Abstract

We investigated the physical and chemical changes induced in soot aggregates exposed to laser radiation using a scanning mobility particle sizer, a transmission electron microscope, and a scanning transmission x-ray microscope to perform near-edge x-ray absorption fine structure spectroscopy. Laser-induced nanoparticle production was observed at fluences above 0.12J/cm2 at 532  nm and 0.22J/cm2 at 1064  nm. Our results indicate that new particle formationproceeds via (1) vaporization of small carbon clusters by thermal or photolytic mechanisms, followed by homogeneous nucleation, (2) heterogeneous nucleation of vaporized carbon clusters onto material ablated from primary particles, or (3) bothprocesses.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Lahaye and G. Prado, "Morphology and internal structure of soot and carbon blacks," in Particulate Carbon: Formation during Combustion, D.C.Siegla and G.W.Smith, eds. (Plenum, 1981), pp. 33-35.
  2. Ü. Ö. Köylü and G. M. Faeth, "Structure and overfire soot in buoyant turbulent diffusion flames at long residence times," Combust. Flame 89, 140-156 (1992).
    [CrossRef]
  3. H. X. Chen and R. A. Dobbins, "Crystallogenesis of particles formed in hydrocarbon combustion," Combust. Sci. Technol. 159, 109-128 (2000).
    [CrossRef]
  4. B. Hu, B. Yang, and Ü. Ö. Köylü, "Soot measurements at the axis of an ethylene/air nonpremixed turbulent jet flame," Combust. Flame 134, 93-106 (2003).
    [CrossRef]
  5. R. L. Vander Wal, T. M. Ticich, and A. B. Stephens, "Can soot primary particle size be determined using laser-induced incandescence?," Combust. Flame 116, 291-296 (1999).
    [CrossRef]
  6. L. H. van Poppel, H. Friedrich, J. Spinsby, S. H. Chung, J. H. Seinfeld, and P. R. Buseck, "Electron tomography of nanoparticle clusters and implications for atmospheric lifetimes and radiative forcing of soot," Geophys. Res. Lett. 32, L24811 (2005).
    [CrossRef]
  7. J. Lahaye and F. Ehrburger-Dolle, "Mechanisms of carbon black formation: correlation with the morphology of aggregates," Carbon 32, 1319-1324 (1994).
    [CrossRef]
  8. T. L. Farias, M. G. Carvalho, Ü. Ö. Köylü, and G. M. Faeth, "Computational evaluation of approximate Rayleigh-Debye-Gans/fractal-aggregate theory for the absorption and scattering properties of soot," J. Heat Transfer 117, 152-159 (1995).
    [CrossRef]
  9. T. L. Farias, Ü. Ö. Köylü, and M. G. Carvalho, "Range of validity of the Rayleigh-Debye-Gans theory for optics of fractal aggregates," Appl. Opt. 35, 6560-6567 (1996).
    [CrossRef] [PubMed]
  10. Ü. Ö. Köylü, "Quantitative analysis of in situ optical diagnostics for inferring particle/aggregate parameters in flames: Implications for soot surface growth and total emissivity," Combust. Flame 109, 488-500 (1996).
    [CrossRef]
  11. J. C. Ku and K.-H. Shim, "A comparison of solutions for light scattering and absorption by aggregated and arbitrarily-shaped particles," J. Quant. Spectrosc. Radiat. Transfer 47, 201-220 (1992).
    [CrossRef]
  12. J. C. Ku and K.-H. Shim, "Optical diagnostics and radiative properties of simulated soot aggregates," J. Heat Transfer 113, 953-958 (1991).
    [CrossRef]
  13. Ü. Ö. Köylü and G. M. Faeth, "Fractal and projected structure properties of soot aggregates," Combust. Flame 100, 621-633 (1995).
    [CrossRef]
  14. C. M. Sorensen, "Light scattering by fractal aggregates: a review," Aerosol Sci. Technol. 35, 648-687 (2001).
  15. R. J. Santoro and C. R. Shaddix, "Laser-induced incandescence," in Applied Combustion Diagnostics, K. Kohse-Höinghaus and J.B. Jeffries, eds. (Taylor & Francis, 2002), pp. 252-286.
  16. J. A. Pinson, D. L. Mitchell, and R. J. Santoro, "Quantitative, planar soot measurements in a D. I. diesel engine using laser-induced incandescence and light scattering," in Proceedings of the SAE (SAE, 1993), paper 932650.
  17. J. A. Pinson, T. Ni, and T. A. Litzinger, "Quantitative imaging study of the effects of intake air temperature on soot evaluation in an optically-accessible D. I. diesel engine," in Proceedings of the SAE (SAE, 1994), paper 942044.
  18. R. L. Vander Wal and D. L. Dietrich, "Laser-induced incandescence applied to droplet combustion," Appl. Opt. 34, 1103-1107 (1995).
    [CrossRef]
  19. T. Ni, J. A. Pinson, S. Gupta, and R. J. Santoro, "Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence," Appl. Opt. 34, 7083-7091 (1995).
    [CrossRef] [PubMed]
  20. B. Mewes and J. M. Seitzman, "Soot volume fraction and particle size measurements with laser-induced incandescence," Appl. Opt. 36, 709-717 (1997).
    [CrossRef] [PubMed]
  21. P. Roth and A. V. Filippov, "In situ ultrafine particle sizing by a combination of pulsed laser heatup and particle thermal emission," J. Aerosol Sci. 27, 95-104 (1996).
    [CrossRef]
  22. B. Quay, T.-W. Lee, T. Ni, and R. J. Santoro, "Spatially resolved measurements of soot volume fraction using laser-induced incandescence," Combust. Flame 97, 384-392 (1994).
    [CrossRef]
  23. C. R. Shaddix and K. C. Smyth, "Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames," Combust. Flame 107, 418-452 (1996).
    [CrossRef]
  24. A. V. Filippov, M. W. Markus, and P. Roth, "In situ characterization of ultrafine particles by laser-induced incandescence: sizing and particle structure determination," J. Aerosol Sci. 30, 71-87 (1999).
    [CrossRef]
  25. K. Inagaki, S. Takasu, and K. Nakakita, "In-cylinder quantitative soot concentration measurement by laser-induced incandescence," in Proceedings of the SAE (SAE, 1999), paper 1999-1901-0508.
  26. S. Schraml, S. Will, and A. Leipertz, "Simultaneous measurement of soot mass concentration and primary particle size in the exhaust of a DI diesel engine by time-resolved laser-induced incandescence," in Proceedings of the SAE (SAE, 1994), paper 1999-1901-0146.
  27. D. J. Bryce, N. Ladommatos, and H. Zhao, "Quantitative investigation of soot distribution by laser-induced incandescence," Appl. Opt. 39, 5012-5022 (2000).
    [CrossRef]
  28. C. Allouis, A. D'Alessio, C. Noviello, and F. Beretta, "Time resolved laser induced incandescence for soot and cenospheres measurements in oil flames," Combust. Sci. Technol. 153, 51-63 (2000).
    [CrossRef]
  29. T. Schittkowski, B. Mewes, and D. Brüggemann, "Laser-induced incandescence and Raman measurements in sooting methane and ethylene flames," Phys. Chem. Chem. Phys. 4, 2063-2071 (2002).
    [CrossRef]
  30. R. Starke, B. Kock, and P. Roth, "Nano-particle sizing by laser-induced incandescence (LII) in a shock wave reactor," Shock Waves 12, 351-360 (2003).
    [CrossRef]
  31. A. Boiarciuc, F. Foucher, and C. Mounaïm-Rousselle, "Soot volume fraction and primary particle size estimate by means of the simultaneous two-color-time-resolved and 2D laser-induced incandescence," Appl. Phys. B 83, 413-421 (2006).
    [CrossRef]
  32. F. Liu, M. Yang, F. A. Hill, D. R. Snelling, and G. J. Smallwood, "Influence of polydisperse distributions of both primary particle and aggregate size on soot temperature in low-fluence LII," Appl. Phys. B 83, 383-395 (2006).
    [CrossRef]
  33. S. Schraml, S. Dankers, K. Bader, S. Will, and A. Leipertz, "Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII)," Combust. Flame 120, 439-450 (2000).
    [CrossRef]
  34. B. Axelsson, R. Collin, and P.-E. Bengtsson, "Laser-induced incandescence for soot particle size and volume fraction measurements using on-line extinction calibration," Appl. Phys. B 72, 367-372 (2001).
  35. C. Allouis, F. Beretta, and A. D'Alessio, "Sizing soot and micronic carbonaceous particle in spray flames base on time resolved LII," Exp. Therm. Fluid Sci. 27, 455-463 (2003).
    [CrossRef]
  36. T. Lehre, B. Jungfleisch, R. Suntz, and H. Bockhorn, "Size distributions of nanoscaled particles and gas temperatures from time-resolved laser-induced incandescence measurements," Appl. Opt. 42, 2021-2030 (2003).
    [CrossRef] [PubMed]
  37. V. Beyer and D. A. Greenhalgh, "Laser induced incandescence under high vacuum conditions," Appl. Phys. B 83, 455-467 (2006).
    [CrossRef]
  38. R. L. Vander Wal and M. Y. Choi, "Pulsed laser heating of soot: morphological changes," Carbon 37, 231-239 (1999).
    [CrossRef]
  39. R. L. Vander Wal, C. Y. Choi, and K. O. Lee, "The effects of rapid heating of soot: implications when using laser-induced incandescence for soot diagnostics," Combust. Flame 102, 200-204 (1995).
    [CrossRef]
  40. R. L. Vander Wal, T. M. Ticich, and A. B. Stephens, "Optical and microscopy investigations of soot structure alterations by laser-induced incandescence," Appl. Phys. B 67, 115-123 (1998).
    [CrossRef]
  41. R. L. Vander Wal and K. A. Jensen, "Laser-induced incandescence: excitation intensity," Appl. Opt. 37, 1607-1616 (1998).
    [CrossRef]
  42. B. F. Kock, Ph.D. dissertation (Universität Duisburg-Essen, 2006).
  43. C. J. Dasch, "Continuous-wave probe laser investigation of laser vaporization of small soot particles in a flame," Appl. Opt. 23, 2209-2215 (1984).
    [CrossRef] [PubMed]
  44. P. O. Witze, S. Hochgreb, D. Kayes, H. A. Michelsen, and C. R. Shaddix, "Time-resolved laser-induced incandescence and laser elastic scattering measurements in a propane diffusion flame," Appl. Opt. 40, 2443-2452 (2001).
    [CrossRef]
  45. G. D. Yoder, P. K. Diwaker, and D. W. Hahn, "Assessment of soot particle vaporization effects during laser-induced incandescence with time-resolved light scattering," Appl. Opt. 44, 4211-4219 (2005).
    [CrossRef] [PubMed]
  46. V. Krüger, C. Wahl, R. Hadef, K. P. Geigle, W. Stricker, and M. Aigner, "Comparison of laser-induced incandescence method with scanning mobility particle sizer technique: the influence of probe sampling and laser heating on soot particle size distribution," Meas. Sci. Technol. 16, 1477-1486 (2005).
    [CrossRef]
  47. C. J. Damm, D. Lucas, R. F. Sawyer, and C. P. Koshland, "Characterization of diesel particulate matter with excimer laser fragmentation fluorescence spectroscopy," Proc. Combust. Inst. 29, 2767-2774 (2002).
    [CrossRef]
  48. P.-E. Bengtsson and M. Aldén, "Soot-visualization strategies using laser techniques," Appl. Phys. B 60, 51-59 (1995).
    [CrossRef]
  49. C. B. Stipe, B. S. Higgins, D. Lucas, C. P. Koshland, and R. F. Sawyer, "Soot detection using excimer laser fragmentation fluorescence spectroscopy," Proc. Combust. Inst. 29, 2759-2766 (2002).
    [CrossRef]
  50. J. Walewski, M. Rupinski, H. Bladh, Z. S. Li, P.-E. Bengtsson, and M. Aldén, "Soot visualisation by use of laser-induced soot vapourisation in combination with polarisation spectroscopy," Appl. Phys. B 77, 447-454 (2003).
    [CrossRef]
  51. C. B. Stipe, J. H. Choi, D. Lucas, C. P. Koshland, and R. F. Sawyer, "Nanoparticle production by UV irradiation of combustion generated soot particles," J. Nanopart. Res. 6, 467-477 (2004).
    [CrossRef]
  52. F. Kokai and Y. Koga, "Time-of-flight mass spectrometric studies on the plume dynamics of laser ablation of graphite," Nucl. Instrum. Methods Phys. Res. B 121, 387-391 (1997).
    [CrossRef]
  53. F. Kokai, "Optical emission spectra from laser ablation of graphite at 266 nm and 1064 nm under a magnetic field," Jpn. J. Appl. Phys. 36, 3504-3509 (1997).
    [CrossRef]
  54. R. W. Dreyfus, R. Kelly, and R. E. Walkup, "Laser-induced fluorescence study of laser sputtering of graphite," Nucl. Instrum. Methods Phys. Res. B 23, 557-561 (1987).
    [CrossRef]
  55. J. J. Gaumet, A. Wakisaka, Y. Shimizu, and Y. Tamori, "Energetics for carbon clusters produced directly by laser vaporization of graphite: dependence on laser power and wavelength," J. Chem. Soc. Faraday Trans. 89, 1667-1670 (1993).
    [CrossRef]
  56. D. J. Krajnovich, "Laser sputtering of highly oriented pyrolytic graphite at 248 nm," J. Chem. Phys. 102, 726-743 (1995).
    [CrossRef]
  57. H. C. Ong and R. P. H. Chang, "Effect of laser intensity on the properties of carbon plumes and deposited films," Phys. Rev. B 55, 13213-13220 (1997).
    [CrossRef]
  58. Y. Yamagata, A. Sharma, and J. Narayan, "Comparative study of pulsed laser ablated plasma plumes from single crystal graphite and amorphous carbon targets. Part 1. Optical emission spectroscopy," J. Appl. Phys. 88, 6861-6867 (2000).
    [CrossRef]
