Abstract

A spectroscopic system for continuous real-time monitoring of SO2 concentrations in industrial emissions was developed. The sensor is well suited for field applications due to simple and compact instrumental design, and robust data evaluation based on ultraviolet broadband absorption without the use of any calibration cell. The sensor has a detection limit of 1 ppm, and was employed both for gas-flow simulations with and without suspended particles, and for in situ measurement of SO2 concentrations in the flue gas emitted from an industrial coal-fired boiler. The price∕performance ratio of the instrument is expected to be superior to other comparable real-time monitoring systems.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Weibring, M. Andersson, H. Edner, and S. Svanberg, "Remote monitoring of industrial emissions by combination of lidar and plume velocity measurements," Appl. Phys. B 66, 383-388 (1998).
    [CrossRef]
  2. I. Linnerud, P. Kaspersen, and T. Jæger, "Gas monitoring in the process industry using diode laser spectroscopy," Appl. Phys. B 67, 297-305 (1998).
    [CrossRef]
  3. H. Edner, P. Ragnarson, S. Spännare, and S. Svanberg, "Differential optical absorption spectroscopy (DOAS) system for urban atmospheric pollution monitoring," Appl. Opt. 32, 327-333 (1993).
    [CrossRef] [PubMed]
  4. U. Platt, "Differential optical absorption spectroscopy (DOAS)," in Air Monitoring by Spectroscopic Techniques, M.W.Sigrist, ed. (Wiley, 1994), Vol. 127 of Chemical Physics Series pp. 27-84.
  5. U. Platt and D. Perner, "Direct measurement of atmospheric CH2O, HNO2, O3, and SO2 by differential absorption in the near UV," J. Geophys. Res. 85, 7453-7458 (1980).
    [CrossRef]
  6. J. Mellqvist, H. Axelsson, and A. Rosén, "DOAS for flue gas monitoring-III. in-situ monitoring of sulfur dioxide, nitrogen monoxide and ammonia," J. Quant. Spectrosc. Transfer 56, 225-240 (1996).
    [CrossRef]
  7. M. M. Millan and R. M. Hoff, "Remote sensing of air pollutants by correlation spectroscopy--instrumental response characteristics," Atmos. Environ. 12, 853-864 (1978).
    [CrossRef] [PubMed]
  8. P. Weibring, H. Edner, S. Svanberg, G. Cecchi, L. Pantani, R. Ferrara, and T. Caltabiano, "Monitoring of volcanic sulphur dioxide emissions using differential absorption lidar (DIAL), differential optical absorption spectroscopy (DOAS), and correlation spectroscopy (COSPEC)," Appl. Phys. B 67, 419-426 (1998).
    [CrossRef]
  9. C. Oppenheimer, P. Francis, and J. Stix, "Depletion rates of sulfur dioxide in tropospheric volcanic plumes," Geophys. Res. Lett. 25, 2671-2674 (1998).
    [CrossRef]
  10. S. Svanberg, "Environmental and medical applications of photonic interactions," Phys. Scr. T110, 39-50 (2004).
    [CrossRef]
  11. H. Edner, K. Fredriksson, A. Sunesson, S. Svanberg, L. Unéus, and W. Wendt, "Mobile remote sensing system for atmospheric monitoring," Appl. Opt. 26, 4330-4338 (1987).
    [CrossRef] [PubMed]
  12. P. Weibring, H. Edner, and S. Svanberg, "Versatile mobile lidar system for environmental monitoring," Appl. Opt. 42, 3583-3594 (2003).
    [CrossRef] [PubMed]
  13. P. Weibring, J. Swartling, H. Edner, S. Svanberg, T. Caltabiano, D. Condarelli, G. Cecchi, and L. Pantani, "Optical monitoring of volcanic sulphur dioxide emissions--comparison between four different remote-sensing spectroscopic techniques," Opt. Lasers Eng. 37, 267-284 (2002).
    [CrossRef]
  14. G. Somesfalean, Z. G. Zhang, M. Sjöholm, and S. Svanberg, "All-diode-laser ultraviolet absorption spectroscopy for sulfur dioxide detection," Appl. Phys. B. 80, 1021-1025 (2005).
    [CrossRef]
  15. F. Xu, Z. Lv, Y. G. Zhang, G. Somesfalean, and Z. G. Zhang, "Concentration evaluation method using broadband absorption spectroscopy for sulfur dioxide monitoring," Appl. Phys. Lett. 88, 231109 (2006).
    [CrossRef]
  16. F. Xu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, H. S. Wang, and S. H. Wu, "Temperature-corrected spectroscopic evaluation method for gas concentration monitoring," Appl. Phys. B 86, 361-364 (2007).
    [CrossRef]
  17. S. Svanberg, in Atomic and Molecular Spectroscopy: Basic Aspects and Practical Applications (Springer, 2004), pp. 164-165.
  18. D. J. Brassington, "Measurement of the SO2 absorption spectrum between 297 and 316 nm using a tunable dye laser," Laboratory Note RD/L/N 184/79 (Central Electricity Research Laboratories, Leatherhead, UK, 1979).
  19. D. J. Brassington, "Sulfur dioxide absorption cross-section measurements from 290 nm to 317 nm," Appl. Opt. 20, 3774-3779 (1981).
    [CrossRef] [PubMed]
  20. Z. Y. Zhang, W. H. Li, Z. G. Xu, and S. J. Qu, in On the Appropriate Processing and Utilization of Coal (Chinese U. of Mineralogy, 2000), pp. 53-55.

