Abstract

The fabrication and characterization of a Rhodamine 6G-doped polymer optical fiber amplifier have been carried out. Two different schemes were employed to characterize the optical fiber: the stripe illumination technique to study the fiber as a gain medium and another technique to study its performance as an amplifier. We observed a spectral narrowing from 42 to 7  nm when the pump energy was increased to 6 mJ in the stripe illumination geometry. A gain of 18   dB was obtained in the amplifier configuration. The effects of pump power and dye concentration on the performance of the fiber as an amplifier were also studied.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. S. Nalwa, Polymer Optical Fibers (American Scientific, 2004).
  2. G. P. Agrawal, Fiber Optic Communication Systems, 2nd ed. (Wiley-Interscience, 1997).
  3. F. P. Kapron, D. B. Keck, and R. D. Maurer, "Radiation losses in glass optical fibers," Appl. Phys. Lett. 17, 423-425 (1970).
  4. T. Kaino, K. Jinguji, and S. Nara, "Low loss poly-(methamethacrylate-d8) core optical fibers," Appl. Phys. Lett. 42, 567-569 (1983).
  5. Y. Ohtsuka, T. Senga, and H. Yasuda, "Light-focusing plastic rod with low aberration," Appl. Phys. Lett. 25, 659-661 (1974).
    [CrossRef]
  6. Y. Ohtsuka, T. Sugano, and Y. Terao, "Studies on the light-focusing plastic rod. 8: Copolymer rod of diethylene glycol bis(allyl carbonate) with methacrylic ester of fluorine containing alcohol," Appl. Opt. 20, 2319-2323 (1981).
    [CrossRef] [PubMed]
  7. Y. Koike, H. Hatanaka, and Y. Ohtsuka, "Studies on the light-focusing plastic rod. 17: Plastic GRIN rod lens prepared by photocopolymerization of a ternary monomer system," Appl. Opt. 23, 1779-1783 (1984).
    [CrossRef] [PubMed]
  8. W. Daum, J. Krauser, P. E. Zamzow, and O. Zeimann, POF-Polymer Optical Fibers for Data Communication, (Springer, 2002).
  9. A. Costela, F. Florido, I. Garcia-Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, and R. Sastre, "Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with rhodamine 6G," Appl. Phys. B 60, 383-389 (1995).
    [CrossRef]
  10. G. D. Peng, P. L. Chu, Z. Xiong, T. W. Whitbread, and R. P. Chaplin, "Dye-doped step index polymer optical fiber for broadband optical amplification," J. Lightwave Technol. 14, 2215-2223 (1996).
    [CrossRef]
  11. K. Kurki, T. Kobayashi, N. Imai, T. Tamura, S. Nishihara, Y. Nishizawa, A. Tagaya, and Y. Koike, "High-efficiency organic dye-doped polymer optical fiber lasers," Appl. Phys. Lett. 77, 331-333 (2000).
    [CrossRef]
  12. K. Kurki, T. Kobayashi, N. Imai, T. Tamura, Y. Koike, and Y. Okamoto, "Organic dye-doped polymer optical fiber lasers," Polym. Adv. Technol 11, 612-616 (2000).
    [CrossRef]
  13. H. Liang, Z. Zengchang, L. J. Xu, B. Chen, H. Zhao, Q. Zhang, and H. Ming, "Fabrication and amplification of Rhodamine B-doped step-index polymer optical fiber," J. Appl. Polym. Sci 93, 681-685 (2004).
    [CrossRef]
  14. A. Tagaya, S. Teramoto, E. Nihei, K. Sasaki, and Y. Koike, "High-power and high-gain organic dye-doped polymer optical fiber amplifiers: novel techniques for preparation and spectral investigation," Appl. Opt. 36, 572-578 (1997).
    [CrossRef] [PubMed]
  15. K. Geetha, M. Rajesh, V. P. N. Nampoori, C. P. G. Vallabhan, and P. Radhakrishnan, "Loss characterization in rhodamine 6G-doped polymer film waveguide by side illumination fluorescence," J. Opt. A Pure Appl. Opt. 6, 379-383 (2004).
    [CrossRef]
  16. K. H. Drexhage, "Structure and properties of laser dyes," in Dye Lasers, Vol. 1 of Springer Topics in Applied Physics, F. P. Sheafer, ed. (Springer, 1990), Chap. 5, p. 155.
  17. F. P. Sheafer, "Principles of dye laser operation," in Dye Lasers, F. P. Sheafer, ed., Vol. 1 of Springer Topics in Applied Physics (Springer, 1990), Chap. 1, p. 1.
  18. A. Tagaya, S. Teramoto, E. Nihei, K. Sasaki, and Y. Koike, "High-power and high-gain organic dye-doped polymer optical fiber amplifiers: novel techniques for prepration and spectral investigation," Appl. Opt. 36, 572-578 (1997).
    [CrossRef] [PubMed]
  19. S. John and G. Pang, "Theory of lasing in a multiple-scattering medium," Phys. Rev. A 54, 3642-3652 (1996).
    [CrossRef] [PubMed]