  59. P. T. Murray and D. T. Peeler, "Dynamics of graphite photoablation: kinetic energy of the precursors to diamond-like carbon," Appl. Surf. Sci. 69, 225-230 (1993).
    [CrossRef]
  60. M.-A. Bratescu, Y. Sakai, D. Yamaoka, Y. Suda, and H. Sugawara, "Electron and excited particle densities in a carbon ablation plume," Appl. Surf. Sci. 197-198,257-262 (2002).
    [CrossRef]
  61. T. Shinozaki, T. Ooie, T. Yano, J. P. Zhao, Z. Y. Chen, and M. Yoneda, "Laser-induced optical emission of carbon plume by excimer and Nd:YAG laser irradiation," Appl. Surf. Sci. 197-198,263-267 (2002).
    [CrossRef]
  62. F. Kokai, K. Takahashi, M. Yudasaka, and S. Iijima, "Emission imaging spectroscopic and shadowgraphic studies on the growth dynamics of graphitic carbon particles synthesized by CO2 laser vaporization," J. Phys. Chem. B 103, 8686-8693 (1999).
    [CrossRef]
  63. T. Moriwaki, M. Kobayashi, M. Osaka, M. Ohara, H. Shiromaru, and Y. Achiba, "Dual pathway of carbon cluster formation in the laser vaporization," J. Chem. Phys. 107, 8927-8932 (1997).
    [CrossRef]
  64. K. Sasaki, T. Wakabayashi, S. Matsui, and K. Kadota, "Distributions of C2 and C3 radical densities in laser-ablation carbon plumes measured by laser-induced fluorescence imaging spectroscopy," J. Appl. Phys. 91, 4033-4039 (2002).
    [CrossRef]
  65. K. Shibagaki, T. Kawashima, K. Sasaki, and K. Kadota, "Formation of positive and negative carbon cluster ions in the initial phase of laser ablation in vacuum," Jpn. J. Appl. Phys. 39, 4959-4963 (2000).
    [CrossRef]
  66. M. Ullmann, S. K. Friedlander, and A. Schmidt-Ott, "Nanoparticle formation by laser ablation," J. Nanopart. Res. 4, 499-509 (2002).
    [CrossRef]
  67. Z. Márton, L. Landstrom, and P. Heszler, "Early stage of the material removal during ArF laser ablation of graphite," Appl. Phys. A 79, 579-585 (2004).
    [CrossRef]
  68. R. M. Mayo, J. W. Newman, Y. Yamagata, A. Sharma, and J. Narayan, "Comparative study of pulsed laser ablated plasma plumes from single crystal graphite and amorphous carbon targets: Part II. Electrostatic probe measurements," J. Appl. Phys. 88, 6868-6874 (2000).
    [CrossRef]
  69. H. Kamezaki, K. Tokunaga, S. Fukuda, N. Yoshida, and T. Muroga, "Pulse high heat flux experiment with laser beams on graphite," J. Nucl. Mater. 179, 193-196 (1991).
    [CrossRef]
  70. K. A. Lincoln and M. A. Covington, "Dynamic sampling of laser-induced vapor plumes by mass spectrometry," Int. J. Mass Spectrom. Ion Phys. 16, 191-208 (1975).
    [CrossRef]
  71. T. Wakabayashi, T. Momose, and T. Shida, "Mass spectroscopic studies of laser ablated carbon clusters as studied by photoionization with 10.5 eV photons under high vacuum," J. Chem. Phys. 111, 6260-6263 (1999).
    [CrossRef]
  72. J. Berkowitz and W. A. Chupka, "Mass spectrometric study of vapor ejected from graphite and other solids by focused laser beams," J. Chem. Phys. 40, 2735-2736 (1964).
    [CrossRef]
  73. P. Monchicourt, "Onset of carbon cluster formation inferred from light emission in a laser-induced expansion," Phys. Rev. Lett. 66, 1430-1433 (1991).
    [CrossRef] [PubMed]
  74. K. Sasaki, T. Wakasaki, and K. Kadota, "Observation of continuum optical emission from laser ablation carbon plumes," Appl. Surf. Sci. 197-198,197-201 (2002).
    [CrossRef]
  75. E. A. Rohlfing, "Optical emission studies of atomic, molecular, and particulate carbon produced from a laser vaporization cluster source," J. Chem. Phys. 89, 6103-6112 (1988).
    [CrossRef]
  76. M. Anselment, R. S. Smith, E. Daykin, and L. F. Dimauro, "Optical emission studies on graphite in a laser/vaporization supersonic jet cluster source," Chem. Phys. Lett. 134, 444-449 (1987).
    [CrossRef]
  77. E. A. Rohlfing, D. M. Cox, and A. Kaldor, "Production and characterization of supersonic carbon cluster beams," J. Chem. Phys. 81, 3322-3330 (1984).
    [CrossRef]
  78. M. Jeunehomme and R. P. Schwenker, "Focused laser-beam experiment and the oscillator strength of the Swan system," J. Chem. Phys. 42, 2406-2408 (1965).
    [CrossRef]
  79. A. M. Keszler and L. Nemes, "Time averaged emission spectra of Nd:YAG laser induced carbon plasmas," J. Mol. Struct. 695-696,211-218 (2004).
    [CrossRef]
  80. J. A. Howe, "Observations on the maser-induced graphite jet," J. Chem. Phys. 39, 1362-1363 (1963).
    [CrossRef]
  81. L. Nemes, A. M. Keszler, J. O. Hornkolh, and C. G. Parigger, "Laser-induced carbon plasma emission spectroscopic measurements on solid targets and in gas-phase optical breakdown," Appl. Opt. 44, 3661-3667 (2005).
    [CrossRef] [PubMed]
  82. S. S. Harilal, R. C. Isaac, C. V. Bindhu, V. P. N. Nampoori, and C. P. G. Vallabhan, "Optical emission studies of C2 species in laser-produced plasma from carbon," J. Phys. D 30, 1703-1709 (1997).
    [CrossRef]
  83. A. O'Keefe, M. M. Ross, and A. P. Baronavski, "Production of large carbon cluster ions by laser vaporization," Chem. Phys. Lett. 130, 17-19 (1986).
    [CrossRef]
  84. G. F. Lorusso, V. Capozzi, P. Milani, A. Minafra, and D. Lojacono, "UV spectra of graphite microparticles produced by laser vaporization," Solid State Commun. 85, 729-734 (1993).
    [CrossRef]
  85. F. Kokai, K. Takahashi, D. Kasuya, A. Nakayama, Y. Koga, M. Yudasaka, and S. Iijima, "Laser vaporization synthesis of polyhedral graphite," Appl. Phys. A 77, 69-71 (2003).
    [CrossRef]
  86. S. M. Kimbrell and E. S. Yeung, "Real-time particle size measurements in laser-generated plumes by Mie scattering," Appl. Spectrosc. 43, 1248-1251 (1989).
    [CrossRef]
  87. S. Iijima, T. Wakabayashi, and Y. Achiba, "Structures of carbon soot prepared by laser ablation," J. Phys. Chem. 100, 5839-5843 (1996).
    [CrossRef]
  88. T. Ishigaki, S. Suzuki, H. Kataura, W. Krätschmer, and Y. Achiba, "Characterization of fullerenes and carbon nanoparticles generated with a laser-furnace technique," Appl. Phys. A 70, 121-124 (2000).
    [CrossRef]
  89. E. A. Rohlfing and D. W. Chandler, "Two-color pyrometric imaging of laser-heated carbon particles in a supersonic flow," Chem. Phys. Lett. 170, 44-50 (1990).
    [CrossRef]
  90. H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, "C60: buckminsterfullerene," Nature 318, 162-163 (1985).
    [CrossRef]
  91. D. M. Cox, K. C. Reichmann, and A. Kaldor, "Carbon clusters revisited: the 'special' behavior of C60 and large carbon clusters," J. Chem. Phys. 88, 1588-1597 (1988).
    [CrossRef]
  92. M. Pellarin, E. Cottancin, J. Lermé, J. L. Vialle, and M. Broyer, "Coating and polymerization of C60 with carbon: a gas phase photodissociation study," J. Chem. Phys. 117, 3088-3097 (2002).
    [CrossRef]
  93. S. Suzuki, H. Yamagachi, R. Sen, H. Kataura, W. Krätschmer, and Y. Achiba, "Time and space evolution of carbon species generated with a laser furnace technique," AIP Conf. Proc. 590, 51-54 (2001).
    [CrossRef]
  94. "Image processing and analysis in Java," http://rsb.info.nih.gov/ij/.
  95. A. L. D. Kilcoyne, T. Tyliszczak, W. F. Steele, S. Fakra, P. Hitchcock, K. Franck, E. Anderson, B. Harteneck, E. G. Rightor, G. E. Mitchell, A. P. Hitchcock, L. Yang, T. Warwick, and H. Ade, "Interferometer-controlled scanning transmission x-ray microscopes at the advanced light source," J. Synchrotron Radiat. 10, 125-136 (2003).
    [CrossRef] [PubMed]
  96. Y. Ma, C. T. Chen, G. Meigs, K. Randall, and F. Sette, "High-resolution K-shell photoabsorption measurements of simple molecules," Phys. Rev. A 44, 1848-1858 (1991).
    [CrossRef] [PubMed]
  97. J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics from Air Pollution to Climate Change (Wiley, 1998).
  98. T. T. Charalampopoulos and H. Chang, "Agglomerate parameters and fractal dimension of soot using light scattering-effects of surface growth," Combust. Flame 87, 89-99 (1991).
    [CrossRef]
  99. Ü. Ö. Köylü, Y. C. Xing, and D. E. Rosner, "Fractal morphology analysis of combustion-generated aggregates using angular light scattering and electron microscope images," Langmuir 11, 4848-4854 (1995).
    [CrossRef]
  100. J.-S. Wu, S. S. Krishnan, and G. M. Faeth, "Refractive indices at visible wavelengths of soot emitted from buoyant turbulent diffusion flames," J. Heat Transfer 119, 230-237 (1997).
    [CrossRef]
  101. W. S. Bacsa, W. A. de Heer, D. Ugarte, and A. Châtelain, "Raman spectroscopy of closed-shell carbon particles," Chem. Phys. Lett. 211, 346-352 (1993).
    [CrossRef]
  102. R. H. Hurt, G. P. Crawford, and H.-S. Shim, "Equilibrium nanostructure of primary soot particles," Proc. Combust. Inst. 28, 2539-2546 (2000).
    [CrossRef]
  103. R. L. Vander Wal, "A TEM methodology for the study of soot particle structure," Combust. Sci. Technol. 126, 333-357 (1997).
    [CrossRef]
  104. T. Ishiguro, Y. Takatori, and K. Akihama, "Microstructure of diesel soot particles probed by electron microscopy: first observation of inner core and outer shell," Combust. Flame 108, 231-234 (1997).
    [CrossRef]
  105. M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic, 1996).
  106. J. Robertson, "Amorphous carbon," Adv. Phys. 35, 317-374 (1986).
    [CrossRef]
  107. R. Gago, I. Jiménez, and J. M. Albella, "Detecting with x-ray absorption spectroscopy the modifications of the bonding structure of graphitic carbon by amorphisation, hydrogenation and nitrogenation," Surf. Sci. 482-485,530-536 (2001).
    [CrossRef]
  108. R. Gago, M. Vinnichenko, H. U. Jäger, A. Y. Belov, I. Jiménez, N. Huang, H. Sun, and M. F. Maitz, "Evolution of sp2 networks with substrate temperature in amorphous carbon films: experiment and theory," Phys. Rev. B 72, 014120 (2005).
    [CrossRef]
  109. B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, and B. K. Fuikawa, "Low-energy x-ray interaction coefficients: photoabsorption, scattering, and reflection −E = 100-2000 eV, Z = 1-94," At. Data Nucl. Data Tables 27, 1-144 (1982).
    [CrossRef]
  110. R. A. Rosenberg, P. J. Love, and V. Rehn, "Polarization-dependent C(K) near-edge x-ray-absorption fine structure of graphite," Phys. Rev. B 33, 4034-4037 (1986).
    [CrossRef]
  111. C. Lenardi, M. Marino, E. Barborini, P. Piseri, and P. Milani, "Evaluation of hydrogen chemisorption in nanostructured carbon films by near edge x-ray absorption spectroscopy," Eur. Phys. J. B 46, 441-447 (2005).
    [CrossRef]
  112. R. Ahuja, P. A. Brühwiler, J. M. Wills, B. Johansson, N. Mårtensson, and O. Eriksson, "Theoretical and experimental study of the graphite 1s x-ray absorption edges," Phys. Rev. B 54, 14396-14404 (1996).
    [CrossRef]
  113. R. F. Willis, B. Fitton, and G. S. Painter, "Secondary-electron emission spectroscopy and the observation of high-energy excited states in graphite: theory and experiment," Phys. Rev. B 9, 1926-1937 (1974).
    [CrossRef]
  114. F. L. Coffman, R. Cao, P. A. Pianetta, S. Kapoor, M. Kelly, and L. J. Terminello, "Near-edge x-ray absorption of carbon materials for determining bond hybridization in mixed sp2/sp3 bonded materials," Appl. Phys. Lett. 69, 568-570 (1996).
    [CrossRef]
  115. J. Stöhr, NEXAFS Spectroscopy (Springer, 1996).
  116. M. B. Fernandes, J. O. Skjemstad, B. B. Johnson, J. D. Wells, and P. Brooks, "Characterization of carbonaceous combustion residues: I. Morphological, elemental and spectroscopic features," Chemosphere 51, 785-795 (2003).
    [CrossRef] [PubMed]
  117. M. B. Fernandes and P. Brooks, "Characterization of carbonaceous combustion residues: II. Nonpolar organic compounds," Chemosphere 53, 447-458 (2003).
    [CrossRef] [PubMed]
  118. G. D. Cody, H. Ade, S. Wirick, G. D. Mitchell, and A. Davis, "Determination of chemical-structural changes in vitrinite accompanying luminescence alteration using C-NEXAFS analysis," Org. Geochem. 28, 441-455 (1998).
    [CrossRef]
  119. H. A. Michelsen, "Understanding and predicting the temporal response of laser-induced incandescence from carbonaceous particles," J. Chem. Phys. 118, 7012-7045 (2003).
    [CrossRef]
  120. Y. P. Yang, P. Xia, A. L. Junkin, and L. A. Bloomfield, "Direct ejection of clusters from nonmetallic solids during laser vaporization," Phys. Rev. Lett. 66, 1205-1208 (1991).
    [CrossRef] [PubMed]
  121. H. A. Michelsen, P. O. Witze, D. Kayes, and S. Hochgreb, "Time-resolved laser-induced incandescence of soot: the influence of experimental factors and microphysical mechanisms," Appl. Opt. 42, 5577-5590 (2003).
    [CrossRef] [PubMed]