2007

F. Xu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, H. S. Wang, and S. H. Wu, "Temperature-corrected spectroscopic evaluation method for gas concentration monitoring," Appl. Phys. B 86, 361-364 (2007).
[CrossRef]

2006

F. Xu, Z. Lv, Y. G. Zhang, G. Somesfalean, and Z. G. Zhang, "Concentration evaluation method using broadband absorption spectroscopy for sulfur dioxide monitoring," Appl. Phys. Lett. 88, 231109 (2006).
[CrossRef]

2005

G. Somesfalean, Z. G. Zhang, M. Sjöholm, and S. Svanberg, "All-diode-laser ultraviolet absorption spectroscopy for sulfur dioxide detection," Appl. Phys. B. 80, 1021-1025 (2005).
[CrossRef]

2004

S. Svanberg, "Environmental and medical applications of photonic interactions," Phys. Scr. T110, 39-50 (2004).
[CrossRef]

2003

2002

P. Weibring, J. Swartling, H. Edner, S. Svanberg, T. Caltabiano, D. Condarelli, G. Cecchi, and L. Pantani, "Optical monitoring of volcanic sulphur dioxide emissions--comparison between four different remote-sensing spectroscopic techniques," Opt. Lasers Eng. 37, 267-284 (2002).
[CrossRef]

1998

P. Weibring, H. Edner, S. Svanberg, G. Cecchi, L. Pantani, R. Ferrara, and T. Caltabiano, "Monitoring of volcanic sulphur dioxide emissions using differential absorption lidar (DIAL), differential optical absorption spectroscopy (DOAS), and correlation spectroscopy (COSPEC)," Appl. Phys. B 67, 419-426 (1998).
[CrossRef]

C. Oppenheimer, P. Francis, and J. Stix, "Depletion rates of sulfur dioxide in tropospheric volcanic plumes," Geophys. Res. Lett. 25, 2671-2674 (1998).
[CrossRef]

P. Weibring, M. Andersson, H. Edner, and S. Svanberg, "Remote monitoring of industrial emissions by combination of lidar and plume velocity measurements," Appl. Phys. B 66, 383-388 (1998).
[CrossRef]

I. Linnerud, P. Kaspersen, and T. Jæger, "Gas monitoring in the process industry using diode laser spectroscopy," Appl. Phys. B 67, 297-305 (1998).
[CrossRef]

1996

J. Mellqvist, H. Axelsson, and A. Rosén, "DOAS for flue gas monitoring-III. in-situ monitoring of sulfur dioxide, nitrogen monoxide and ammonia," J. Quant. Spectrosc. Transfer 56, 225-240 (1996).
[CrossRef]

1993

1987

1981

1980

U. Platt and D. Perner, "Direct measurement of atmospheric CH2O, HNO2, O3, and SO2 by differential absorption in the near UV," J. Geophys. Res. 85, 7453-7458 (1980).
[CrossRef]

1978

M. M. Millan and R. M. Hoff, "Remote sensing of air pollutants by correlation spectroscopy--instrumental response characteristics," Atmos. Environ. 12, 853-864 (1978).
[CrossRef] [PubMed]

Andersson, M.

