Abstract

Stationary-phase approximation is used to examine and compare the reliability and interpretability of two main methods of particle sizing. The first method, differential light scattering, regards spherical objects having different refractive indices. Theoretical expressions are obtained, enabling the derivation of optical and geometrical properties of the object from its scattering pattern. The second method, automated microscope imaging, is considered with theoretical implications for the finite aperture of the objective lens. It is shown that, besides the well known Rayleigh resolution limit, finite aperture must affect size measurement due to optical properties of the particles. Simulation and experimental results for both differential light scattering and microscope imaging of polystyrene beads are in good agreement with theory.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Schuele, P. Huie, A. Vankov, E. Vitkin, H. Fang, E. B. Hanlon, L. T. Perelman, and D. Palanker, "Noninvasive monitoring of the thermal stress in RPE using light scattering spectroscopy," Proc. SPIE 5314, 1-5 (2004).
  2. R. E. Green, H. M. Sosik, R. J. Olson, and M. D. DuRand, "Flow cytometric determination of size and complex refractive index for marine particles: comparison with independent bulk estimates," Appl. Opt. 42, 526-541 (2003).
    [CrossRef] [PubMed]
  3. R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. MacAulay, M. Follen, and R. Richards-Kortum, "Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture," J. Biomed. Opt. 8, 7-16 (2003).
    [CrossRef] [PubMed]
  4. M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. Webb, and R. Anderson, "In vivo confocal microscopy of human skin: melanin provides strong contrast," J. Invest. Dermatol. 104, 946-952 (1995).
    [CrossRef] [PubMed]
  5. J. Izaat, M. Hee, D. Huang, A. Swanson, C. Lin, J. Schuman, C. Puliafito, and J. Fujimoto, "Micron-resolution biomedical engineering with optical coherence tomography," Opt. Photon. News 4, 14-19 (1993).
    [CrossRef]
  6. J. Mourant, I. Bigio, J. Boyer, R. Conn, T. Johnson, and T. Shimada, "Spectroscopic diagnosis of bladder cancer cells with elastic light scattering," Laser Surg. Med. 17, 350-357 (1995).
    [CrossRef]
  7. J. He, S. Wang, J. Cheng, and S. Zhang, "Inversion of particle size distribution from light scattering spectrum," Inverse Probl. 12, 633-639 (1996).
    [CrossRef]
  8. J. D. Wilson, C. E. Bigelow, D. J. Calkins, and T. H. Foster, "Light scattering from intact cells reports oxidative-stress-induced mitochondrial swelling," Biophys. J. 88, 2929-2938 (2005).
    [CrossRef] [PubMed]
  9. S. N. Bagaev, V. A. Orlov, and S. V. Panov, "A light scattering spectrometer for medical diagnosis," Biomed. Eng. 29, 119-121 (1995).
    [CrossRef]
  10. D. E. Burger, J. H. Jett, and P. F. Mullaney, "Extraction of morphological features from biological models and cells by Fourier analysis of static light scatter measurements," Cytometry 2, 327-336 (1982).
    [CrossRef] [PubMed]
  11. M. C. Pasikatan, J. L. Steele, C. K. Spillman, and E. Haque, "Near infrared reflectance spectroscopy for online particle size analysis of powders and ground materials," J. Near Infrared Spectrosc. 9, 153-164 (2001).
    [CrossRef]
  12. J. W. Pyhtila, R. N. Graf, and A. Wax, "Improved angle-resolved low coherence interferometry system," Opt. Express 1, 3473 (2003).
  13. Z. Chen, A. Taflove, and V. Backman, "Equivalent volume averaged light scattering behavior of randomly inhomogenous dielectric spheres in the resonant range," Opt. Lett. 28, 765-767 (2003).
    [CrossRef] [PubMed]
  14. J. M. Schmitt and G. Kumar, "Optical scattering properties of soft tissue: a discrete particle model," Appl. Opt. 37, 2788-2797 (1998).
    [CrossRef]
  15. A. Brunsting and P. F. Mullaney, "Light scattering from coated spheres: models for biological cells," Appl. Opt. 11, 675-680 (1972).
    [CrossRef] [PubMed]
  16. R. Drezek, A. Dunn, and R. Richards-Kortum, "Light scattering from cells: finite difference time-domain simulation and goniometric measurements," Appl. Opt. 38, 3651-3661 (1999).
    [CrossRef]
  17. G. Videen and D. Ngo, "Light scattering multiple solution for cell," J. Biomed. Opt. 3, 212-220 (1998).
    [CrossRef]
  18. L. Junquerira, J. Carneiro, and O. Kelly, Basic Histology (Appleton and Lange, 1992).
  19. T. Wriedt and U. Comberg, "Comparison of computational scattering methods," J. Quant. Spectrosc. Radiat. Transfer 60, 411-423 (1998).
    [CrossRef]
  20. V. M. Rysakov, "Light scattering by soft particles of arbitrary shape," J. Quant. Spectrosc. Radiat. Transfer 87, 261-287 (2004).
    [CrossRef]
  21. X. Li, Z. Chen, J. Gong, A. Taflove, and V. Backman, "Analytical techniques for addressing forward and inverse problems of light scattering by irregularly shaped particles," Opt. Lett. 29, 1239-1241 (2004).
    [CrossRef] [PubMed]
  22. M. S. Ward, "The use of flow cytometry in the diagnosis and monitoring of malignant hematological disorders," Pathology 31, 382-392 (1999).
    [CrossRef]
  23. A. J. Gray, D. Young, N. J. Martin, and C. A. Glasbey, "Cell identification and sizing using digital image analysis for estimation of cell biomass in high rate algal ponds," J. Appl. Phycol. 14, 193-204 (2002).
    [CrossRef]
  24. Z. Schiffer, Y. Ashkenazy, R. Tirosh, and M. Deutsch, "Fourier analysis of light scattered by elongated scatterers," Appl. Opt. 38, 3626-3635 (1999).
    [CrossRef]