2006

A. Boiarciuc, F. Foucher, and C. Mounaïm-Rousselle, "Soot volume fraction and primary particle size estimate by means of the simultaneous two-color-time-resolved and 2D laser-induced incandescence," Appl. Phys. B 83, 413-421 (2006).
[CrossRef]

F. Liu, M. Yang, F. A. Hill, D. R. Snelling, and G. J. Smallwood, "Influence of polydisperse distributions of both primary particle and aggregate size on soot temperature in low-fluence LII," Appl. Phys. B 83, 383-395 (2006).
[CrossRef]

V. Beyer and D. A. Greenhalgh, "Laser induced incandescence under high vacuum conditions," Appl. Phys. B 83, 455-467 (2006).
[CrossRef]

2005

L. H. van Poppel, H. Friedrich, J. Spinsby, S. H. Chung, J. H. Seinfeld, and P. R. Buseck, "Electron tomography of nanoparticle clusters and implications for atmospheric lifetimes and radiative forcing of soot," Geophys. Res. Lett. 32, L24811 (2005).
[CrossRef]

G. D. Yoder, P. K. Diwaker, and D. W. Hahn, "Assessment of soot particle vaporization effects during laser-induced incandescence with time-resolved light scattering," Appl. Opt. 44, 4211-4219 (2005).
[CrossRef] [PubMed]

V. Krüger, C. Wahl, R. Hadef, K. P. Geigle, W. Stricker, and M. Aigner, "Comparison of laser-induced incandescence method with scanning mobility particle sizer technique: the influence of probe sampling and laser heating on soot particle size distribution," Meas. Sci. Technol. 16, 1477-1486 (2005).
[CrossRef]