P. Weibring, M. Andersson, H. Edner, and S. Svanberg, "Remote monitoring of industrial emissions by combination of lidar and plume velocity measurements," Appl. Phys. B 66, 383-388 (1998).
[CrossRef]

Axelsson, H.

J. Mellqvist, H. Axelsson, and A. Rosén, "DOAS for flue gas monitoring-III. in-situ monitoring of sulfur dioxide, nitrogen monoxide and ammonia," J. Quant. Spectrosc. Transfer 56, 225-240 (1996).
[CrossRef]

Brassington, D. J.

D. J. Brassington, "Sulfur dioxide absorption cross-section measurements from 290 nm to 317 nm," Appl. Opt. 20, 3774-3779 (1981).
[CrossRef] [PubMed]

D. J. Brassington, "Measurement of the SO2 absorption spectrum between 297 and 316 nm using a tunable dye laser," Laboratory Note RD/L/N 184/79 (Central Electricity Research Laboratories, Leatherhead, UK, 1979).

Caltabiano, T.

P. Weibring, J. Swartling, H. Edner, S. Svanberg, T. Caltabiano, D. Condarelli, G. Cecchi, and L. Pantani, "Optical monitoring of volcanic sulphur dioxide emissions--comparison between four different remote-sensing spectroscopic techniques," Opt. Lasers Eng. 37, 267-284 (2002).
[CrossRef]

P. Weibring, H. Edner, S. Svanberg, G. Cecchi, L. Pantani, R. Ferrara, and T. Caltabiano, "Monitoring of volcanic sulphur dioxide emissions using differential absorption lidar (DIAL), differential optical absorption spectroscopy (DOAS), and correlation spectroscopy (COSPEC)," Appl. Phys. B 67, 419-426 (1998).
[CrossRef]

Cecchi, G.

P. Weibring, J. Swartling, H. Edner, S. Svanberg, T. Caltabiano, D. Condarelli, G. Cecchi, and L. Pantani, "Optical monitoring of volcanic sulphur dioxide emissions--comparison between four different remote-sensing spectroscopic techniques," Opt. Lasers Eng. 37, 267-284 (2002).
[CrossRef]

P. Weibring, H. Edner, S. Svanberg, G. Cecchi, L. Pantani, R. Ferrara, and T. Caltabiano, "Monitoring of volcanic sulphur dioxide emissions using differential absorption lidar (DIAL), differential optical absorption spectroscopy (DOAS), and correlation spectroscopy (COSPEC)," Appl. Phys. B 67, 419-426 (1998).
[CrossRef]

Condarelli, D.

P. Weibring, J. Swartling, H. Edner, S. Svanberg, T. Caltabiano, D. Condarelli, G. Cecchi, and L. Pantani, "Optical monitoring of volcanic sulphur dioxide emissions--comparison between four different remote-sensing spectroscopic techniques," Opt. Lasers Eng. 37, 267-284 (2002).
[CrossRef]

Edner, H.

P. Weibring, H. Edner, and S. Svanberg, "Versatile mobile lidar system for environmental monitoring," Appl. Opt. 42, 3583-3594 (2003).
[CrossRef] [PubMed]

P. Weibring, J. Swartling, H. Edner, S. Svanberg, T. Caltabiano, D. Condarelli, G. Cecchi, and L. Pantani, "Optical monitoring of volcanic sulphur dioxide emissions--comparison between four different remote-sensing spectroscopic techniques," Opt. Lasers Eng. 37, 267-284 (2002).
[CrossRef]

P. Weibring, H. Edner, S. Svanberg, G. Cecchi, L. Pantani, R. Ferrara, and T. Caltabiano, "Monitoring of volcanic sulphur dioxide emissions using differential absorption lidar (DIAL), differential optical absorption spectroscopy (DOAS), and correlation spectroscopy (COSPEC)," Appl. Phys. B 67, 419-426 (1998).
[CrossRef]