2004 (2)

H. Liang, Z. Zengchang, L. J. Xu, B. Chen, H. Zhao, Q. Zhang, and H. Ming, "Fabrication and amplification of Rhodamine B-doped step-index polymer optical fiber," J. Appl. Polym. Sci 93, 681-685 (2004).
[CrossRef]

K. Geetha, M. Rajesh, V. P. N. Nampoori, C. P. G. Vallabhan, and P. Radhakrishnan, "Loss characterization in rhodamine 6G-doped polymer film waveguide by side illumination fluorescence," J. Opt. A Pure Appl. Opt. 6, 379-383 (2004).
[CrossRef]

2000 (2)

K. Kurki, T. Kobayashi, N. Imai, T. Tamura, S. Nishihara, Y. Nishizawa, A. Tagaya, and Y. Koike, "High-efficiency organic dye-doped polymer optical fiber lasers," Appl. Phys. Lett. 77, 331-333 (2000).
[CrossRef]

K. Kurki, T. Kobayashi, N. Imai, T. Tamura, Y. Koike, and Y. Okamoto, "Organic dye-doped polymer optical fiber lasers," Polym. Adv. Technol 11, 612-616 (2000).
[CrossRef]

1997 (2)

1996 (2)

S. John and G. Pang, "Theory of lasing in a multiple-scattering medium," Phys. Rev. A 54, 3642-3652 (1996).
[CrossRef] [PubMed]

G. D. Peng, P. L. Chu, Z. Xiong, T. W. Whitbread, and R. P. Chaplin, "Dye-doped step index polymer optical fiber for broadband optical amplification," J. Lightwave Technol. 14, 2215-2223 (1996).
[CrossRef]

1995 (1)

A. Costela, F. Florido, I. Garcia-Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, and R. Sastre, "Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with rhodamine 6G," Appl. Phys. B 60, 383-389 (1995).
[CrossRef]

1984 (1)

1981 (1)

1974 (1)

Y. Ohtsuka, T. Senga, and H. Yasuda, "Light-focusing plastic rod with low aberration," Appl. Phys. Lett. 25, 659-661 (1974).
[CrossRef]

Agarwal, G. P.

G. P. Agrawal, Fiber Optic Communication Systems, 2nd ed. (Wiley-Interscience, 1997).

Amat-Guerri, F.

A. Costela, F. Florido, I. Garcia-Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, and R. Sastre, "Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with rhodamine 6G," Appl. Phys. B 60, 383-389 (1995).
[CrossRef]

Chaplin, R. P.

G. D. Peng, P. L. Chu, Z. Xiong, T. W. Whitbread, and R. P. Chaplin, "Dye-doped step index polymer optical fiber for broadband optical amplification," J. Lightwave Technol. 14, 2215-2223 (1996).
[CrossRef]

Chen, B.

H. Liang, Z. Zengchang, L. J. Xu, B. Chen, H. Zhao, Q. Zhang, and H. Ming, "Fabrication and amplification of Rhodamine B-doped step-index polymer optical fiber," J. Appl. Polym. Sci 93, 681-685 (2004).
[CrossRef]

Chu, P. L.

G. D. Peng, P. L. Chu, Z. Xiong, T. W. Whitbread, and R. P. Chaplin, "Dye-doped step index polymer optical fiber for broadband optical amplification," J. Lightwave Technol. 14, 2215-2223 (1996).
[CrossRef]

Costela, A.

A. Costela, F. Florido, I. Garcia-Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, and R. Sastre, "Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with rhodamine 6G," Appl. Phys. B 60, 383-389 (1995).
[CrossRef]

Daum, W.