2005 (1)

J. D. Wilson, C. E. Bigelow, D. J. Calkins, and T. H. Foster, "Light scattering from intact cells reports oxidative-stress-induced mitochondrial swelling," Biophys. J. 88, 2929-2938 (2005).
[CrossRef] [PubMed]

2004 (3)

G. Schuele, P. Huie, A. Vankov, E. Vitkin, H. Fang, E. B. Hanlon, L. T. Perelman, and D. Palanker, "Noninvasive monitoring of the thermal stress in RPE using light scattering spectroscopy," Proc. SPIE 5314, 1-5 (2004).

V. M. Rysakov, "Light scattering by soft particles of arbitrary shape," J. Quant. Spectrosc. Radiat. Transfer 87, 261-287 (2004).
[CrossRef]

X. Li, Z. Chen, J. Gong, A. Taflove, and V. Backman, "Analytical techniques for addressing forward and inverse problems of light scattering by irregularly shaped particles," Opt. Lett. 29, 1239-1241 (2004).
[CrossRef] [PubMed]

2003 (4)

R. E. Green, H. M. Sosik, R. J. Olson, and M. D. DuRand, "Flow cytometric determination of size and complex refractive index for marine particles: comparison with independent bulk estimates," Appl. Opt. 42, 526-541 (2003).
[CrossRef] [PubMed]

Z. Chen, A. Taflove, and V. Backman, "Equivalent volume averaged light scattering behavior of randomly inhomogenous dielectric spheres in the resonant range," Opt. Lett. 28, 765-767 (2003).
[CrossRef] [PubMed]

J. W. Pyhtila, R. N. Graf, and A. Wax, "Improved angle-resolved low coherence interferometry system," Opt. Express 1, 3473 (2003).

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. MacAulay, M. Follen, and R. Richards-Kortum, "Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture," J. Biomed. Opt. 8, 7-16 (2003).
[CrossRef] [PubMed]

2002 (1)

A. J. Gray, D. Young, N. J. Martin, and C. A. Glasbey, "Cell identification and sizing using digital image analysis for estimation of cell biomass in high rate algal ponds," J. Appl. Phycol. 14, 193-204 (2002).
[CrossRef]

2001 (1)

M. C. Pasikatan, J. L. Steele, C. K. Spillman, and E. Haque, "Near infrared reflectance spectroscopy for online particle size analysis of powders and ground materials," J. Near Infrared Spectrosc. 9, 153-164 (2001).
[CrossRef]

1999 (3)

1998 (3)

G. Videen and D. Ngo, "Light scattering multiple solution for cell," J. Biomed. Opt. 3, 212-220 (1998).
[CrossRef]

T. Wriedt and U. Comberg, "Comparison of computational scattering methods," J. Quant. Spectrosc. Radiat. Transfer 60, 411-423 (1998).
[CrossRef]

J. M. Schmitt and G. Kumar, "Optical scattering properties of soft tissue: a discrete particle model," Appl. Opt. 37, 2788-2797 (1998).
[CrossRef]

1996 (1)

J. He, S. Wang, J. Cheng, and S. Zhang, "Inversion of particle size distribution from light scattering spectrum," Inverse Probl. 12, 633-639 (1996).
[CrossRef]

1995 (3)

J. Mourant, I. Bigio, J. Boyer, R. Conn, T. Johnson, and T. Shimada, "Spectroscopic diagnosis of bladder cancer cells with elastic light scattering," Laser Surg. Med. 17, 350-357 (1995).
[CrossRef]

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. Webb, and R. Anderson, "In vivo confocal microscopy of human skin: melanin provides strong contrast," J. Invest. Dermatol. 104, 946-952 (1995).
[CrossRef] [PubMed]

S. N. Bagaev, V. A. Orlov, and S. V. Panov, "A light scattering spectrometer for medical diagnosis," Biomed. Eng. 29, 119-121 (1995).
[CrossRef]

1993 (1)

J. Izaat, M. Hee, D. Huang, A. Swanson, C. Lin, J. Schuman, C. Puliafito, and J. Fujimoto, "Micron-resolution biomedical engineering with optical coherence tomography," Opt. Photon. News 4, 14-19 (1993).
[CrossRef]

1982 (1)

D. E. Burger, J. H. Jett, and P. F. Mullaney, "Extraction of morphological features from biological models and cells by Fourier analysis of static light scatter measurements," Cytometry 2, 327-336 (1982).
[CrossRef] [PubMed]

1972 (1)

Anderson, R.