L. Nemes, A. M. Keszler, J. O. Hornkolh, and C. G. Parigger, "Laser-induced carbon plasma emission spectroscopic measurements on solid targets and in gas-phase optical breakdown," Appl. Opt. 44, 3661-3667 (2005).
[CrossRef] [PubMed]

R. Gago, M. Vinnichenko, H. U. Jäger, A. Y. Belov, I. Jiménez, N. Huang, H. Sun, and M. F. Maitz, "Evolution of sp2 networks with substrate temperature in amorphous carbon films: experiment and theory," Phys. Rev. B 72, 014120 (2005).
[CrossRef]

C. Lenardi, M. Marino, E. Barborini, P. Piseri, and P. Milani, "Evaluation of hydrogen chemisorption in nanostructured carbon films by near edge x-ray absorption spectroscopy," Eur. Phys. J. B 46, 441-447 (2005).
[CrossRef]

2004

A. M. Keszler and L. Nemes, "Time averaged emission spectra of Nd:YAG laser induced carbon plasmas," J. Mol. Struct. 695-696,211-218 (2004).
[CrossRef]

C. B. Stipe, J. H. Choi, D. Lucas, C. P. Koshland, and R. F. Sawyer, "Nanoparticle production by UV irradiation of combustion generated soot particles," J. Nanopart. Res. 6, 467-477 (2004).
[CrossRef]

Z. Márton, L. Landstrom, and P. Heszler, "Early stage of the material removal during ArF laser ablation of graphite," Appl. Phys. A 79, 579-585 (2004).
[CrossRef]

2003

J. Walewski, M. Rupinski, H. Bladh, Z. S. Li, P.-E. Bengtsson, and M. Aldén, "Soot visualisation by use of laser-induced soot vapourisation in combination with polarisation spectroscopy," Appl. Phys. B 77, 447-454 (2003).
[CrossRef]

B. Hu, B. Yang, and Ü. Ö. Köylü, "Soot measurements at the axis of an ethylene/air nonpremixed turbulent jet flame," Combust. Flame 134, 93-106 (2003).
[CrossRef]

C. Allouis, F. Beretta, and A. D'Alessio, "Sizing soot and micronic carbonaceous particle in spray flames base on time resolved LII," Exp. Therm. Fluid Sci. 27, 455-463 (2003).
[CrossRef]

T. Lehre, B. Jungfleisch, R. Suntz, and H. Bockhorn, "Size distributions of nanoscaled particles and gas temperatures from time-resolved laser-induced incandescence measurements," Appl. Opt. 42, 2021-2030 (2003).
[CrossRef] [PubMed]

R. Starke, B. Kock, and P. Roth, "Nano-particle sizing by laser-induced incandescence (LII) in a shock wave reactor," Shock Waves 12, 351-360 (2003).
[CrossRef]

F. Kokai, K. Takahashi, D. Kasuya, A. Nakayama, Y. Koga, M. Yudasaka, and S. Iijima, "Laser vaporization synthesis of polyhedral graphite," Appl. Phys. A 77, 69-71 (2003).
[CrossRef]

A. L. D. Kilcoyne, T. Tyliszczak, W. F. Steele, S. Fakra, P. Hitchcock, K. Franck, E. Anderson, B. Harteneck, E. G. Rightor, G. E. Mitchell, A. P. Hitchcock, L. Yang, T. Warwick, and H. Ade, "Interferometer-controlled scanning transmission x-ray microscopes at the advanced light source," J. Synchrotron Radiat. 10, 125-136 (2003).
[CrossRef] [PubMed]

M. B. Fernandes, J. O. Skjemstad, B. B. Johnson, J. D. Wells, and P. Brooks, "Characterization of carbonaceous combustion residues: I. Morphological, elemental and spectroscopic features," Chemosphere 51, 785-795 (2003).
[CrossRef] [PubMed]

M. B. Fernandes and P. Brooks, "Characterization of carbonaceous combustion residues: II. Nonpolar organic compounds," Chemosphere 53, 447-458 (2003).
[CrossRef] [PubMed]

H. A. Michelsen, "Understanding and predicting the temporal response of laser-induced incandescence from carbonaceous particles," J. Chem. Phys. 118, 7012-7045 (2003).
[CrossRef]

H. A. Michelsen, P. O. Witze, D. Kayes, and S. Hochgreb, "Time-resolved laser-induced incandescence of soot: the influence of experimental factors and microphysical mechanisms," Appl. Opt. 42, 5577-5590 (2003).
[CrossRef] [PubMed]

2002

M. Pellarin, E. Cottancin, J. Lermé, J. L. Vialle, and M. Broyer, "Coating and polymerization of C60 with carbon: a gas phase photodissociation study," J. Chem. Phys. 117, 3088-3097 (2002).
[CrossRef]

T. Schittkowski, B. Mewes, and D. Brüggemann, "Laser-induced incandescence and Raman measurements in sooting methane and ethylene flames," Phys. Chem. Chem. Phys. 4, 2063-2071 (2002).
[CrossRef]

C. B. Stipe, B. S. Higgins, D. Lucas, C. P. Koshland, and R. F. Sawyer, "Soot detection using excimer laser fragmentation fluorescence spectroscopy," Proc. Combust. Inst. 29, 2759-2766 (2002).
[CrossRef]

M.-A. Bratescu, Y. Sakai, D. Yamaoka, Y. Suda, and H. Sugawara, "Electron and excited particle densities in a carbon ablation plume," Appl. Surf. Sci. 197-198,257-262 (2002).
[CrossRef]

T. Shinozaki, T. Ooie, T. Yano, J. P. Zhao, Z. Y. Chen, and M. Yoneda, "Laser-induced optical emission of carbon plume by excimer and Nd:YAG laser irradiation," Appl. Surf. Sci. 197-198,263-267 (2002).
[CrossRef]

C. J. Damm, D. Lucas, R. F. Sawyer, and C. P. Koshland, "Characterization of diesel particulate matter with excimer laser fragmentation fluorescence spectroscopy," Proc. Combust. Inst. 29, 2767-2774 (2002).
[CrossRef]

K. Sasaki, T. Wakabayashi, S. Matsui, and K. Kadota, "Distributions of C2 and C3 radical densities in laser-ablation carbon plumes measured by laser-induced fluorescence imaging spectroscopy," J. Appl. Phys. 91, 4033-4039 (2002).
[CrossRef]

M. Ullmann, S. K. Friedlander, and A. Schmidt-Ott, "Nanoparticle formation by laser ablation," J. Nanopart. Res. 4, 499-509 (2002).
[CrossRef]

K. Sasaki, T. Wakasaki, and K. Kadota, "Observation of continuum optical emission from laser ablation carbon plumes," Appl. Surf. Sci. 197-198,197-201 (2002).
[CrossRef]

2001

B. Axelsson, R. Collin, and P.-E. Bengtsson, "Laser-induced incandescence for soot particle size and volume fraction measurements using on-line extinction calibration," Appl. Phys. B 72, 367-372 (2001).

P. O. Witze, S. Hochgreb, D. Kayes, H. A. Michelsen, and C. R. Shaddix, "Time-resolved laser-induced incandescence and laser elastic scattering measurements in a propane diffusion flame," Appl. Opt. 40, 2443-2452 (2001).
[CrossRef]

C. M. Sorensen, "Light scattering by fractal aggregates: a review," Aerosol Sci. Technol. 35, 648-687 (2001).

S. Suzuki, H. Yamagachi, R. Sen, H. Kataura, W. Krätschmer, and Y. Achiba, "Time and space evolution of carbon species generated with a laser furnace technique," AIP Conf. Proc. 590, 51-54 (2001).
[CrossRef]

R. Gago, I. Jiménez, and J. M. Albella, "Detecting with x-ray absorption spectroscopy the modifications of the bonding structure of graphitic carbon by amorphisation, hydrogenation and nitrogenation," Surf. Sci. 482-485,530-536 (2001).
[CrossRef]

2000

R. H. Hurt, G. P. Crawford, and H.-S. Shim, "Equilibrium nanostructure of primary soot particles," Proc. Combust. Inst. 28, 2539-2546 (2000).
[CrossRef]

T. Ishigaki, S. Suzuki, H. Kataura, W. Krätschmer, and Y. Achiba, "Characterization of fullerenes and carbon nanoparticles generated with a laser-furnace technique," Appl. Phys. A 70, 121-124 (2000).
[CrossRef]

H. X. Chen and R. A. Dobbins, "Crystallogenesis of particles formed in hydrocarbon combustion," Combust. Sci. Technol. 159, 109-128 (2000).
[CrossRef]

S. Schraml, S. Dankers, K. Bader, S. Will, and A. Leipertz, "Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII)," Combust. Flame 120, 439-450 (2000).
[CrossRef]

D. J. Bryce, N. Ladommatos, and H. Zhao, "Quantitative investigation of soot distribution by laser-induced incandescence," Appl. Opt. 39, 5012-5022 (2000).
[CrossRef]

C. Allouis, A. D'Alessio, C. Noviello, and F. Beretta, "Time resolved laser induced incandescence for soot and cenospheres measurements in oil flames," Combust. Sci. Technol. 153, 51-63 (2000).
[CrossRef]

K. Shibagaki, T. Kawashima, K. Sasaki, and K. Kadota, "Formation of positive and negative carbon cluster ions in the initial phase of laser ablation in vacuum," Jpn. J. Appl. Phys. 39, 4959-4963 (2000).
[CrossRef]

Y. Yamagata, A. Sharma, and J. Narayan, "Comparative study of pulsed laser ablated plasma plumes from single crystal graphite and amorphous carbon targets. Part 1. Optical emission spectroscopy," J. Appl. Phys. 88, 6861-6867 (2000).
[CrossRef]

R. M. Mayo, J. W. Newman, Y. Yamagata, A. Sharma, and J. Narayan, "Comparative study of pulsed laser ablated plasma plumes from single crystal graphite and amorphous carbon targets: Part II. Electrostatic probe measurements," J. Appl. Phys. 88, 6868-6874 (2000).
[CrossRef]