P. Weibring, M. Andersson, H. Edner, and S. Svanberg, "Remote monitoring of industrial emissions by combination of lidar and plume velocity measurements," Appl. Phys. B 66, 383-388 (1998).
[CrossRef]

H. Edner, P. Ragnarson, S. Spännare, and S. Svanberg, "Differential optical absorption spectroscopy (DOAS) system for urban atmospheric pollution monitoring," Appl. Opt. 32, 327-333 (1993).
[CrossRef] [PubMed]

H. Edner, K. Fredriksson, A. Sunesson, S. Svanberg, L. Unéus, and W. Wendt, "Mobile remote sensing system for atmospheric monitoring," Appl. Opt. 26, 4330-4338 (1987).
[CrossRef] [PubMed]

Ferrara, R.

P. Weibring, H. Edner, S. Svanberg, G. Cecchi, L. Pantani, R. Ferrara, and T. Caltabiano, "Monitoring of volcanic sulphur dioxide emissions using differential absorption lidar (DIAL), differential optical absorption spectroscopy (DOAS), and correlation spectroscopy (COSPEC)," Appl. Phys. B 67, 419-426 (1998).
[CrossRef]

Francis, P.

C. Oppenheimer, P. Francis, and J. Stix, "Depletion rates of sulfur dioxide in tropospheric volcanic plumes," Geophys. Res. Lett. 25, 2671-2674 (1998).
[CrossRef]

Fredriksson, K.

Hoff, R. M.

M. M. Millan and R. M. Hoff, "Remote sensing of air pollutants by correlation spectroscopy--instrumental response characteristics," Atmos. Environ. 12, 853-864 (1978).
[CrossRef] [PubMed]

Jæger, T.

I. Linnerud, P. Kaspersen, and T. Jæger, "Gas monitoring in the process industry using diode laser spectroscopy," Appl. Phys. B 67, 297-305 (1998).
[CrossRef]

Kaspersen, P.

I. Linnerud, P. Kaspersen, and T. Jæger, "Gas monitoring in the process industry using diode laser spectroscopy," Appl. Phys. B 67, 297-305 (1998).
[CrossRef]

Li, W. H.

Z. Y. Zhang, W. H. Li, Z. G. Xu, and S. J. Qu, in On the Appropriate Processing and Utilization of Coal (Chinese U. of Mineralogy, 2000), pp. 53-55.

Linnerud, I.

I. Linnerud, P. Kaspersen, and T. Jæger, "Gas monitoring in the process industry using diode laser spectroscopy," Appl. Phys. B 67, 297-305 (1998).
[CrossRef]

Lv, Z.

F. Xu, Z. Lv, Y. G. Zhang, G. Somesfalean, and Z. G. Zhang, "Concentration evaluation method using broadband absorption spectroscopy for sulfur dioxide monitoring," Appl. Phys. Lett. 88, 231109 (2006).
[CrossRef]

Mellqvist, J.

J. Mellqvist, H. Axelsson, and A. Rosén, "DOAS for flue gas monitoring-III. in-situ monitoring of sulfur dioxide, nitrogen monoxide and ammonia," J. Quant. Spectrosc. Transfer 56, 225-240 (1996).
[CrossRef]

Millan, M. M.

M. M. Millan and R. M. Hoff, "Remote sensing of air pollutants by correlation spectroscopy--instrumental response characteristics," Atmos. Environ. 12, 853-864 (1978).
[CrossRef] [PubMed]

Oppenheimer, C.

C. Oppenheimer, P. Francis, and J. Stix, "Depletion rates of sulfur dioxide in tropospheric volcanic plumes," Geophys. Res. Lett. 25, 2671-2674 (1998).
[CrossRef]

Pantani, L.