W. Daum, J. Krauser, P. E. Zamzow, and O. Zeimann, POF-Polymer Optical Fibers for Data Communication, (Springer, 2002).

Drexhage, K. H.

K. H. Drexhage, "Structure and properties of laser dyes," in Dye Lasers, Vol. 1 of Springer Topics in Applied Physics, F. P. Sheafer, ed. (Springer, 1990), Chap. 5, p. 155.

Duchowicz, R.

A. Costela, F. Florido, I. Garcia-Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, and R. Sastre, "Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with rhodamine 6G," Appl. Phys. B 60, 383-389 (1995).
[CrossRef]

Figuera, J. M.

A. Costela, F. Florido, I. Garcia-Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, and R. Sastre, "Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with rhodamine 6G," Appl. Phys. B 60, 383-389 (1995).
[CrossRef]

Florido, F.

A. Costela, F. Florido, I. Garcia-Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, and R. Sastre, "Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with rhodamine 6G," Appl. Phys. B 60, 383-389 (1995).
[CrossRef]

Garcia-Moreno, I.

A. Costela, F. Florido, I. Garcia-Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, and R. Sastre, "Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with rhodamine 6G," Appl. Phys. B 60, 383-389 (1995).
[CrossRef]

Geetha, K.

K. Geetha, M. Rajesh, V. P. N. Nampoori, C. P. G. Vallabhan, and P. Radhakrishnan, "Loss characterization in rhodamine 6G-doped polymer film waveguide by side illumination fluorescence," J. Opt. A Pure Appl. Opt. 6, 379-383 (2004).
[CrossRef]

Hatanaka, H.

Imai, N.

K. Kurki, T. Kobayashi, N. Imai, T. Tamura, S. Nishihara, Y. Nishizawa, A. Tagaya, and Y. Koike, "High-efficiency organic dye-doped polymer optical fiber lasers," Appl. Phys. Lett. 77, 331-333 (2000).
[CrossRef]

K. Kurki, T. Kobayashi, N. Imai, T. Tamura, Y. Koike, and Y. Okamoto, "Organic dye-doped polymer optical fiber lasers," Polym. Adv. Technol 11, 612-616 (2000).
[CrossRef]

Jinguji, K.

T. Kaino, K. Jinguji, and S. Nara, "Low loss poly-(methamethacrylate-d8) core optical fibers," Appl. Phys. Lett. 42, 567-569 (1983).

John, S.

S. John and G. Pang, "Theory of lasing in a multiple-scattering medium," Phys. Rev. A 54, 3642-3652 (1996).
[CrossRef] [PubMed]

Kaino, T.

T. Kaino, K. Jinguji, and S. Nara, "Low loss poly-(methamethacrylate-d8) core optical fibers," Appl. Phys. Lett. 42, 567-569 (1983).

Kapron, F. P.

F. P. Kapron, D. B. Keck, and R. D. Maurer, "Radiation losses in glass optical fibers," Appl. Phys. Lett. 17, 423-425 (1970).

Keck, D. B.

F. P. Kapron, D. B. Keck, and R. D. Maurer, "Radiation losses in glass optical fibers," Appl. Phys. Lett. 17, 423-425 (1970).

Kobayashi, T.

K. Kurki, T. Kobayashi, N. Imai, T. Tamura, S. Nishihara, Y. Nishizawa, A. Tagaya, and Y. Koike, "High-efficiency organic dye-doped polymer optical fiber lasers," Appl. Phys. Lett. 77, 331-333 (2000).
[CrossRef]

K. Kurki, T. Kobayashi, N. Imai, T. Tamura, Y. Koike, and Y. Okamoto, "Organic dye-doped polymer optical fiber lasers," Polym. Adv. Technol 11, 612-616 (2000).
[CrossRef]

Koike, Y.

Krauser, J.

W. Daum, J. Krauser, P. E. Zamzow, and O. Zeimann, POF-Polymer Optical Fibers for Data Communication, (Springer, 2002).

Kurki, K.

K. Kurki, T. Kobayashi, N. Imai, T. Tamura, S. Nishihara, Y. Nishizawa, A. Tagaya, and Y. Koike, "High-efficiency organic dye-doped polymer optical fiber lasers," Appl. Phys. Lett. 77, 331-333 (2000).
[CrossRef]

K. Kurki, T. Kobayashi, N. Imai, T. Tamura, Y. Koike, and Y. Okamoto, "Organic dye-doped polymer optical fiber lasers," Polym. Adv. Technol 11, 612-616 (2000).
[CrossRef]

Liang, H.