1999

T. Wakabayashi, T. Momose, and T. Shida, "Mass spectroscopic studies of laser ablated carbon clusters as studied by photoionization with 10.5 eV photons under high vacuum," J. Chem. Phys. 111, 6260-6263 (1999).
[CrossRef]

F. Kokai, K. Takahashi, M. Yudasaka, and S. Iijima, "Emission imaging spectroscopic and shadowgraphic studies on the growth dynamics of graphitic carbon particles synthesized by CO2 laser vaporization," J. Phys. Chem. B 103, 8686-8693 (1999).
[CrossRef]

A. V. Filippov, M. W. Markus, and P. Roth, "In situ characterization of ultrafine particles by laser-induced incandescence: sizing and particle structure determination," J. Aerosol Sci. 30, 71-87 (1999).
[CrossRef]

R. L. Vander Wal and M. Y. Choi, "Pulsed laser heating of soot: morphological changes," Carbon 37, 231-239 (1999).
[CrossRef]

R. L. Vander Wal, T. M. Ticich, and A. B. Stephens, "Can soot primary particle size be determined using laser-induced incandescence?," Combust. Flame 116, 291-296 (1999).
[CrossRef]

1998

R. L. Vander Wal, T. M. Ticich, and A. B. Stephens, "Optical and microscopy investigations of soot structure alterations by laser-induced incandescence," Appl. Phys. B 67, 115-123 (1998).
[CrossRef]

R. L. Vander Wal and K. A. Jensen, "Laser-induced incandescence: excitation intensity," Appl. Opt. 37, 1607-1616 (1998).
[CrossRef]

G. D. Cody, H. Ade, S. Wirick, G. D. Mitchell, and A. Davis, "Determination of chemical-structural changes in vitrinite accompanying luminescence alteration using C-NEXAFS analysis," Org. Geochem. 28, 441-455 (1998).
[CrossRef]

1997

R. L. Vander Wal, "A TEM methodology for the study of soot particle structure," Combust. Sci. Technol. 126, 333-357 (1997).
[CrossRef]

T. Ishiguro, Y. Takatori, and K. Akihama, "Microstructure of diesel soot particles probed by electron microscopy: first observation of inner core and outer shell," Combust. Flame 108, 231-234 (1997).
[CrossRef]

J.-S. Wu, S. S. Krishnan, and G. M. Faeth, "Refractive indices at visible wavelengths of soot emitted from buoyant turbulent diffusion flames," J. Heat Transfer 119, 230-237 (1997).
[CrossRef]

S. S. Harilal, R. C. Isaac, C. V. Bindhu, V. P. N. Nampoori, and C. P. G. Vallabhan, "Optical emission studies of C2 species in laser-produced plasma from carbon," J. Phys. D 30, 1703-1709 (1997).
[CrossRef]

B. Mewes and J. M. Seitzman, "Soot volume fraction and particle size measurements with laser-induced incandescence," Appl. Opt. 36, 709-717 (1997).
[CrossRef] [PubMed]

T. Moriwaki, M. Kobayashi, M. Osaka, M. Ohara, H. Shiromaru, and Y. Achiba, "Dual pathway of carbon cluster formation in the laser vaporization," J. Chem. Phys. 107, 8927-8932 (1997).
[CrossRef]

F. Kokai and Y. Koga, "Time-of-flight mass spectrometric studies on the plume dynamics of laser ablation of graphite," Nucl. Instrum. Methods Phys. Res. B 121, 387-391 (1997).
[CrossRef]

F. Kokai, "Optical emission spectra from laser ablation of graphite at 266 nm and 1064 nm under a magnetic field," Jpn. J. Appl. Phys. 36, 3504-3509 (1997).
[CrossRef]

H. C. Ong and R. P. H. Chang, "Effect of laser intensity on the properties of carbon plumes and deposited films," Phys. Rev. B 55, 13213-13220 (1997).
[CrossRef]

1996

P. Roth and A. V. Filippov, "In situ ultrafine particle sizing by a combination of pulsed laser heatup and particle thermal emission," J. Aerosol Sci. 27, 95-104 (1996).
[CrossRef]

T. L. Farias, Ü. Ö. Köylü, and M. G. Carvalho, "Range of validity of the Rayleigh-Debye-Gans theory for optics of fractal aggregates," Appl. Opt. 35, 6560-6567 (1996).
[CrossRef] [PubMed]

Ü. Ö. Köylü, "Quantitative analysis of in situ optical diagnostics for inferring particle/aggregate parameters in flames: Implications for soot surface growth and total emissivity," Combust. Flame 109, 488-500 (1996).
[CrossRef]

C. R. Shaddix and K. C. Smyth, "Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames," Combust. Flame 107, 418-452 (1996).
[CrossRef]

S. Iijima, T. Wakabayashi, and Y. Achiba, "Structures of carbon soot prepared by laser ablation," J. Phys. Chem. 100, 5839-5843 (1996).
[CrossRef]

F. L. Coffman, R. Cao, P. A. Pianetta, S. Kapoor, M. Kelly, and L. J. Terminello, "Near-edge x-ray absorption of carbon materials for determining bond hybridization in mixed sp2/sp3 bonded materials," Appl. Phys. Lett. 69, 568-570 (1996).
[CrossRef]

R. Ahuja, P. A. Brühwiler, J. M. Wills, B. Johansson, N. Mårtensson, and O. Eriksson, "Theoretical and experimental study of the graphite 1s x-ray absorption edges," Phys. Rev. B 54, 14396-14404 (1996).
[CrossRef]

1995

Ü. Ö. Köylü, Y. C. Xing, and D. E. Rosner, "Fractal morphology analysis of combustion-generated aggregates using angular light scattering and electron microscope images," Langmuir 11, 4848-4854 (1995).
[CrossRef]

R. L. Vander Wal, C. Y. Choi, and K. O. Lee, "The effects of rapid heating of soot: implications when using laser-induced incandescence for soot diagnostics," Combust. Flame 102, 200-204 (1995).
[CrossRef]

R. L. Vander Wal and D. L. Dietrich, "Laser-induced incandescence applied to droplet combustion," Appl. Opt. 34, 1103-1107 (1995).
[CrossRef]

T. Ni, J. A. Pinson, S. Gupta, and R. J. Santoro, "Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence," Appl. Opt. 34, 7083-7091 (1995).
[CrossRef] [PubMed]

T. L. Farias, M. G. Carvalho, Ü. Ö. Köylü, and G. M. Faeth, "Computational evaluation of approximate Rayleigh-Debye-Gans/fractal-aggregate theory for the absorption and scattering properties of soot," J. Heat Transfer 117, 152-159 (1995).
[CrossRef]

Ü. Ö. Köylü and G. M. Faeth, "Fractal and projected structure properties of soot aggregates," Combust. Flame 100, 621-633 (1995).
[CrossRef]

P.-E. Bengtsson and M. Aldén, "Soot-visualization strategies using laser techniques," Appl. Phys. B 60, 51-59 (1995).
[CrossRef]

D. J. Krajnovich, "Laser sputtering of highly oriented pyrolytic graphite at 248 nm," J. Chem. Phys. 102, 726-743 (1995).
[CrossRef]

1994

J. Lahaye and F. Ehrburger-Dolle, "Mechanisms of carbon black formation: correlation with the morphology of aggregates," Carbon 32, 1319-1324 (1994).
[CrossRef]

B. Quay, T.-W. Lee, T. Ni, and R. J. Santoro, "Spatially resolved measurements of soot volume fraction using laser-induced incandescence," Combust. Flame 97, 384-392 (1994).
[CrossRef]

1993

J. J. Gaumet, A. Wakisaka, Y. Shimizu, and Y. Tamori, "Energetics for carbon clusters produced directly by laser vaporization of graphite: dependence on laser power and wavelength," J. Chem. Soc. Faraday Trans. 89, 1667-1670 (1993).
[CrossRef]

P. T. Murray and D. T. Peeler, "Dynamics of graphite photoablation: kinetic energy of the precursors to diamond-like carbon," Appl. Surf. Sci. 69, 225-230 (1993).
[CrossRef]

W. S. Bacsa, W. A. de Heer, D. Ugarte, and A. Châtelain, "Raman spectroscopy of closed-shell carbon particles," Chem. Phys. Lett. 211, 346-352 (1993).
[CrossRef]

G. F. Lorusso, V. Capozzi, P. Milani, A. Minafra, and D. Lojacono, "UV spectra of graphite microparticles produced by laser vaporization," Solid State Commun. 85, 729-734 (1993).
[CrossRef]

1992

J. C. Ku and K.-H. Shim, "A comparison of solutions for light scattering and absorption by aggregated and arbitrarily-shaped particles," J. Quant. Spectrosc. Radiat. Transfer 47, 201-220 (1992).
[CrossRef]

Ü. Ö. Köylü and G. M. Faeth, "Structure and overfire soot in buoyant turbulent diffusion flames at long residence times," Combust. Flame 89, 140-156 (1992).
[CrossRef]

1991

J. C. Ku and K.-H. Shim, "Optical diagnostics and radiative properties of simulated soot aggregates," J. Heat Transfer 113, 953-958 (1991).
[CrossRef]

H. Kamezaki, K. Tokunaga, S. Fukuda, N. Yoshida, and T. Muroga, "Pulse high heat flux experiment with laser beams on graphite," J. Nucl. Mater. 179, 193-196 (1991).
[CrossRef]

P. Monchicourt, "Onset of carbon cluster formation inferred from light emission in a laser-induced expansion," Phys. Rev. Lett. 66, 1430-1433 (1991).
[CrossRef] [PubMed]

Y. Ma, C. T. Chen, G. Meigs, K. Randall, and F. Sette, "High-resolution K-shell photoabsorption measurements of simple molecules," Phys. Rev. A 44, 1848-1858 (1991).
[CrossRef] [PubMed]

T. T. Charalampopoulos and H. Chang, "Agglomerate parameters and fractal dimension of soot using light scattering-effects of surface growth," Combust. Flame 87, 89-99 (1991).
[CrossRef]

Y. P. Yang, P. Xia, A. L. Junkin, and L. A. Bloomfield, "Direct ejection of clusters from nonmetallic solids during laser vaporization," Phys. Rev. Lett. 66, 1205-1208 (1991).
[CrossRef] [PubMed]