P. Weibring, J. Swartling, H. Edner, S. Svanberg, T. Caltabiano, D. Condarelli, G. Cecchi, and L. Pantani, "Optical monitoring of volcanic sulphur dioxide emissions--comparison between four different remote-sensing spectroscopic techniques," Opt. Lasers Eng. 37, 267-284 (2002).
[CrossRef]

P. Weibring, H. Edner, S. Svanberg, G. Cecchi, L. Pantani, R. Ferrara, and T. Caltabiano, "Monitoring of volcanic sulphur dioxide emissions using differential absorption lidar (DIAL), differential optical absorption spectroscopy (DOAS), and correlation spectroscopy (COSPEC)," Appl. Phys. B 67, 419-426 (1998).
[CrossRef]

Perner, D.

U. Platt and D. Perner, "Direct measurement of atmospheric CH2O, HNO2, O3, and SO2 by differential absorption in the near UV," J. Geophys. Res. 85, 7453-7458 (1980).
[CrossRef]

Platt, U.

U. Platt and D. Perner, "Direct measurement of atmospheric CH2O, HNO2, O3, and SO2 by differential absorption in the near UV," J. Geophys. Res. 85, 7453-7458 (1980).
[CrossRef]

U. Platt, "Differential optical absorption spectroscopy (DOAS)," in Air Monitoring by Spectroscopic Techniques, M.W.Sigrist, ed. (Wiley, 1994), Vol. 127 of Chemical Physics Series pp. 27-84.

Qu, S. J.

Z. Y. Zhang, W. H. Li, Z. G. Xu, and S. J. Qu, in On the Appropriate Processing and Utilization of Coal (Chinese U. of Mineralogy, 2000), pp. 53-55.

Ragnarson, P.

Rosén, A.

J. Mellqvist, H. Axelsson, and A. Rosén, "DOAS for flue gas monitoring-III. in-situ monitoring of sulfur dioxide, nitrogen monoxide and ammonia," J. Quant. Spectrosc. Transfer 56, 225-240 (1996).
[CrossRef]

Sjöholm, M.

G. Somesfalean, Z. G. Zhang, M. Sjöholm, and S. Svanberg, "All-diode-laser ultraviolet absorption spectroscopy for sulfur dioxide detection," Appl. Phys. B. 80, 1021-1025 (2005).
[CrossRef]

Somesfalean, G.

F. Xu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, H. S. Wang, and S. H. Wu, "Temperature-corrected spectroscopic evaluation method for gas concentration monitoring," Appl. Phys. B 86, 361-364 (2007).
[CrossRef]

F. Xu, Z. Lv, Y. G. Zhang, G. Somesfalean, and Z. G. Zhang, "Concentration evaluation method using broadband absorption spectroscopy for sulfur dioxide monitoring," Appl. Phys. Lett. 88, 231109 (2006).
[CrossRef]

G. Somesfalean, Z. G. Zhang, M. Sjöholm, and S. Svanberg, "All-diode-laser ultraviolet absorption spectroscopy for sulfur dioxide detection," Appl. Phys. B. 80, 1021-1025 (2005).
[CrossRef]

Spännare, S.

Stix, J.

C. Oppenheimer, P. Francis, and J. Stix, "Depletion rates of sulfur dioxide in tropospheric volcanic plumes," Geophys. Res. Lett. 25, 2671-2674 (1998).
[CrossRef]

Sunesson, A.

Svanberg, S.

G. Somesfalean, Z. G. Zhang, M. Sjöholm, and S. Svanberg, "All-diode-laser ultraviolet absorption spectroscopy for sulfur dioxide detection," Appl. Phys. B. 80, 1021-1025 (2005).
[CrossRef]

S. Svanberg, "Environmental and medical applications of photonic interactions," Phys. Scr. T110, 39-50 (2004).
[CrossRef]

P. Weibring, H. Edner, and S. Svanberg, "Versatile mobile lidar system for environmental monitoring," Appl. Opt. 42, 3583-3594 (2003).
[CrossRef] [PubMed]

P. Weibring, J. Swartling, H. Edner, S. Svanberg, T. Caltabiano, D. Condarelli, G. Cecchi, and L. Pantani, "Optical monitoring of volcanic sulphur dioxide emissions--comparison between four different remote-sensing spectroscopic techniques," Opt. Lasers Eng. 37, 267-284 (2002).
[CrossRef]