H. Liang, Z. Zengchang, L. J. Xu, B. Chen, H. Zhao, Q. Zhang, and H. Ming, "Fabrication and amplification of Rhodamine B-doped step-index polymer optical fiber," J. Appl. Polym. Sci 93, 681-685 (2004).
[CrossRef]

Maurer, R. D.

F. P. Kapron, D. B. Keck, and R. D. Maurer, "Radiation losses in glass optical fibers," Appl. Phys. Lett. 17, 423-425 (1970).

Ming, H.

H. Liang, Z. Zengchang, L. J. Xu, B. Chen, H. Zhao, Q. Zhang, and H. Ming, "Fabrication and amplification of Rhodamine B-doped step-index polymer optical fiber," J. Appl. Polym. Sci 93, 681-685 (2004).
[CrossRef]

Nalwa, H. S.

H. S. Nalwa, Polymer Optical Fibers (American Scientific, 2004).

Nampoori, V. P. N.

K. Geetha, M. Rajesh, V. P. N. Nampoori, C. P. G. Vallabhan, and P. Radhakrishnan, "Loss characterization in rhodamine 6G-doped polymer film waveguide by side illumination fluorescence," J. Opt. A Pure Appl. Opt. 6, 379-383 (2004).
[CrossRef]

Nara, S.

T. Kaino, K. Jinguji, and S. Nara, "Low loss poly-(methamethacrylate-d8) core optical fibers," Appl. Phys. Lett. 42, 567-569 (1983).

Nihei, E.

Nishihara, S.

K. Kurki, T. Kobayashi, N. Imai, T. Tamura, S. Nishihara, Y. Nishizawa, A. Tagaya, and Y. Koike, "High-efficiency organic dye-doped polymer optical fiber lasers," Appl. Phys. Lett. 77, 331-333 (2000).
[CrossRef]

Nishizawa, Y.

K. Kurki, T. Kobayashi, N. Imai, T. Tamura, S. Nishihara, Y. Nishizawa, A. Tagaya, and Y. Koike, "High-efficiency organic dye-doped polymer optical fiber lasers," Appl. Phys. Lett. 77, 331-333 (2000).
[CrossRef]

Ohtsuka, Y.

Okamoto, Y.

K. Kurki, T. Kobayashi, N. Imai, T. Tamura, Y. Koike, and Y. Okamoto, "Organic dye-doped polymer optical fiber lasers," Polym. Adv. Technol 11, 612-616 (2000).
[CrossRef]

Pang, G.

S. John and G. Pang, "Theory of lasing in a multiple-scattering medium," Phys. Rev. A 54, 3642-3652 (1996).
[CrossRef] [PubMed]

Peng, G. D.

G. D. Peng, P. L. Chu, Z. Xiong, T. W. Whitbread, and R. P. Chaplin, "Dye-doped step index polymer optical fiber for broadband optical amplification," J. Lightwave Technol. 14, 2215-2223 (1996).
[CrossRef]

Radhakrishnan, P.

K. Geetha, M. Rajesh, V. P. N. Nampoori, C. P. G. Vallabhan, and P. Radhakrishnan, "Loss characterization in rhodamine 6G-doped polymer film waveguide by side illumination fluorescence," J. Opt. A Pure Appl. Opt. 6, 379-383 (2004).
[CrossRef]

Rajesh, M.

K. Geetha, M. Rajesh, V. P. N. Nampoori, C. P. G. Vallabhan, and P. Radhakrishnan, "Loss characterization in rhodamine 6G-doped polymer film waveguide by side illumination fluorescence," J. Opt. A Pure Appl. Opt. 6, 379-383 (2004).
[CrossRef]

Sasaki, K.

Sastre, R.

A. Costela, F. Florido, I. Garcia-Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, and R. Sastre, "Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with rhodamine 6G," Appl. Phys. B 60, 383-389 (1995).
[CrossRef]

Senga, T.

Y. Ohtsuka, T. Senga, and H. Yasuda, "Light-focusing plastic rod with low aberration," Appl. Phys. Lett. 25, 659-661 (1974).
[CrossRef]

Sheafer, F. P.