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. Webb, and R. Anderson, "In vivo confocal microscopy of human skin: melanin provides strong contrast," J. Invest. Dermatol. 104, 946-952 (1995).
[CrossRef] [PubMed]

Ashkenazy, Y.

Backman, V.

Bagaev, S. N.

S. N. Bagaev, V. A. Orlov, and S. V. Panov, "A light scattering spectrometer for medical diagnosis," Biomed. Eng. 29, 119-121 (1995).
[CrossRef]

Bigelow, C. E.

J. D. Wilson, C. E. Bigelow, D. J. Calkins, and T. H. Foster, "Light scattering from intact cells reports oxidative-stress-induced mitochondrial swelling," Biophys. J. 88, 2929-2938 (2005).
[CrossRef] [PubMed]

Bigio, I.

J. Mourant, I. Bigio, J. Boyer, R. Conn, T. Johnson, and T. Shimada, "Spectroscopic diagnosis of bladder cancer cells with elastic light scattering," Laser Surg. Med. 17, 350-357 (1995).
[CrossRef]

Boiko, I.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. MacAulay, M. Follen, and R. Richards-Kortum, "Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture," J. Biomed. Opt. 8, 7-16 (2003).
[CrossRef] [PubMed]

Boyer, J.

J. Mourant, I. Bigio, J. Boyer, R. Conn, T. Johnson, and T. Shimada, "Spectroscopic diagnosis of bladder cancer cells with elastic light scattering," Laser Surg. Med. 17, 350-357 (1995).
[CrossRef]

Brunsting, A.

Burger, D. E.

D. E. Burger, J. H. Jett, and P. F. Mullaney, "Extraction of morphological features from biological models and cells by Fourier analysis of static light scatter measurements," Cytometry 2, 327-336 (1982).
[CrossRef] [PubMed]

Calkins, D. J.

J. D. Wilson, C. E. Bigelow, D. J. Calkins, and T. H. Foster, "Light scattering from intact cells reports oxidative-stress-induced mitochondrial swelling," Biophys. J. 88, 2929-2938 (2005).
[CrossRef] [PubMed]

Carneiro, J.

L. Junquerira, J. Carneiro, and O. Kelly, Basic Histology (Appleton and Lange, 1992).

Chen, Z.

Cheng, J.

J. He, S. Wang, J. Cheng, and S. Zhang, "Inversion of particle size distribution from light scattering spectrum," Inverse Probl. 12, 633-639 (1996).
[CrossRef]

Collier, T.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. MacAulay, M. Follen, and R. Richards-Kortum, "Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture," J. Biomed. Opt. 8, 7-16 (2003).
[CrossRef] [PubMed]

Comberg, U.

T. Wriedt and U. Comberg, "Comparison of computational scattering methods," J. Quant. Spectrosc. Radiat. Transfer 60, 411-423 (1998).
[CrossRef]

Conn, R.

J. Mourant, I. Bigio, J. Boyer, R. Conn, T. Johnson, and T. Shimada, "Spectroscopic diagnosis of bladder cancer cells with elastic light scattering," Laser Surg. Med. 17, 350-357 (1995).
[CrossRef]

Deutsch, M.

Drezek, R.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. MacAulay, M. Follen, and R. Richards-Kortum, "Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture," J. Biomed. Opt. 8, 7-16 (2003).
[CrossRef] [PubMed]

R. Drezek, A. Dunn, and R. Richards-Kortum, "Light scattering from cells: finite difference time-domain simulation and goniometric measurements," Appl. Opt. 38, 3651-3661 (1999).
[CrossRef]

Dunn, A.

DuRand, M. D.

Esterowitz, D.

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. Webb, and R. Anderson, "In vivo confocal microscopy of human skin: melanin provides strong contrast," J. Invest. Dermatol. 104, 946-952 (1995).
[CrossRef] [PubMed]

Fang, H.

G. Schuele, P. Huie, A. Vankov, E. Vitkin, H. Fang, E. B. Hanlon, L. T. Perelman, and D. Palanker, "Noninvasive monitoring of the thermal stress in RPE using light scattering spectroscopy," Proc. SPIE 5314, 1-5 (2004).

Follen, M.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. MacAulay, M. Follen, and R. Richards-Kortum, "Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture," J. Biomed. Opt. 8, 7-16 (2003).
[CrossRef] [PubMed]

Foster, T. H.

J. D. Wilson, C. E. Bigelow, D. J. Calkins, and T. H. Foster, "Light scattering from intact cells reports oxidative-stress-induced mitochondrial swelling," Biophys. J. 88, 2929-2938 (2005).
[CrossRef] [PubMed]

Fujimoto, J.

J. Izaat, M. Hee, D. Huang, A. Swanson, C. Lin, J. Schuman, C. Puliafito, and J. Fujimoto, "Micron-resolution biomedical engineering with optical coherence tomography," Opt. Photon. News 4, 14-19 (1993).
[CrossRef]

Glasbey, C. A.