P. Weibring, H. Edner, S. Svanberg, G. Cecchi, L. Pantani, R. Ferrara, and T. Caltabiano, "Monitoring of volcanic sulphur dioxide emissions using differential absorption lidar (DIAL), differential optical absorption spectroscopy (DOAS), and correlation spectroscopy (COSPEC)," Appl. Phys. B 67, 419-426 (1998).
[CrossRef]

P. Weibring, M. Andersson, H. Edner, and S. Svanberg, "Remote monitoring of industrial emissions by combination of lidar and plume velocity measurements," Appl. Phys. B 66, 383-388 (1998).
[CrossRef]

H. Edner, P. Ragnarson, S. Spännare, and S. Svanberg, "Differential optical absorption spectroscopy (DOAS) system for urban atmospheric pollution monitoring," Appl. Opt. 32, 327-333 (1993).
[CrossRef] [PubMed]

H. Edner, K. Fredriksson, A. Sunesson, S. Svanberg, L. Unéus, and W. Wendt, "Mobile remote sensing system for atmospheric monitoring," Appl. Opt. 26, 4330-4338 (1987).
[CrossRef] [PubMed]

S. Svanberg, in Atomic and Molecular Spectroscopy: Basic Aspects and Practical Applications (Springer, 2004), pp. 164-165.

Swartling, J.

P. Weibring, J. Swartling, H. Edner, S. Svanberg, T. Caltabiano, D. Condarelli, G. Cecchi, and L. Pantani, "Optical monitoring of volcanic sulphur dioxide emissions--comparison between four different remote-sensing spectroscopic techniques," Opt. Lasers Eng. 37, 267-284 (2002).
[CrossRef]

Unéus, L.

Wang, H. S.

F. Xu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, H. S. Wang, and S. H. Wu, "Temperature-corrected spectroscopic evaluation method for gas concentration monitoring," Appl. Phys. B 86, 361-364 (2007).
[CrossRef]

Weibring, P.

P. Weibring, H. Edner, and S. Svanberg, "Versatile mobile lidar system for environmental monitoring," Appl. Opt. 42, 3583-3594 (2003).
[CrossRef] [PubMed]

P. Weibring, J. Swartling, H. Edner, S. Svanberg, T. Caltabiano, D. Condarelli, G. Cecchi, and L. Pantani, "Optical monitoring of volcanic sulphur dioxide emissions--comparison between four different remote-sensing spectroscopic techniques," Opt. Lasers Eng. 37, 267-284 (2002).
[CrossRef]

P. Weibring, M. Andersson, H. Edner, and S. Svanberg, "Remote monitoring of industrial emissions by combination of lidar and plume velocity measurements," Appl. Phys. B 66, 383-388 (1998).
[CrossRef]

P. Weibring, H. Edner, S. Svanberg, G. Cecchi, L. Pantani, R. Ferrara, and T. Caltabiano, "Monitoring of volcanic sulphur dioxide emissions using differential absorption lidar (DIAL), differential optical absorption spectroscopy (DOAS), and correlation spectroscopy (COSPEC)," Appl. Phys. B 67, 419-426 (1998).
[CrossRef]

Wendt, W.

Wu, S. H.

F. Xu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, H. S. Wang, and S. H. Wu, "Temperature-corrected spectroscopic evaluation method for gas concentration monitoring," Appl. Phys. B 86, 361-364 (2007).
[CrossRef]

Xu, F.

F. Xu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, H. S. Wang, and S. H. Wu, "Temperature-corrected spectroscopic evaluation method for gas concentration monitoring," Appl. Phys. B 86, 361-364 (2007).
[CrossRef]

F. Xu, Z. Lv, Y. G. Zhang, G. Somesfalean, and Z. G. Zhang, "Concentration evaluation method using broadband absorption spectroscopy for sulfur dioxide monitoring," Appl. Phys. Lett. 88, 231109 (2006).
[CrossRef]

Xu, Z. G.

Z. Y. Zhang, W. H. Li, Z. G. Xu, and S. J. Qu, in On the Appropriate Processing and Utilization of Coal (Chinese U. of Mineralogy, 2000), pp. 53-55.