1990

E. A. Rohlfing and D. W. Chandler, "Two-color pyrometric imaging of laser-heated carbon particles in a supersonic flow," Chem. Phys. Lett. 170, 44-50 (1990).
[CrossRef]

1989

1988

D. M. Cox, K. C. Reichmann, and A. Kaldor, "Carbon clusters revisited: the 'special' behavior of C60 and large carbon clusters," J. Chem. Phys. 88, 1588-1597 (1988).
[CrossRef]

E. A. Rohlfing, "Optical emission studies of atomic, molecular, and particulate carbon produced from a laser vaporization cluster source," J. Chem. Phys. 89, 6103-6112 (1988).
[CrossRef]

1987

M. Anselment, R. S. Smith, E. Daykin, and L. F. Dimauro, "Optical emission studies on graphite in a laser/vaporization supersonic jet cluster source," Chem. Phys. Lett. 134, 444-449 (1987).
[CrossRef]

R. W. Dreyfus, R. Kelly, and R. E. Walkup, "Laser-induced fluorescence study of laser sputtering of graphite," Nucl. Instrum. Methods Phys. Res. B 23, 557-561 (1987).
[CrossRef]

1986

A. O'Keefe, M. M. Ross, and A. P. Baronavski, "Production of large carbon cluster ions by laser vaporization," Chem. Phys. Lett. 130, 17-19 (1986).
[CrossRef]

J. Robertson, "Amorphous carbon," Adv. Phys. 35, 317-374 (1986).
[CrossRef]

R. A. Rosenberg, P. J. Love, and V. Rehn, "Polarization-dependent C(K) near-edge x-ray-absorption fine structure of graphite," Phys. Rev. B 33, 4034-4037 (1986).
[CrossRef]

1985

H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, "C60: buckminsterfullerene," Nature 318, 162-163 (1985).
[CrossRef]

1984

E. A. Rohlfing, D. M. Cox, and A. Kaldor, "Production and characterization of supersonic carbon cluster beams," J. Chem. Phys. 81, 3322-3330 (1984).
[CrossRef]

C. J. Dasch, "Continuous-wave probe laser investigation of laser vaporization of small soot particles in a flame," Appl. Opt. 23, 2209-2215 (1984).
[CrossRef] [PubMed]

1982

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, and B. K. Fuikawa, "Low-energy x-ray interaction coefficients: photoabsorption, scattering, and reflection −E = 100-2000 eV, Z = 1-94," At. Data Nucl. Data Tables 27, 1-144 (1982).
[CrossRef]

1975

K. A. Lincoln and M. A. Covington, "Dynamic sampling of laser-induced vapor plumes by mass spectrometry," Int. J. Mass Spectrom. Ion Phys. 16, 191-208 (1975).
[CrossRef]

1974

R. F. Willis, B. Fitton, and G. S. Painter, "Secondary-electron emission spectroscopy and the observation of high-energy excited states in graphite: theory and experiment," Phys. Rev. B 9, 1926-1937 (1974).
[CrossRef]

1965

M. Jeunehomme and R. P. Schwenker, "Focused laser-beam experiment and the oscillator strength of the Swan system," J. Chem. Phys. 42, 2406-2408 (1965).
[CrossRef]

1964

J. Berkowitz and W. A. Chupka, "Mass spectrometric study of vapor ejected from graphite and other solids by focused laser beams," J. Chem. Phys. 40, 2735-2736 (1964).
[CrossRef]

1963

J. A. Howe, "Observations on the maser-induced graphite jet," J. Chem. Phys. 39, 1362-1363 (1963).
[CrossRef]

Achiba, Y.

S. Suzuki, H. Yamagachi, R. Sen, H. Kataura, W. Krätschmer, and Y. Achiba, "Time and space evolution of carbon species generated with a laser furnace technique," AIP Conf. Proc. 590, 51-54 (2001).
[CrossRef]

T. Ishigaki, S. Suzuki, H. Kataura, W. Krätschmer, and Y. Achiba, "Characterization of fullerenes and carbon nanoparticles generated with a laser-furnace technique," Appl. Phys. A 70, 121-124 (2000).
[CrossRef]

T. Moriwaki, M. Kobayashi, M. Osaka, M. Ohara, H. Shiromaru, and Y. Achiba, "Dual pathway of carbon cluster formation in the laser vaporization," J. Chem. Phys. 107, 8927-8932 (1997).
[CrossRef]

S. Iijima, T. Wakabayashi, and Y. Achiba, "Structures of carbon soot prepared by laser ablation," J. Phys. Chem. 100, 5839-5843 (1996).
[CrossRef]

Ade, H.

A. L. D. Kilcoyne, T. Tyliszczak, W. F. Steele, S. Fakra, P. Hitchcock, K. Franck, E. Anderson, B. Harteneck, E. G. Rightor, G. E. Mitchell, A. P. Hitchcock, L. Yang, T. Warwick, and H. Ade, "Interferometer-controlled scanning transmission x-ray microscopes at the advanced light source," J. Synchrotron Radiat. 10, 125-136 (2003).
[CrossRef] [PubMed]

G. D. Cody, H. Ade, S. Wirick, G. D. Mitchell, and A. Davis, "Determination of chemical-structural changes in vitrinite accompanying luminescence alteration using C-NEXAFS analysis," Org. Geochem. 28, 441-455 (1998).
[CrossRef]

Ahuja, R.

R. Ahuja, P. A. Brühwiler, J. M. Wills, B. Johansson, N. Mårtensson, and O. Eriksson, "Theoretical and experimental study of the graphite 1s x-ray absorption edges," Phys. Rev. B 54, 14396-14404 (1996).
[CrossRef]

Aigner, M.

V. Krüger, C. Wahl, R. Hadef, K. P. Geigle, W. Stricker, and M. Aigner, "Comparison of laser-induced incandescence method with scanning mobility particle sizer technique: the influence of probe sampling and laser heating on soot particle size distribution," Meas. Sci. Technol. 16, 1477-1486 (2005).
[CrossRef]

Akihama, K.

T. Ishiguro, Y. Takatori, and K. Akihama, "Microstructure of diesel soot particles probed by electron microscopy: first observation of inner core and outer shell," Combust. Flame 108, 231-234 (1997).
[CrossRef]

Albella, J. M.

R. Gago, I. Jiménez, and J. M. Albella, "Detecting with x-ray absorption spectroscopy the modifications of the bonding structure of graphitic carbon by amorphisation, hydrogenation and nitrogenation," Surf. Sci. 482-485,530-536 (2001).
[CrossRef]

Aldén, M.

J. Walewski, M. Rupinski, H. Bladh, Z. S. Li, P.-E. Bengtsson, and M. Aldén, "Soot visualisation by use of laser-induced soot vapourisation in combination with polarisation spectroscopy," Appl. Phys. B 77, 447-454 (2003).
[CrossRef]

P.-E. Bengtsson and M. Aldén, "Soot-visualization strategies using laser techniques," Appl. Phys. B 60, 51-59 (1995).
[CrossRef]

Allouis, C.

C. Allouis, F. Beretta, and A. D'Alessio, "Sizing soot and micronic carbonaceous particle in spray flames base on time resolved LII," Exp. Therm. Fluid Sci. 27, 455-463 (2003).
[CrossRef]

C. Allouis, A. D'Alessio, C. Noviello, and F. Beretta, "Time resolved laser induced incandescence for soot and cenospheres measurements in oil flames," Combust. Sci. Technol. 153, 51-63 (2000).
[CrossRef]

Anderson, E.

A. L. D. Kilcoyne, T. Tyliszczak, W. F. Steele, S. Fakra, P. Hitchcock, K. Franck, E. Anderson, B. Harteneck, E. G. Rightor, G. E. Mitchell, A. P. Hitchcock, L. Yang, T. Warwick, and H. Ade, "Interferometer-controlled scanning transmission x-ray microscopes at the advanced light source," J. Synchrotron Radiat. 10, 125-136 (2003).
[CrossRef] [PubMed]

Anselment, M.

M. Anselment, R. S. Smith, E. Daykin, and L. F. Dimauro, "Optical emission studies on graphite in a laser/vaporization supersonic jet cluster source," Chem. Phys. Lett. 134, 444-449 (1987).
[CrossRef]

Axelsson, B.

B. Axelsson, R. Collin, and P.-E. Bengtsson, "Laser-induced incandescence for soot particle size and volume fraction measurements using on-line extinction calibration," Appl. Phys. B 72, 367-372 (2001).

Bacsa, W. S.

W. S. Bacsa, W. A. de Heer, D. Ugarte, and A. Châtelain, "Raman spectroscopy of closed-shell carbon particles," Chem. Phys. Lett. 211, 346-352 (1993).
[CrossRef]

Bader, K.

S. Schraml, S. Dankers, K. Bader, S. Will, and A. Leipertz, "Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII)," Combust. Flame 120, 439-450 (2000).
[CrossRef]

Barborini, E.

C. Lenardi, M. Marino, E. Barborini, P. Piseri, and P. Milani, "Evaluation of hydrogen chemisorption in nanostructured carbon films by near edge x-ray absorption spectroscopy," Eur. Phys. J. B 46, 441-447 (2005).
[CrossRef]

Baronavski, A. P.

A. O'Keefe, M. M. Ross, and A. P. Baronavski, "Production of large carbon cluster ions by laser vaporization," Chem. Phys. Lett. 130, 17-19 (1986).
[CrossRef]

Belov, A. Y.

R. Gago, M. Vinnichenko, H. U. Jäger, A. Y. Belov, I. Jiménez, N. Huang, H. Sun, and M. F. Maitz, "Evolution of sp2 networks with substrate temperature in amorphous carbon films: experiment and theory," Phys. Rev. B 72, 014120 (2005).
[CrossRef]

Bengtsson, P.-E.

J. Walewski, M. Rupinski, H. Bladh, Z. S. Li, P.-E. Bengtsson, and M. Aldén, "Soot visualisation by use of laser-induced soot vapourisation in combination with polarisation spectroscopy," Appl. Phys. B 77, 447-454 (2003).
[CrossRef]

B. Axelsson, R. Collin, and P.-E. Bengtsson, "Laser-induced incandescence for soot particle size and volume fraction measurements using on-line extinction calibration," Appl. Phys. B 72, 367-372 (2001).