A. J. Gray, D. Young, N. J. Martin, and C. A. Glasbey, "Cell identification and sizing using digital image analysis for estimation of cell biomass in high rate algal ponds," J. Appl. Phycol. 14, 193-204 (2002).
[CrossRef]

Gong, J.

Graf, R. N.

J. W. Pyhtila, R. N. Graf, and A. Wax, "Improved angle-resolved low coherence interferometry system," Opt. Express 1, 3473 (2003).

Gray, A. J.

A. J. Gray, D. Young, N. J. Martin, and C. A. Glasbey, "Cell identification and sizing using digital image analysis for estimation of cell biomass in high rate algal ponds," J. Appl. Phycol. 14, 193-204 (2002).
[CrossRef]

Green, R. E.

Grossman, M.

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. Webb, and R. Anderson, "In vivo confocal microscopy of human skin: melanin provides strong contrast," J. Invest. Dermatol. 104, 946-952 (1995).
[CrossRef] [PubMed]

Guillaud, M.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. MacAulay, M. Follen, and R. Richards-Kortum, "Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture," J. Biomed. Opt. 8, 7-16 (2003).
[CrossRef] [PubMed]

Hanlon, E. B.

G. Schuele, P. Huie, A. Vankov, E. Vitkin, H. Fang, E. B. Hanlon, L. T. Perelman, and D. Palanker, "Noninvasive monitoring of the thermal stress in RPE using light scattering spectroscopy," Proc. SPIE 5314, 1-5 (2004).

Haque, E.

M. C. Pasikatan, J. L. Steele, C. K. Spillman, and E. Haque, "Near infrared reflectance spectroscopy for online particle size analysis of powders and ground materials," J. Near Infrared Spectrosc. 9, 153-164 (2001).
[CrossRef]

He, J.

J. He, S. Wang, J. Cheng, and S. Zhang, "Inversion of particle size distribution from light scattering spectrum," Inverse Probl. 12, 633-639 (1996).
[CrossRef]

Hee, M.

J. Izaat, M. Hee, D. Huang, A. Swanson, C. Lin, J. Schuman, C. Puliafito, and J. Fujimoto, "Micron-resolution biomedical engineering with optical coherence tomography," Opt. Photon. News 4, 14-19 (1993).
[CrossRef]

Huang, D.

J. Izaat, M. Hee, D. Huang, A. Swanson, C. Lin, J. Schuman, C. Puliafito, and J. Fujimoto, "Micron-resolution biomedical engineering with optical coherence tomography," Opt. Photon. News 4, 14-19 (1993).
[CrossRef]

Huie, P.

G. Schuele, P. Huie, A. Vankov, E. Vitkin, H. Fang, E. B. Hanlon, L. T. Perelman, and D. Palanker, "Noninvasive monitoring of the thermal stress in RPE using light scattering spectroscopy," Proc. SPIE 5314, 1-5 (2004).

Izaat, J.

J. Izaat, M. Hee, D. Huang, A. Swanson, C. Lin, J. Schuman, C. Puliafito, and J. Fujimoto, "Micron-resolution biomedical engineering with optical coherence tomography," Opt. Photon. News 4, 14-19 (1993).
[CrossRef]

Jett, J. H.

D. E. Burger, J. H. Jett, and P. F. Mullaney, "Extraction of morphological features from biological models and cells by Fourier analysis of static light scatter measurements," Cytometry 2, 327-336 (1982).
[CrossRef] [PubMed]

Johnson, T.

J. Mourant, I. Bigio, J. Boyer, R. Conn, T. Johnson, and T. Shimada, "Spectroscopic diagnosis of bladder cancer cells with elastic light scattering," Laser Surg. Med. 17, 350-357 (1995).
[CrossRef]

Junquerira, L.

L. Junquerira, J. Carneiro, and O. Kelly, Basic Histology (Appleton and Lange, 1992).

Kelly, O.

L. Junquerira, J. Carneiro, and O. Kelly, Basic Histology (Appleton and Lange, 1992).

Kumar, G.

Li, X.

Lin, C.

J. Izaat, M. Hee, D. Huang, A. Swanson, C. Lin, J. Schuman, C. Puliafito, and J. Fujimoto, "Micron-resolution biomedical engineering with optical coherence tomography," Opt. Photon. News 4, 14-19 (1993).
[CrossRef]

MacAulay, C.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. MacAulay, M. Follen, and R. Richards-Kortum, "Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture," J. Biomed. Opt. 8, 7-16 (2003).
[CrossRef] [PubMed]

Malpica, A.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. MacAulay, M. Follen, and R. Richards-Kortum, "Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture," J. Biomed. Opt. 8, 7-16 (2003).
[CrossRef] [PubMed]

Martin, N. J.

A. J. Gray, D. Young, N. J. Martin, and C. A. Glasbey, "Cell identification and sizing using digital image analysis for estimation of cell biomass in high rate algal ponds," J. Appl. Phycol. 14, 193-204 (2002).
[CrossRef]

Mourant, J.