Zhang, Y. G.

F. Xu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, H. S. Wang, and S. H. Wu, "Temperature-corrected spectroscopic evaluation method for gas concentration monitoring," Appl. Phys. B 86, 361-364 (2007).
[CrossRef]

F. Xu, Z. Lv, Y. G. Zhang, G. Somesfalean, and Z. G. Zhang, "Concentration evaluation method using broadband absorption spectroscopy for sulfur dioxide monitoring," Appl. Phys. Lett. 88, 231109 (2006).
[CrossRef]

Zhang, Z. G.

F. Xu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, H. S. Wang, and S. H. Wu, "Temperature-corrected spectroscopic evaluation method for gas concentration monitoring," Appl. Phys. B 86, 361-364 (2007).
[CrossRef]

F. Xu, Z. Lv, Y. G. Zhang, G. Somesfalean, and Z. G. Zhang, "Concentration evaluation method using broadband absorption spectroscopy for sulfur dioxide monitoring," Appl. Phys. Lett. 88, 231109 (2006).
[CrossRef]

G. Somesfalean, Z. G. Zhang, M. Sjöholm, and S. Svanberg, "All-diode-laser ultraviolet absorption spectroscopy for sulfur dioxide detection," Appl. Phys. B. 80, 1021-1025 (2005).
[CrossRef]

Zhang, Z. Y.

Z. Y. Zhang, W. H. Li, Z. G. Xu, and S. J. Qu, in On the Appropriate Processing and Utilization of Coal (Chinese U. of Mineralogy, 2000), pp. 53-55.

Appl. Opt.

Appl. Phys. B

F. Xu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, H. S. Wang, and S. H. Wu, "Temperature-corrected spectroscopic evaluation method for gas concentration monitoring," Appl. Phys. B 86, 361-364 (2007).
[CrossRef]

P. Weibring, M. Andersson, H. Edner, and S. Svanberg, "Remote monitoring of industrial emissions by combination of lidar and plume velocity measurements," Appl. Phys. B 66, 383-388 (1998).
[CrossRef]

I. Linnerud, P. Kaspersen, and T. Jæger, "Gas monitoring in the process industry using diode laser spectroscopy," Appl. Phys. B 67, 297-305 (1998).
[CrossRef]

P. Weibring, H. Edner, S. Svanberg, G. Cecchi, L. Pantani, R. Ferrara, and T. Caltabiano, "Monitoring of volcanic sulphur dioxide emissions using differential absorption lidar (DIAL), differential optical absorption spectroscopy (DOAS), and correlation spectroscopy (COSPEC)," Appl. Phys. B 67, 419-426 (1998).
[CrossRef]

Appl. Phys. B.

G. Somesfalean, Z. G. Zhang, M. Sjöholm, and S. Svanberg, "All-diode-laser ultraviolet absorption spectroscopy for sulfur dioxide detection," Appl. Phys. B. 80, 1021-1025 (2005).
[CrossRef]

Appl. Phys. Lett.

F. Xu, Z. Lv, Y. G. Zhang, G. Somesfalean, and Z. G. Zhang, "Concentration evaluation method using broadband absorption spectroscopy for sulfur dioxide monitoring," Appl. Phys. Lett. 88, 231109 (2006).
[CrossRef]

Atmos. Environ.

M. M. Millan and R. M. Hoff, "Remote sensing of air pollutants by correlation spectroscopy--instrumental response characteristics," Atmos. Environ. 12, 853-864 (1978).
[CrossRef] [PubMed]

Geophys. Res. Lett.

C. Oppenheimer, P. Francis, and J. Stix, "Depletion rates of sulfur dioxide in tropospheric volcanic plumes," Geophys. Res. Lett. 25, 2671-2674 (1998).
[CrossRef]

J. Geophys. Res.

U. Platt and D. Perner, "Direct measurement of atmospheric CH2O, HNO2, O3, and SO2 by differential absorption in the near UV," J. Geophys. Res. 85, 7453-7458 (1980).
[CrossRef]

J. Quant. Spectrosc. Transfer

J. Mellqvist, H. Axelsson, and A. Rosén, "DOAS for flue gas monitoring-III. in-situ monitoring of sulfur dioxide, nitrogen monoxide and ammonia," J. Quant. Spectrosc. Transfer 56, 225-240 (1996).
[CrossRef]

Opt. Lasers Eng.