F. P. Sheafer, "Principles of dye laser operation," in Dye Lasers, F. P. Sheafer, ed., Vol. 1 of Springer Topics in Applied Physics (Springer, 1990), Chap. 1, p. 1.

Sugano, T.

Tagaya, A.

Tamura, T.

K. Kurki, T. Kobayashi, N. Imai, T. Tamura, Y. Koike, and Y. Okamoto, "Organic dye-doped polymer optical fiber lasers," Polym. Adv. Technol 11, 612-616 (2000).
[CrossRef]

K. Kurki, T. Kobayashi, N. Imai, T. Tamura, S. Nishihara, Y. Nishizawa, A. Tagaya, and Y. Koike, "High-efficiency organic dye-doped polymer optical fiber lasers," Appl. Phys. Lett. 77, 331-333 (2000).
[CrossRef]

Teramoto, S.

Terao, Y.

Vallabhan, C. P. G.

K. Geetha, M. Rajesh, V. P. N. Nampoori, C. P. G. Vallabhan, and P. Radhakrishnan, "Loss characterization in rhodamine 6G-doped polymer film waveguide by side illumination fluorescence," J. Opt. A Pure Appl. Opt. 6, 379-383 (2004).
[CrossRef]

Whitbread, T. W.

G. D. Peng, P. L. Chu, Z. Xiong, T. W. Whitbread, and R. P. Chaplin, "Dye-doped step index polymer optical fiber for broadband optical amplification," J. Lightwave Technol. 14, 2215-2223 (1996).
[CrossRef]

Xiong, Z.

G. D. Peng, P. L. Chu, Z. Xiong, T. W. Whitbread, and R. P. Chaplin, "Dye-doped step index polymer optical fiber for broadband optical amplification," J. Lightwave Technol. 14, 2215-2223 (1996).
[CrossRef]

Xu, L. J.

H. Liang, Z. Zengchang, L. J. Xu, B. Chen, H. Zhao, Q. Zhang, and H. Ming, "Fabrication and amplification of Rhodamine B-doped step-index polymer optical fiber," J. Appl. Polym. Sci 93, 681-685 (2004).
[CrossRef]

Yasuda, H.

Y. Ohtsuka, T. Senga, and H. Yasuda, "Light-focusing plastic rod with low aberration," Appl. Phys. Lett. 25, 659-661 (1974).
[CrossRef]

Zamzow, P. E.

W. Daum, J. Krauser, P. E. Zamzow, and O. Zeimann, POF-Polymer Optical Fibers for Data Communication, (Springer, 2002).

Zeimann, O.

W. Daum, J. Krauser, P. E. Zamzow, and O. Zeimann, POF-Polymer Optical Fibers for Data Communication, (Springer, 2002).

Zengchang, Z.

H. Liang, Z. Zengchang, L. J. Xu, B. Chen, H. Zhao, Q. Zhang, and H. Ming, "Fabrication and amplification of Rhodamine B-doped step-index polymer optical fiber," J. Appl. Polym. Sci 93, 681-685 (2004).
[CrossRef]

Zhang, Q.

H. Liang, Z. Zengchang, L. J. Xu, B. Chen, H. Zhao, Q. Zhang, and H. Ming, "Fabrication and amplification of Rhodamine B-doped step-index polymer optical fiber," J. Appl. Polym. Sci 93, 681-685 (2004).
[CrossRef]

Zhao, H.

H. Liang, Z. Zengchang, L. J. Xu, B. Chen, H. Zhao, Q. Zhang, and H. Ming, "Fabrication and amplification of Rhodamine B-doped step-index polymer optical fiber," J. Appl. Polym. Sci 93, 681-685 (2004).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. B (1)

A. Costela, F. Florido, I. Garcia-Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, and R. Sastre, "Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with rhodamine 6G," Appl. Phys. B 60, 383-389 (1995).
[CrossRef]

Appl. Phys. Lett. (4)

F. P. Kapron, D. B. Keck, and R. D. Maurer, "Radiation losses in glass optical fibers," Appl. Phys. Lett. 17, 423-425 (1970).

T. Kaino, K. Jinguji, and S. Nara, "Low loss poly-(methamethacrylate-d8) core optical fibers," Appl. Phys. Lett. 42, 567-569 (1983).