P.-E. Bengtsson and M. Aldén, "Soot-visualization strategies using laser techniques," Appl. Phys. B 60, 51-59 (1995).
[CrossRef]

Beretta, F.

C. Allouis, F. Beretta, and A. D'Alessio, "Sizing soot and micronic carbonaceous particle in spray flames base on time resolved LII," Exp. Therm. Fluid Sci. 27, 455-463 (2003).
[CrossRef]

C. Allouis, A. D'Alessio, C. Noviello, and F. Beretta, "Time resolved laser induced incandescence for soot and cenospheres measurements in oil flames," Combust. Sci. Technol. 153, 51-63 (2000).
[CrossRef]

Berkowitz, J.

J. Berkowitz and W. A. Chupka, "Mass spectrometric study of vapor ejected from graphite and other solids by focused laser beams," J. Chem. Phys. 40, 2735-2736 (1964).
[CrossRef]

Beyer, V.

V. Beyer and D. A. Greenhalgh, "Laser induced incandescence under high vacuum conditions," Appl. Phys. B 83, 455-467 (2006).
[CrossRef]

Bindhu, C. V.

S. S. Harilal, R. C. Isaac, C. V. Bindhu, V. P. N. Nampoori, and C. P. G. Vallabhan, "Optical emission studies of C2 species in laser-produced plasma from carbon," J. Phys. D 30, 1703-1709 (1997).
[CrossRef]

Bladh, H.

J. Walewski, M. Rupinski, H. Bladh, Z. S. Li, P.-E. Bengtsson, and M. Aldén, "Soot visualisation by use of laser-induced soot vapourisation in combination with polarisation spectroscopy," Appl. Phys. B 77, 447-454 (2003).
[CrossRef]

Bloomfield, L. A.

Y. P. Yang, P. Xia, A. L. Junkin, and L. A. Bloomfield, "Direct ejection of clusters from nonmetallic solids during laser vaporization," Phys. Rev. Lett. 66, 1205-1208 (1991).
[CrossRef] [PubMed]

Bockhorn, H.

Boiarciuc, A.

A. Boiarciuc, F. Foucher, and C. Mounaïm-Rousselle, "Soot volume fraction and primary particle size estimate by means of the simultaneous two-color-time-resolved and 2D laser-induced incandescence," Appl. Phys. B 83, 413-421 (2006).
[CrossRef]

Bratescu, M.-A.

M.-A. Bratescu, Y. Sakai, D. Yamaoka, Y. Suda, and H. Sugawara, "Electron and excited particle densities in a carbon ablation plume," Appl. Surf. Sci. 197-198,257-262 (2002).
[CrossRef]

Brooks, P.

M. B. Fernandes, J. O. Skjemstad, B. B. Johnson, J. D. Wells, and P. Brooks, "Characterization of carbonaceous combustion residues: I. Morphological, elemental and spectroscopic features," Chemosphere 51, 785-795 (2003).
[CrossRef] [PubMed]

M. B. Fernandes and P. Brooks, "Characterization of carbonaceous combustion residues: II. Nonpolar organic compounds," Chemosphere 53, 447-458 (2003).
[CrossRef] [PubMed]

Broyer, M.

M. Pellarin, E. Cottancin, J. Lermé, J. L. Vialle, and M. Broyer, "Coating and polymerization of C60 with carbon: a gas phase photodissociation study," J. Chem. Phys. 117, 3088-3097 (2002).
[CrossRef]

Brüggemann, D.

T. Schittkowski, B. Mewes, and D. Brüggemann, "Laser-induced incandescence and Raman measurements in sooting methane and ethylene flames," Phys. Chem. Chem. Phys. 4, 2063-2071 (2002).
[CrossRef]

Brühwiler, P. A.

R. Ahuja, P. A. Brühwiler, J. M. Wills, B. Johansson, N. Mårtensson, and O. Eriksson, "Theoretical and experimental study of the graphite 1s x-ray absorption edges," Phys. Rev. B 54, 14396-14404 (1996).
[CrossRef]

Bryce, D. J.

Buseck, P. R.

L. H. van Poppel, H. Friedrich, J. Spinsby, S. H. Chung, J. H. Seinfeld, and P. R. Buseck, "Electron tomography of nanoparticle clusters and implications for atmospheric lifetimes and radiative forcing of soot," Geophys. Res. Lett. 32, L24811 (2005).
[CrossRef]

Cao, R.

F. L. Coffman, R. Cao, P. A. Pianetta, S. Kapoor, M. Kelly, and L. J. Terminello, "Near-edge x-ray absorption of carbon materials for determining bond hybridization in mixed sp2/sp3 bonded materials," Appl. Phys. Lett. 69, 568-570 (1996).
[CrossRef]

Capozzi, V.

G. F. Lorusso, V. Capozzi, P. Milani, A. Minafra, and D. Lojacono, "UV spectra of graphite microparticles produced by laser vaporization," Solid State Commun. 85, 729-734 (1993).
[CrossRef]

Carvalho, M. G.

T. L. Farias, Ü. Ö. Köylü, and M. G. Carvalho, "Range of validity of the Rayleigh-Debye-Gans theory for optics of fractal aggregates," Appl. Opt. 35, 6560-6567 (1996).
[CrossRef] [PubMed]

T. L. Farias, M. G. Carvalho, Ü. Ö. Köylü, and G. M. Faeth, "Computational evaluation of approximate Rayleigh-Debye-Gans/fractal-aggregate theory for the absorption and scattering properties of soot," J. Heat Transfer 117, 152-159 (1995).
[CrossRef]

Chandler, D. W.

E. A. Rohlfing and D. W. Chandler, "Two-color pyrometric imaging of laser-heated carbon particles in a supersonic flow," Chem. Phys. Lett. 170, 44-50 (1990).
[CrossRef]

Chang, H.

T. T. Charalampopoulos and H. Chang, "Agglomerate parameters and fractal dimension of soot using light scattering-effects of surface growth," Combust. Flame 87, 89-99 (1991).
[CrossRef]

Chang, R. P. H.

H. C. Ong and R. P. H. Chang, "Effect of laser intensity on the properties of carbon plumes and deposited films," Phys. Rev. B 55, 13213-13220 (1997).
[CrossRef]

Charalampopoulos, T. T.

T. T. Charalampopoulos and H. Chang, "Agglomerate parameters and fractal dimension of soot using light scattering-effects of surface growth," Combust. Flame 87, 89-99 (1991).
[CrossRef]

Châtelain, A.

W. S. Bacsa, W. A. de Heer, D. Ugarte, and A. Châtelain, "Raman spectroscopy of closed-shell carbon particles," Chem. Phys. Lett. 211, 346-352 (1993).
[CrossRef]

Chen, C. T.

Y. Ma, C. T. Chen, G. Meigs, K. Randall, and F. Sette, "High-resolution K-shell photoabsorption measurements of simple molecules," Phys. Rev. A 44, 1848-1858 (1991).
[CrossRef] [PubMed]

Chen, H. X.

H. X. Chen and R. A. Dobbins, "Crystallogenesis of particles formed in hydrocarbon combustion," Combust. Sci. Technol. 159, 109-128 (2000).
[CrossRef]

Chen, Z. Y.

T. Shinozaki, T. Ooie, T. Yano, J. P. Zhao, Z. Y. Chen, and M. Yoneda, "Laser-induced optical emission of carbon plume by excimer and Nd:YAG laser irradiation," Appl. Surf. Sci. 197-198,263-267 (2002).
[CrossRef]

Choi, C. Y.

R. L. Vander Wal, C. Y. Choi, and K. O. Lee, "The effects of rapid heating of soot: implications when using laser-induced incandescence for soot diagnostics," Combust. Flame 102, 200-204 (1995).
[CrossRef]

Choi, J. H.

C. B. Stipe, J. H. Choi, D. Lucas, C. P. Koshland, and R. F. Sawyer, "Nanoparticle production by UV irradiation of combustion generated soot particles," J. Nanopart. Res. 6, 467-477 (2004).
[CrossRef]

Choi, M. Y.

R. L. Vander Wal and M. Y. Choi, "Pulsed laser heating of soot: morphological changes," Carbon 37, 231-239 (1999).
[CrossRef]

Chung, S. H.

L. H. van Poppel, H. Friedrich, J. Spinsby, S. H. Chung, J. H. Seinfeld, and P. R. Buseck, "Electron tomography of nanoparticle clusters and implications for atmospheric lifetimes and radiative forcing of soot," Geophys. Res. Lett. 32, L24811 (2005).
[CrossRef]

Chupka, W. A.

J. Berkowitz and W. A. Chupka, "Mass spectrometric study of vapor ejected from graphite and other solids by focused laser beams," J. Chem. Phys. 40, 2735-2736 (1964).
[CrossRef]

Cody, G. D.

G. D. Cody, H. Ade, S. Wirick, G. D. Mitchell, and A. Davis, "Determination of chemical-structural changes in vitrinite accompanying luminescence alteration using C-NEXAFS analysis," Org. Geochem. 28, 441-455 (1998).
[CrossRef]

Coffman, F. L.

F. L. Coffman, R. Cao, P. A. Pianetta, S. Kapoor, M. Kelly, and L. J. Terminello, "Near-edge x-ray absorption of carbon materials for determining bond hybridization in mixed sp2/sp3 bonded materials," Appl. Phys. Lett. 69, 568-570 (1996).
[CrossRef]

Collin, R.

B. Axelsson, R. Collin, and P.-E. Bengtsson, "Laser-induced incandescence for soot particle size and volume fraction measurements using on-line extinction calibration," Appl. Phys. B 72, 367-372 (2001).

Cottancin, E.

M. Pellarin, E. Cottancin, J. Lermé, J. L. Vialle, and M. Broyer, "Coating and polymerization of C60 with carbon: a gas phase photodissociation study," J. Chem. Phys. 117, 3088-3097 (2002).
[CrossRef]

Covington, M. A.

K. A. Lincoln and M. A. Covington, "Dynamic sampling of laser-induced vapor plumes by mass spectrometry," Int. J. Mass Spectrom. Ion Phys. 16, 191-208 (1975).
[CrossRef]

Cox, D. M.