J. Mourant, I. Bigio, J. Boyer, R. Conn, T. Johnson, and T. Shimada, "Spectroscopic diagnosis of bladder cancer cells with elastic light scattering," Laser Surg. Med. 17, 350-357 (1995).
[CrossRef]

Mullaney, P. F.

D. E. Burger, J. H. Jett, and P. F. Mullaney, "Extraction of morphological features from biological models and cells by Fourier analysis of static light scatter measurements," Cytometry 2, 327-336 (1982).
[CrossRef] [PubMed]

A. Brunsting and P. F. Mullaney, "Light scattering from coated spheres: models for biological cells," Appl. Opt. 11, 675-680 (1972).
[CrossRef] [PubMed]

Ngo, D.

G. Videen and D. Ngo, "Light scattering multiple solution for cell," J. Biomed. Opt. 3, 212-220 (1998).
[CrossRef]

Olson, R. J.

Orlov, V. A.

S. N. Bagaev, V. A. Orlov, and S. V. Panov, "A light scattering spectrometer for medical diagnosis," Biomed. Eng. 29, 119-121 (1995).
[CrossRef]

Palanker, D.

G. Schuele, P. Huie, A. Vankov, E. Vitkin, H. Fang, E. B. Hanlon, L. T. Perelman, and D. Palanker, "Noninvasive monitoring of the thermal stress in RPE using light scattering spectroscopy," Proc. SPIE 5314, 1-5 (2004).

Panov, S. V.

S. N. Bagaev, V. A. Orlov, and S. V. Panov, "A light scattering spectrometer for medical diagnosis," Biomed. Eng. 29, 119-121 (1995).
[CrossRef]

Pasikatan, M. C.

M. C. Pasikatan, J. L. Steele, C. K. Spillman, and E. Haque, "Near infrared reflectance spectroscopy for online particle size analysis of powders and ground materials," J. Near Infrared Spectrosc. 9, 153-164 (2001).
[CrossRef]

Perelman, L. T.

G. Schuele, P. Huie, A. Vankov, E. Vitkin, H. Fang, E. B. Hanlon, L. T. Perelman, and D. Palanker, "Noninvasive monitoring of the thermal stress in RPE using light scattering spectroscopy," Proc. SPIE 5314, 1-5 (2004).

Puliafito, C.

J. Izaat, M. Hee, D. Huang, A. Swanson, C. Lin, J. Schuman, C. Puliafito, and J. Fujimoto, "Micron-resolution biomedical engineering with optical coherence tomography," Opt. Photon. News 4, 14-19 (1993).
[CrossRef]

Pyhtila, J. W.

J. W. Pyhtila, R. N. Graf, and A. Wax, "Improved angle-resolved low coherence interferometry system," Opt. Express 1, 3473 (2003).

Rajadhyaksha, M.

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. Webb, and R. Anderson, "In vivo confocal microscopy of human skin: melanin provides strong contrast," J. Invest. Dermatol. 104, 946-952 (1995).
[CrossRef] [PubMed]

Richards-Kortum, R.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. MacAulay, M. Follen, and R. Richards-Kortum, "Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture," J. Biomed. Opt. 8, 7-16 (2003).
[CrossRef] [PubMed]

R. Drezek, A. Dunn, and R. Richards-Kortum, "Light scattering from cells: finite difference time-domain simulation and goniometric measurements," Appl. Opt. 38, 3651-3661 (1999).
[CrossRef]

Rysakov, V. M.

V. M. Rysakov, "Light scattering by soft particles of arbitrary shape," J. Quant. Spectrosc. Radiat. Transfer 87, 261-287 (2004).
[CrossRef]

Schiffer, Z.

Schmitt, J. M.

Schuele, G.

G. Schuele, P. Huie, A. Vankov, E. Vitkin, H. Fang, E. B. Hanlon, L. T. Perelman, and D. Palanker, "Noninvasive monitoring of the thermal stress in RPE using light scattering spectroscopy," Proc. SPIE 5314, 1-5 (2004).

Schuman, J.

J. Izaat, M. Hee, D. Huang, A. Swanson, C. Lin, J. Schuman, C. Puliafito, and J. Fujimoto, "Micron-resolution biomedical engineering with optical coherence tomography," Opt. Photon. News 4, 14-19 (1993).
[CrossRef]

Shimada, T.

J. Mourant, I. Bigio, J. Boyer, R. Conn, T. Johnson, and T. Shimada, "Spectroscopic diagnosis of bladder cancer cells with elastic light scattering," Laser Surg. Med. 17, 350-357 (1995).
[CrossRef]

Sosik, H. M.

Spillman, C. K.

M. C. Pasikatan, J. L. Steele, C. K. Spillman, and E. Haque, "Near infrared reflectance spectroscopy for online particle size analysis of powders and ground materials," J. Near Infrared Spectrosc. 9, 153-164 (2001).
[CrossRef]

Steele, J. L.

M. C. Pasikatan, J. L. Steele, C. K. Spillman, and E. Haque, "Near infrared reflectance spectroscopy for online particle size analysis of powders and ground materials," J. Near Infrared Spectrosc. 9, 153-164 (2001).
[CrossRef]

Swanson, A.