P. Weibring, J. Swartling, H. Edner, S. Svanberg, T. Caltabiano, D. Condarelli, G. Cecchi, and L. Pantani, "Optical monitoring of volcanic sulphur dioxide emissions--comparison between four different remote-sensing spectroscopic techniques," Opt. Lasers Eng. 37, 267-284 (2002).
[CrossRef]

Phys. Scr.

S. Svanberg, "Environmental and medical applications of photonic interactions," Phys. Scr. T110, 39-50 (2004).
[CrossRef]

Other

U. Platt, "Differential optical absorption spectroscopy (DOAS)," in Air Monitoring by Spectroscopic Techniques, M.W.Sigrist, ed. (Wiley, 1994), Vol. 127 of Chemical Physics Series pp. 27-84.

Z. Y. Zhang, W. H. Li, Z. G. Xu, and S. J. Qu, in On the Appropriate Processing and Utilization of Coal (Chinese U. of Mineralogy, 2000), pp. 53-55.

S. Svanberg, in Atomic and Molecular Spectroscopy: Basic Aspects and Practical Applications (Springer, 2004), pp. 164-165.

D. J. Brassington, "Measurement of the SO2 absorption spectrum between 297 and 316 nm using a tunable dye laser," Laboratory Note RD/L/N 184/79 (Central Electricity Research Laboratories, Leatherhead, UK, 1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(Color online) Experimental setup of the portable SO 2 sensor. The instrument is composed of three modular parts: BB1, BB2, and BB3. D, deuterium lamp; QL, quartz lens; FP, fiber port; MOF, multimode optical fiber; MC, monochromator and 2048 element CCD-array detector.

Fig. 2
Fig. 2

(Color online) (a) Absorption spectrum of a flowing SO 2 gas mixture of 1036 ppm concentration. (b) Influence of dust on the SO 2 detection, evaluated by a short-time continuous recording of 126 data samples, using ten spectra averaging and 4 s integration time. For the first 6 min (squares) dust was present in the light path; during the last 3 min (circles) there was no interference from dust.

Fig. 3
Fig. 3

(Color online) Continuous concentration recording of SO 2 at normal temperature and pressure in a gas flow during laboratory simulation. Measurement of five different SO 2 concentrations, i.e., 1040, 740, 1030, 520, and 1020, was performed.

Fig. 4
Fig. 4

(Color online) Twenty-four hours recording of the SO 2 concentrations at a temperature of 411 K emitted from a coal-fired industrial boiler in China. Each point was obtained by averaging ten spectra 1.1 min integration time. The inset shows a 1 h data set measured from 6 a.m. to 7 a.m.

Equations (63)

Equations on this page are rendered with MathJax. Learn more.

SO 2
SO 2
SO 2
SO 2
SO 2
SO 2
SO 2
0.1  nm
SO 2
SO 2
N = C ( T ) ln [ P t ( λ 1 ) P t ( λ 2 ) ] [ σ ( λ 1 ) σ ( λ 2 ) ] L ,
P t ( λ 1 )
P t ( λ 2 )
σ ( λ 1 )
σ ( λ 2 )
λ 1 = 300.02  nm
λ 2 = 301. 39   nm
P t ( λ 1 )
P t ( λ 2 )
λ 1
λ 2
σ ( λ 1 )
σ ( λ 2 )
SO 2
SO 2
SO 2
SO 2
300   nm
SO 2
SO 2
SO 2
SO 2
SO 2
SO 2
SO 2
( > 10   s )
1   ppm
SO 2
SO 2
SO 2
106 ± 8   ppm
SO 2
50802 m 3 / h
SO 2
0.24 ton / d a y
1.5 ton / h
0.26 ton / d a y
SO 2
SO 2
SO 2
SO 2
SO 2
C H 2 O
H N O 2
O 3
S O 2
S O 2
SO 2
SO 2
SO 2
SO 2
SO 2
SO 2

Metrics