl, and B. F. Robinson, "Specular, diffuse, and polarized light scattered by two wheat canopies," Appl. Opt. 24, 2408-2418 (1985).
[CrossRef] [PubMed]

S. M. Haugland, E. Bahar, and A. H. Carrieri, "Identification of contaminant coatings over rough surfaces using polarized infrared scattering," Appl. Opt. 31, 3847-3852 (1992).
[CrossRef] [PubMed]

J. A. North and M. J. Duggin, "Stokes vector imaging of the polarized sky-dome," Appl. Opt. 36, 723-730 (1997).
[CrossRef] [PubMed]

G. E. Gellison Jr. and F. A. Modine, "Two modulator generalized ellipsometry: experiment and calibration," Appl. Opt. 36, 8184-8189 (1997).
[CrossRef]

N. Gupta, L. J. Denes, M. Gottlieb, D. R. Suhre, B. Kaminski, and P. Metes, "Object detection with a field-portable spectropolarimetric imager," Appl. Opt. 40, 6626-6632 (2001).
[CrossRef]

D. R. Suhre, L. J. Denes, and N. Gupta, "Telecentric confocal optics for aberration correction of acousto-optic tunable filters," Appl. Opt. 43, 1255-1260 (2004).
[CrossRef] [PubMed]

D. R. Suhre and N. Gupta, "Acousto-optic tunable sidelobe analysis and reduction with telecentric confocal optics," Appl. Opt. 44, 5797-5801 (2004).
[CrossRef]

N. J. Pust and J. A. Shaw, "Dual-field imaging polarimeter using liquid crystal variable retarders," Appl. Opt. 45, 5470-5478 (2006).
[CrossRef] [PubMed]

J. Biomed. Opt.

N. Gupta, "Acousto-optic tunable filter-based spectropolarimetric imagers for medical diagnostic applications--instrument design point of view," J. Biomed. Opt. 10, 051802 (2005).
[CrossRef] [PubMed]

J. Lightwave Technol.

Opt. Commun.

G. D. van Wiggeren and R. Roy, "High-speed fiber-optic polarization analyzer: measurements of the polarization dynamics of an erbium-doped fiber ring laser," Opt. Commun. 164, 107-120 (1999).
[CrossRef]

Opt. Eng.

N. Gupta, R. Dahmani, and S. Choy, "Acousto-optic tunable filter based visible-to-near-infrared spectropolarimetric imager," Opt. Eng. 41, 1033-1038 (2002).
[CrossRef]

Opt. Express

Rev. Sci. Instrum.

R. W. Collins, "Automatic rotating element ellipsometers: calibration, operation, and real-time applications," Rev. Sci. Instrum. 61, 2029-2062 (1990).
[CrossRef]

C. C. Kim, P. M. Raccah, and J. W. Gerland, "The improvement of phase modulated spectroscopic ellipsometry," Rev. Sci. Instrum. 63, 2958-2966 (1992).
[CrossRef]

Other

N. Gupta, "Remote sensing using hyperspectral and polarization images," Proc. SPIE 4574, 184-192 (2001).

N. Gupta, "Hyperspectral and polarization imaging applications of acousto-optic tunable filters," in Proceedings of World Congress on Ultrasonics 2003 (2003), pp. 345-348, http://www.sfa.asso.fr/wcu2003/procs/website/articles/000518.pdf.

N. Gupta, "Hyperspectral and polarization imaging applications of acousto-optic tunable filters," in Proceedings of 32nd AIPR Workshop (2003), pp. 21-26.

Application note, "Stokes polarimetry using liquid crystal variable retarders," Meadowlark Optics, Inc. (2005), http://www.meadowlark.com.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980), pp. 544-554.

E. Collett, Polarized Light(Marcel Dekker, 1992), p. 131.

S. F. Nee, "Polarization measurement," in Measurement, Instrumentation, and Sensors Handbook CRCnetBase 1999, J. G. Webster, ed. (CRC Press, 2000), p. 60.3, http://www.autex.spb.ru/download/wavelet/books/sensor/CH60.PDF#search='Nee%20Polarimetry%20CRC.

M. Leroy and A. Lifermann, "The POLDER instrument: mission and scientific results," in Proceedings of Geoscience and Remote Sensing Symposium (IEEE, 2000), Vol. 1, pp. 62-64, http://ieeexplore.ieee.org/iel5/6913/18663/00860422.pdf?arnumber=860422.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Generalized optical arrangement with a single LCVR rotated from the principal x axis by angle α and the polarizer by angle β.

Fig. 2
Fig. 2

Practical optical arrangement for complete spectropolarimetric analysis using two LCVRs and an AOTF.

Fig. 3
Fig. 3

Schematic of an AOTF imager with confocal optics and two LCVRs.

Fig. 4
Fig. 4

Photograph of the AOTF imager with two LCVRs (with imager cover open) that measures full Stokes parameters.