J. Izaat, M. Hee, D. Huang, A. Swanson, C. Lin, J. Schuman, C. Puliafito, and J. Fujimoto, "Micron-resolution biomedical engineering with optical coherence tomography," Opt. Photon. News 4, 14-19 (1993).
[CrossRef]

Taflove, A.

Tirosh, R.

Vankov, A.

G. Schuele, P. Huie, A. Vankov, E. Vitkin, H. Fang, E. B. Hanlon, L. T. Perelman, and D. Palanker, "Noninvasive monitoring of the thermal stress in RPE using light scattering spectroscopy," Proc. SPIE 5314, 1-5 (2004).

Videen, G.

G. Videen and D. Ngo, "Light scattering multiple solution for cell," J. Biomed. Opt. 3, 212-220 (1998).
[CrossRef]

Vitkin, E.

G. Schuele, P. Huie, A. Vankov, E. Vitkin, H. Fang, E. B. Hanlon, L. T. Perelman, and D. Palanker, "Noninvasive monitoring of the thermal stress in RPE using light scattering spectroscopy," Proc. SPIE 5314, 1-5 (2004).

Wang, S.

J. He, S. Wang, J. Cheng, and S. Zhang, "Inversion of particle size distribution from light scattering spectrum," Inverse Probl. 12, 633-639 (1996).
[CrossRef]

Ward, M. S.

M. S. Ward, "The use of flow cytometry in the diagnosis and monitoring of malignant hematological disorders," Pathology 31, 382-392 (1999).
[CrossRef]

Wax, A.

J. W. Pyhtila, R. N. Graf, and A. Wax, "Improved angle-resolved low coherence interferometry system," Opt. Express 1, 3473 (2003).

Webb, R.

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. Webb, and R. Anderson, "In vivo confocal microscopy of human skin: melanin provides strong contrast," J. Invest. Dermatol. 104, 946-952 (1995).
[CrossRef] [PubMed]

Wilson, J. D.

J. D. Wilson, C. E. Bigelow, D. J. Calkins, and T. H. Foster, "Light scattering from intact cells reports oxidative-stress-induced mitochondrial swelling," Biophys. J. 88, 2929-2938 (2005).
[CrossRef] [PubMed]

Wriedt, T.

T. Wriedt and U. Comberg, "Comparison of computational scattering methods," J. Quant. Spectrosc. Radiat. Transfer 60, 411-423 (1998).
[CrossRef]

Young, D.

A. J. Gray, D. Young, N. J. Martin, and C. A. Glasbey, "Cell identification and sizing using digital image analysis for estimation of cell biomass in high rate algal ponds," J. Appl. Phycol. 14, 193-204 (2002).
[CrossRef]

Zhang, S.

J. He, S. Wang, J. Cheng, and S. Zhang, "Inversion of particle size distribution from light scattering spectrum," Inverse Probl. 12, 633-639 (1996).
[CrossRef]

Appl. Opt. (5)

Biomed. Eng. (1)

S. N. Bagaev, V. A. Orlov, and S. V. Panov, "A light scattering spectrometer for medical diagnosis," Biomed. Eng. 29, 119-121 (1995).
[CrossRef]

Biophys. J. (1)

J. D. Wilson, C. E. Bigelow, D. J. Calkins, and T. H. Foster, "Light scattering from intact cells reports oxidative-stress-induced mitochondrial swelling," Biophys. J. 88, 2929-2938 (2005).
[CrossRef] [PubMed]

Cytometry (1)

D. E. Burger, J. H. Jett, and P. F. Mullaney, "Extraction of morphological features from biological models and cells by Fourier analysis of static light scatter measurements," Cytometry 2, 327-336 (1982).
[CrossRef] [PubMed]

Inverse Probl. (1)

J. He, S. Wang, J. Cheng, and S. Zhang, "Inversion of particle size distribution from light scattering spectrum," Inverse Probl. 12, 633-639 (1996).
[CrossRef]

J. Appl. Phycol. (1)

A. J. Gray, D. Young, N. J. Martin, and C. A. Glasbey, "Cell identification and sizing using digital image analysis for estimation of cell biomass in high rate algal ponds," J. Appl. Phycol. 14, 193-204 (2002).
[CrossRef]

J. Biomed. Opt. (2)

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. MacAulay, M. Follen, and R. Richards-Kortum, "Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture," J. Biomed. Opt. 8, 7-16 (2003).
[CrossRef] [PubMed]

G. Videen and D. Ngo, "Light scattering multiple solution for cell," J. Biomed. Opt. 3, 212-220 (1998).
[CrossRef]

J. Invest. Dermatol. (1)

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. Webb, and R. Anderson, "In vivo confocal microscopy of human skin: melanin provides strong contrast," J. Invest. Dermatol. 104, 946-952 (1995).
[CrossRef] [PubMed]

J. Near Infrared Spectrosc. (1)

M. C. Pasikatan, J. L. Steele, C. K. Spillman, and E. Haque, "Near infrared reflectance spectroscopy for online particle size analysis of powders and ground materials," J. Near Infrared Spectrosc. 9, 153-164 (2001).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (2)