Y. Ohtsuka, T. Senga, and H. Yasuda, "Light-focusing plastic rod with low aberration," Appl. Phys. Lett. 25, 659-661 (1974).
[CrossRef]

K. Kurki, T. Kobayashi, N. Imai, T. Tamura, S. Nishihara, Y. Nishizawa, A. Tagaya, and Y. Koike, "High-efficiency organic dye-doped polymer optical fiber lasers," Appl. Phys. Lett. 77, 331-333 (2000).
[CrossRef]

J. Appl. Polym. Sci (1)

H. Liang, Z. Zengchang, L. J. Xu, B. Chen, H. Zhao, Q. Zhang, and H. Ming, "Fabrication and amplification of Rhodamine B-doped step-index polymer optical fiber," J. Appl. Polym. Sci 93, 681-685 (2004).
[CrossRef]

J. Lightwave Technol. (1)

G. D. Peng, P. L. Chu, Z. Xiong, T. W. Whitbread, and R. P. Chaplin, "Dye-doped step index polymer optical fiber for broadband optical amplification," J. Lightwave Technol. 14, 2215-2223 (1996).
[CrossRef]

J. Opt. A Pure Appl. Opt. (1)

K. Geetha, M. Rajesh, V. P. N. Nampoori, C. P. G. Vallabhan, and P. Radhakrishnan, "Loss characterization in rhodamine 6G-doped polymer film waveguide by side illumination fluorescence," J. Opt. A Pure Appl. Opt. 6, 379-383 (2004).
[CrossRef]

Phys. Rev. A (1)

S. John and G. Pang, "Theory of lasing in a multiple-scattering medium," Phys. Rev. A 54, 3642-3652 (1996).
[CrossRef] [PubMed]

Polym. Adv. Technol (1)

K. Kurki, T. Kobayashi, N. Imai, T. Tamura, Y. Koike, and Y. Okamoto, "Organic dye-doped polymer optical fiber lasers," Polym. Adv. Technol 11, 612-616 (2000).
[CrossRef]

Other (5)

K. H. Drexhage, "Structure and properties of laser dyes," in Dye Lasers, Vol. 1 of Springer Topics in Applied Physics, F. P. Sheafer, ed. (Springer, 1990), Chap. 5, p. 155.

F. P. Sheafer, "Principles of dye laser operation," in Dye Lasers, F. P. Sheafer, ed., Vol. 1 of Springer Topics in Applied Physics (Springer, 1990), Chap. 1, p. 1.

W. Daum, J. Krauser, P. E. Zamzow, and O. Zeimann, POF-Polymer Optical Fibers for Data Communication, (Springer, 2002).

H. S. Nalwa, Polymer Optical Fibers (American Scientific, 2004).

G. P. Agrawal, Fiber Optic Communication Systems, 2nd ed. (Wiley-Interscience, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Experimental setup for gain narrowing studies.

Fig. 2
Fig. 2

Experimental setup for amplification studies of dye-doped fibers.

Fig. 3
Fig. 3

Fluorescence emission spectra at various pump energies for a 5   cm long fiber.

Fig. 4
Fig. 4

Line narrowing with respect to an increase in pump energy without using the reflecting mirror for a 5   cm long fiber.

Fig. 5
Fig. 5

Plot of fluorescence emission with and without the reflecting mirror at a pump energy of 12   mJ . Fluorescence enhancement with the mirror can be observed.

Fig. 6
Fig. 6

Plot of variation of peak intensity as a function of pump energy. Above 6   mJ a significant enhancement in the emission intensity with the introduction of the dichroic mirror is observed.

Fig. 7
Fig. 7

Amplification of a weak signal in a dye-doped fiber 8   cm long.

Fig. 8
Fig. 8

Gain versus length of a dye-doped fiber amplifier.

Fig. 9
Fig. 9

Gain as a function of pump power.

Fig. 10
Fig. 10

Intensity distribution of various amplified signal wavelengths.

Fig. 11
Fig. 11

Fluorescence blueshift observed as the pump power is increased.

Fig. 12
Fig. 12

Optical gain plot for various dye concentrations at various fiber diameters: (a) 1 × 10 3   M dye concentration, (b) 1 × 10 4 dye concentration, (c) 0.5 × 10 4 dye concentration.

Fig. 13
Fig. 13

Graph showing fluorescence intensity versus time of exposure of dye-doped optical fiber to pump ( 532   nm ) . The peak pump power was kept at 10   kW .

Metrics