Fig. 5
Fig. 5

Images of targets illustrating full polarimetric capability with (a) zero retardance for both LCVRs, (b) LCVR 1 at 0 and LCVR 2 at π, (c) LCVR 1 at 0 and LCVR 2 at π / 2 , and (d) both LCVRs at π / 2 .

Fig. 6
Fig. 6

Calculated Stokes parameter images of the target using images in Fig. 5 for (a) S 0 , (b) S 1 , (c) S 2 , and (d) S 3 . Without the added LCVR S 2 could not be determined, and the 45° arrow would appear unpolarized.

Equations (127)

Equations on this page are rendered with MathJax. Learn more.

T e O 2
E x = E 1 exp [ i ( ω t ϕ 1 ) ] + E u ,
E y = E 2 exp [ i ( ω t ϕ 2 ) ] + E u ,
E 1
E 2
( ϕ 1 , ϕ 2 )
E u
S 0 = E x E x * + E y E y * = E 1 2 + E 2 2 + 2 E u 2 ,
S 1 = E x E x * E y E y * = E 1 2 E 2 2 ,
S 2 = 2 Re ( E x E y * ) = 2 E 1 E 2 cos ϕ ,
S 3 = 2 Im ( E x E y * ) = 2 E 1 E 2 sin ϕ ,
Re ( )
Im ( )
E y
E x
( ϕ 1 ϕ 2 ) = ϕ .
α = 0
E 2
E p = E 1 cos β exp ( i ω t ) + E 2 sin β exp [ i ( ω t + ϕ δ ) ] + E u ,
E p E p *
I p = E 1 2 cos 2 β + E 2 2 sin 2 β + 2 E 1 E 2 cos β sin β × cos ( ϕ δ ) + E u 2 .
I p = 1 2 S 0 + 1 2 S 1 cos ( 2 β ) + 1 2 S 2 sin ( 2 β ) cos δ + 1 2 S 3 sin ( 2 β ) sin δ ,
S 2
S 3
δ = 0 °
± π / 2
β = 45 °
S 0
S 1
α 0
S 0
S 1
S 2
S 3
S 0 = S 0 ,
S 1 = S 1 cos ( 2 α ) + S 2 sin ( 2 α )
S 2 = S 1 sin ( 2 α ) + S 2 cos ( 2 α ) ,
S 3 = S 3 ,
I p = 1 2 S 0 + 1 2 [ S 1 cos ( 2 α ) + S 2 sin ( 2 α ) ] cos ( 2 β 2 α ) + 1 2 [ S 2 cos ( 2 α ) S 1 sin ( 2 α ) ] sin ( 2 β 2 α ) cos δ + 1 2 S 3 sin ( 2 β 2 α ) sin δ .
S 3
{ S 0 + [ S 1 cos ( 2 α ) + S 2 sin ( 2 α ) ] cos ( 2 β 2 α ) }
[ S 2 cos ( 2 α ) S 1 sin ( 2 α ) ] sin ( 2 β 2 α )
α = 45 °
β = 0
S 0
S 1
S 3
α = 0
β = 45 °
S 0
S 2
S 3
S 1
S 2
( δ 1 = 0 )
α = 45 °
β = 0
S 0
S 1
S 3
S 0 = I p ( δ 1 = 0 , δ 2 = 0 ) + I p ( δ 1 = 0 , δ 2 = π ) ,
S 1 = I p ( δ 1 = 0 , δ 2 = 0 ) I p ( δ 1 = 0 , δ 2 = π ) ,
S 3 = 2 I p ( δ 1 = 0 , δ 2 = π / 2 ) I p ( δ 1 = 0 , δ 2 = 0 ) I p ( δ 1 = 0 , δ 2 = π ) ,
δ 2
I p ( δ 1 = 0 , δ 2 = π / 2 )
S 3
I p ( δ 1 = 0 , δ , = π / 2 )
S 2
δ 1 = π / 2
S 2
S 0
S 1
S 2 = 2 I p ( δ 1 = π / 2 , δ 2 = π / 2 ) I p ( δ 1 = 0 , δ 2 = 0 ) I p ( δ 1 = 0 , δ 2 = π ) .
π / 2
TeO 2
15   mm
5   mm
10 .5   nm
25   mm
400 800   nm
LCVR 1
LCVR 2
633   nm
633   nm
λ / 4
λ / 4
633   nm
λ / 4
λ / 2
633   nm
633   nm
LCVR 1
LCVR 2
LCVR 1
LCVR 2
π / 2
LCVR 2
LCVR 1
LCVR 2
π / 2
LCVR 1
LCVR 2
LCVR 1
LCVR 2
S 0
S 1
S 2
cos ϕ = 1
S 3
sin ϕ = 1
S 0 2 S 1 2 + S 2 2 + S 3 2 ,
S 1
S 2
S 1
S 2
LCVR 1
LCVR 2
LCVR 1
LCVR 2
π / 2
π / 2
S 0
S 1
S 2
S 3
S 2

Metrics