T. Wriedt and U. Comberg, "Comparison of computational scattering methods," J. Quant. Spectrosc. Radiat. Transfer 60, 411-423 (1998).
[CrossRef]

V. M. Rysakov, "Light scattering by soft particles of arbitrary shape," J. Quant. Spectrosc. Radiat. Transfer 87, 261-287 (2004).
[CrossRef]

Laser Surg. Med. (1)

J. Mourant, I. Bigio, J. Boyer, R. Conn, T. Johnson, and T. Shimada, "Spectroscopic diagnosis of bladder cancer cells with elastic light scattering," Laser Surg. Med. 17, 350-357 (1995).
[CrossRef]

Opt. Express (1)

J. W. Pyhtila, R. N. Graf, and A. Wax, "Improved angle-resolved low coherence interferometry system," Opt. Express 1, 3473 (2003).

Opt. Lett. (2)

Opt. Photon. News (1)

J. Izaat, M. Hee, D. Huang, A. Swanson, C. Lin, J. Schuman, C. Puliafito, and J. Fujimoto, "Micron-resolution biomedical engineering with optical coherence tomography," Opt. Photon. News 4, 14-19 (1993).
[CrossRef]

Pathology (1)

M. S. Ward, "The use of flow cytometry in the diagnosis and monitoring of malignant hematological disorders," Pathology 31, 382-392 (1999).
[CrossRef]

Proc. SPIE (1)

G. Schuele, P. Huie, A. Vankov, E. Vitkin, H. Fang, E. B. Hanlon, L. T. Perelman, and D. Palanker, "Noninvasive monitoring of the thermal stress in RPE using light scattering spectroscopy," Proc. SPIE 5314, 1-5 (2004).

Other (1)

L. Junquerira, J. Carneiro, and O. Kelly, Basic Histology (Appleton and Lange, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(Color online) Scattering and diffraction planes. The scattering object is defined in the xy plane ( Z = 0 ) . A scattering pattern is created in the diffraction plane x y ( Z = Z s ) with each representative point p also defined by the scattering azimuthal angles. Since Z s r max (the scatterering dimension is exaggerated for illustrative purposes; sin θ θ , sin ϕ ϕ ).

Fig. 2
Fig. 2

Definition of parameters in the image-formation process: Light e impinges on the object plane O ( x ) , located at about the distance f (focal length of the lens) from the lens plane L ( x ) . The aperture size A enables the pasage of light to the screen plane where I ( x ) is formed.

Fig. 3
Fig. 3

(Color online) Measurement system arrangement: He Cd laser beam ( λ = 0.442   μm ) is focused by a microscope objective lens (OBJ), and illuminates an object attached to a microscope slide (sample). The scattering pattern is recorded by a CCD line array camera (CAM). The successive signals are analyzed by the computer according to the protocol described in Section 5.

Fig. 4
Fig. 4

(Color online) Data analysis process in the DLS apparatus: (a) Data from a CCD camera are recorded. (b) Smoothing is performed to eliminate thermal noise. This is done by applying a running averaging window on raw data. The dimensions of the averaging window were chosen so as to match the typical width of the rapid noise fluctuations. (c) Data are numerically derived. (d) Zero crossing points, from which (e) the angular dependence of spatial frequency is calculated.

Fig. 5
Fig. 5

(Color online) Simulated angular dependence of spatial frequency is plotted for different relative refractive indices: 0.1 (rectangles), 0.2 (circles), and 0.3 (triangles). Points of spatial frequency were obtained by using the DLS data analysis procedure on simulated scattering patterns obtained by numerical calculation of the integral in Eq. (7).

Fig. 6
Fig. 6

Numerical calculation of intensity distribution of microscope images. The effect of finite apertures on the intensity profile of the image was simulated for aperture sizes of (a) 0.4, (b) 0.7, and (c) 1.1 radians. The effects of refractive index differences of (d) 0.1, (e) 0.2 and (f) 0.3 on the intensity profile. Notably, the profiles corresponding to ideal objects (thin curve) are always larger than those simulating the profiles of realistic images.

Fig. 7
Fig. 7

Comparison between theoretical predictions and numerical simulations of a MIA measurement. From the profiles calculated in the simulation, a ratio was extracted that denotes the amount of distortion caused to the microscope image. The values of distortion are extracted from the HWHM of the profiles. These are plotted against the predictions from Eq. (36). The effects of (a) the refractive index and (b) the aperture size are compared to theoretical values (continuous curves, in both cases).

Fig. 8
Fig. 8

Measurement of polystyrene beads by MIA and by the DLS apparatus: Bead populations were suspended in water containing different concentrations of sucrose, so that the relative refractive indices were 0.14. Size distributions for 9.1 μm , 7 .4 μm , and 6 .4 μm ( I,   II ,   III ) and 0.24 ( I   II   III ) were measured with (a) automated image analysis (for clarity, only 9.1 μm size distribution is shown) and (b) by DLS. The results demonstrate the different effects on size measurement in the two devices.

Tables (1)

Tables Icon

Table 1 Summary of Size and Standard Deviation Measurement Results

Equations (44)

Equations on this page are rendered with MathJax. Learn more.

d E ( r , t ) = E 0 λ r e i ( K ̄ r ̄ ω t ) d s ,
I ( θ , ϕ ) = | γ [ 1 exp i k Δ n ( r ) D ( r ) ] × exp i k r cos Ω sin ϕ exp i k r sin Ω sin ϕ r d r d Ω | 2 .
ϕ , θ 0.6 λ / D ,
I ( α ) = g ( t ) e i α f ( t ) d t .
I ( α ) = 0 , q 2 π α 2 f ( t 0 , q ) t 2 e i α f ( t 0 , q ) ,
ϕ ( r ) = 2 Δ n R 2 r 2 α K .
E ( θ ) = z = 0 R Ω = 0 2 r [ e i Ω K α Δ n R 2 r 2 1 ] e i K r sin θ cos Ω r d r d Ω .
E ( θ ) = 2 π K sin θ r = 0 R ( e i K α 2 Δ n R 2 r 2 1 ) × cos J 0 ( K r sin θ ) r 1 / 2 d r .
E ( θ ) = A + B + C ,
A = 0 R J 0 ( K r sin θ ) r d r 2 π K sin θ ,
B = 2 π K sin θ e i K 2 Δ n α R 2 r 2 e i K r sin θ x x / 4 r 1 / 2 d r ,
C = 2 π K sin θ e i K 2 Δ n α R 2 r 2 e i K r sin θ x x / 4 r 1 / 2 d r ,
Δ n K R 2 r 2 1 ,
E ( θ ) = 2 π K sin θ cos ( K r sin θ 3 π / 4 ) + B + C .
f ( r ) r = K r [ 2 α Δ n R 2 r 2 + r sin θ ] π / 4 = 0.
2 f ( r ) r 2 = 2 α Δ n r / R 2 r 0 2 3 ,
r 0 = + R sin θ ( α 2 Δ n ) 2 + sin 2 θ , r 0 + = R sin θ ( α 2 Δ n ) 2 + sin 2 θ ,
B = 2 π K sin θ 2 π R 2 ( 2 Δ n ) 2 ( 2 Δ n α ) 2 e i K R ( 2 Δ n α ) 2 + sin 2 θ ,
C = 2 π K sin θ 2 π R 2 ( 2 Δ n ) 2 ( 2 Δ n α ) 2 e i K R ( 2 Δ n α ) 2 + sin 2 θ .
E + = A + B + C ,
E ( θ ) = A + C = R cos ( K R θ + 3 π / 4 ) ( K θ ) 3 / 2 + i ( α R Δ n α ) 2 e i K R ( 2 Δ n α ) 2 + sin 2 θ [ ( 2 Δ n α ) 2 + sin θ ] 2 .
I ( θ ) = E ( θ ) * E ( θ ) = I ( θ ) = 2 π R cos ( K R θ + 3 π / 4 ) ( K θ ) 3 + R 3 Δ n 3 α 3 cos ( 2 Δ n α ) 2 + sin 2 θ [ ( 2 Δ n α ) 2 + sin 2 θ ] 3 .
ω ( x ) = ϕ ( x ) x .
ω ( θ ) = ϕ ( θ ) θ = 2 K r ,
ω ( θ ) = ϕ ( θ ) θ = θ { K r [ θ + θ 2 + ( Δ n ) 2 ] }
= K r [ 1 + θ ( Δ n ) 2 + θ 2 ] .
E V ( x ) = E 0 e i K x 2 V e i K V e i K u x x e i K x 2 ( 1 2 U Δ u 2 R + 1 2 V ) × e i K ϕ ( x ) i K x x u i K x x V d x d x ,
E image ( x ) = e i K n ( x ) δ ( x + u v x ) d x = e i K n ϕ ( u v x ) .
e i ϕ ( r ) = e i 2 K Δ n R 2 ( r u / v ) 2 .
A p ( x ) = { 1 , | x | < A max 0 , | x | > A max ,
E v ( x ) = E 0 e i K x 2 / v e i K v e i K u x x Ap ( x ) E image ( x ) e i K x x / v d x d x ,
Ap ( x ) f ( x ) e i ϕ x d x = Ap ( ω ) F ( ω ) ,
A p ( ω ) = A p ( x ) e i ω x d x ,
F ( ω ) = f ( x ) e i ω x d x .
I ( x ) = sin [ ( K x u x v ) A 2 ] K ( x u x v ) ,
Δ x = 2 π K × v A .
ω ( x ) = ϕ ( x ) x = x [ 24 π λ Δ n R 2 ( x u v ) 2 ]
= 4 π λ Δ n ( u v ) 2 x R 2 + ( u v ) 2 x 2 .
2 ω ( x ) 1 Δ x .
R 2 + ( u v ) 2 ρ 2 4 π λ Δ n ( u v ) 2 ρ = v λ A ,
ρ = u v R 1 + ( Δ n u A ) 2 .
ρ = M R 1 + ( Δ n f A ) 2 ,
F θ = 1 θ ¯ z θ ¯ z 1 , θ ¯ z = θ z θ z 1 2 .
% Distortion = 100 ( Δ n NA ) 2 .

Metrics