D. M. Cox, K. C. Reichmann, and A. Kaldor, "Carbon clusters revisited: the 'special' behavior of C60 and large carbon clusters," J. Chem. Phys. 88, 1588-1597 (1988).
[CrossRef]

E. A. Rohlfing, D. M. Cox, and A. Kaldor, "Production and characterization of supersonic carbon cluster beams," J. Chem. Phys. 81, 3322-3330 (1984).
[CrossRef]

Crawford, G. P.

R. H. Hurt, G. P. Crawford, and H.-S. Shim, "Equilibrium nanostructure of primary soot particles," Proc. Combust. Inst. 28, 2539-2546 (2000).
[CrossRef]

Curl, R. F.

H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, "C60: buckminsterfullerene," Nature 318, 162-163 (1985).
[CrossRef]

D'Alessio, A.

C. Allouis, F. Beretta, and A. D'Alessio, "Sizing soot and micronic carbonaceous particle in spray flames base on time resolved LII," Exp. Therm. Fluid Sci. 27, 455-463 (2003).
[CrossRef]

C. Allouis, A. D'Alessio, C. Noviello, and F. Beretta, "Time resolved laser induced incandescence for soot and cenospheres measurements in oil flames," Combust. Sci. Technol. 153, 51-63 (2000).
[CrossRef]

Damm, C. J.

C. J. Damm, D. Lucas, R. F. Sawyer, and C. P. Koshland, "Characterization of diesel particulate matter with excimer laser fragmentation fluorescence spectroscopy," Proc. Combust. Inst. 29, 2767-2774 (2002).
[CrossRef]

Dankers, S.

S. Schraml, S. Dankers, K. Bader, S. Will, and A. Leipertz, "Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII)," Combust. Flame 120, 439-450 (2000).
[CrossRef]

Dasch, C. J.

Davis, A.

G. D. Cody, H. Ade, S. Wirick, G. D. Mitchell, and A. Davis, "Determination of chemical-structural changes in vitrinite accompanying luminescence alteration using C-NEXAFS analysis," Org. Geochem. 28, 441-455 (1998).
[CrossRef]

Daykin, E.

M. Anselment, R. S. Smith, E. Daykin, and L. F. Dimauro, "Optical emission studies on graphite in a laser/vaporization supersonic jet cluster source," Chem. Phys. Lett. 134, 444-449 (1987).
[CrossRef]

de Heer, W. A.

W. S. Bacsa, W. A. de Heer, D. Ugarte, and A. Châtelain, "Raman spectroscopy of closed-shell carbon particles," Chem. Phys. Lett. 211, 346-352 (1993).
[CrossRef]

Dietrich, D. L.

Dimauro, L. F.

M. Anselment, R. S. Smith, E. Daykin, and L. F. Dimauro, "Optical emission studies on graphite in a laser/vaporization supersonic jet cluster source," Chem. Phys. Lett. 134, 444-449 (1987).
[CrossRef]

Diwaker, P. K.

Dobbins, R. A.

H. X. Chen and R. A. Dobbins, "Crystallogenesis of particles formed in hydrocarbon combustion," Combust. Sci. Technol. 159, 109-128 (2000).
[CrossRef]

Dresselhaus, G.

M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic, 1996).

Dresselhaus, M. S.

M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic, 1996).

Dreyfus, R. W.

R. W. Dreyfus, R. Kelly, and R. E. Walkup, "Laser-induced fluorescence study of laser sputtering of graphite," Nucl. Instrum. Methods Phys. Res. B 23, 557-561 (1987).
[CrossRef]

Ehrburger-Dolle, F.

J. Lahaye and F. Ehrburger-Dolle, "Mechanisms of carbon black formation: correlation with the morphology of aggregates," Carbon 32, 1319-1324 (1994).
[CrossRef]

Eklund, P. C.

M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic, 1996).

Eriksson, O.

R. Ahuja, P. A. Brühwiler, J. M. Wills, B. Johansson, N. Mårtensson, and O. Eriksson, "Theoretical and experimental study of the graphite 1s x-ray absorption edges," Phys. Rev. B 54, 14396-14404 (1996).
[CrossRef]

Faeth, G. M.

J.-S. Wu, S. S. Krishnan, and G. M. Faeth, "Refractive indices at visible wavelengths of soot emitted from buoyant turbulent diffusion flames," J. Heat Transfer 119, 230-237 (1997).
[CrossRef]

T. L. Farias, M. G. Carvalho, Ü. Ö. Köylü, and G. M. Faeth, "Computational evaluation of approximate Rayleigh-Debye-Gans/fractal-aggregate theory for the absorption and scattering properties of soot," J. Heat Transfer 117, 152-159 (1995).
[CrossRef]

Ü. Ö. Köylü and G. M. Faeth, "Fractal and projected structure properties of soot aggregates," Combust. Flame 100, 621-633 (1995).
[CrossRef]

Ü. Ö. Köylü and G. M. Faeth, "Structure and overfire soot in buoyant turbulent diffusion flames at long residence times," Combust. Flame 89, 140-156 (1992).
[CrossRef]

Fakra, S.

A. L. D. Kilcoyne, T. Tyliszczak, W. F. Steele, S. Fakra, P. Hitchcock, K. Franck, E. Anderson, B. Harteneck, E. G. Rightor, G. E. Mitchell, A. P. Hitchcock, L. Yang, T. Warwick, and H. Ade, "Interferometer-controlled scanning transmission x-ray microscopes at the advanced light source," J. Synchrotron Radiat. 10, 125-136 (2003).
[CrossRef] [PubMed]

Farias, T. L.

T. L. Farias, Ü. Ö. Köylü, and M. G. Carvalho, "Range of validity of the Rayleigh-Debye-Gans theory for optics of fractal aggregates," Appl. Opt. 35, 6560-6567 (1996).
[CrossRef] [PubMed]

T. L. Farias, M. G. Carvalho, Ü. Ö. Köylü, and G. M. Faeth, "Computational evaluation of approximate Rayleigh-Debye-Gans/fractal-aggregate theory for the absorption and scattering properties of soot," J. Heat Transfer 117, 152-159 (1995).
[CrossRef]

Fernandes, M. B.

M. B. Fernandes and P. Brooks, "Characterization of carbonaceous combustion residues: II. Nonpolar organic compounds," Chemosphere 53, 447-458 (2003).
[CrossRef] [PubMed]

M. B. Fernandes, J. O. Skjemstad, B. B. Johnson, J. D. Wells, and P. Brooks, "Characterization of carbonaceous combustion residues: I. Morphological, elemental and spectroscopic features," Chemosphere 51, 785-795 (2003).
[CrossRef] [PubMed]

Filippov, A. V.

A. V. Filippov, M. W. Markus, and P. Roth, "In situ characterization of ultrafine particles by laser-induced incandescence: sizing and particle structure determination," J. Aerosol Sci. 30, 71-87 (1999).
[CrossRef]

P. Roth and A. V. Filippov, "In situ ultrafine particle sizing by a combination of pulsed laser heatup and particle thermal emission," J. Aerosol Sci. 27, 95-104 (1996).
[CrossRef]

Fitton, B.

R. F. Willis, B. Fitton, and G. S. Painter, "Secondary-electron emission spectroscopy and the observation of high-energy excited states in graphite: theory and experiment," Phys. Rev. B 9, 1926-1937 (1974).
[CrossRef]

Foucher, F.

A. Boiarciuc, F. Foucher, and C. Mounaïm-Rousselle, "Soot volume fraction and primary particle size estimate by means of the simultaneous two-color-time-resolved and 2D laser-induced incandescence," Appl. Phys. B 83, 413-421 (2006).
[CrossRef]

Franck, K.

A. L. D. Kilcoyne, T. Tyliszczak, W. F. Steele, S. Fakra, P. Hitchcock, K. Franck, E. Anderson, B. Harteneck, E. G. Rightor, G. E. Mitchell, A. P. Hitchcock, L. Yang, T. Warwick, and H. Ade, "Interferometer-controlled scanning transmission x-ray microscopes at the advanced light source," J. Synchrotron Radiat. 10, 125-136 (2003).
[CrossRef] [PubMed]

Friedlander, S. K.

M. Ullmann, S. K. Friedlander, and A. Schmidt-Ott, "Nanoparticle formation by laser ablation," J. Nanopart. Res. 4, 499-509 (2002).
[CrossRef]

Friedrich, H.

L. H. van Poppel, H. Friedrich, J. Spinsby, S. H. Chung, J. H. Seinfeld, and P. R. Buseck, "Electron tomography of nanoparticle clusters and implications for atmospheric lifetimes and radiative forcing of soot," Geophys. Res. Lett. 32, L24811 (2005).
[CrossRef]

Fuikawa, B. K.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, and B. K. Fuikawa, "Low-energy x-ray interaction coefficients: photoabsorption, scattering, and reflection −E = 100-2000 eV, Z = 1-94," At. Data Nucl. Data Tables 27, 1-144 (1982).
[CrossRef]

Fukuda, S.

H. Kamezaki, K. Tokunaga, S. Fukuda, N. Yoshida, and T. Muroga, "Pulse high heat flux experiment with laser beams on graphite," J. Nucl. Mater. 179, 193-196 (1991).
[CrossRef]

Gago, R.

R. Gago, M. Vinnichenko, H. U. Jäger, A. Y. Belov, I. Jiménez, N. Huang, H. Sun, and M. F. Maitz, "Evolution of sp2 networks with substrate temperature in amorphous carbon films: experiment and theory," Phys. Rev. B 72, 014120 (2005).
[CrossRef]

R. Gago, I. Jiménez, and J. M. Albella, "Detecting with x-ray absorption spectroscopy the modifications of the bonding structure of graphitic carbon by amorphisation, hydrogenation and nitrogenation," Surf. Sci. 482-485,530-536 (2001).
[CrossRef]

Gaumet, J. J.

J. J. Gaumet, A. Wakisaka, Y. Shimizu, and Y. Tamori, "Energetics for carbon clusters produced directly by laser vaporization of graphite: dependence on laser power and wavelength," J. Chem. Soc. Faraday Trans. 89, 1667-1670 (1993).
[CrossRef]

Geigle, K. P.

V. Krüger, C. Wahl, R. Hadef, K. P. Geigle, W. Stricker, and M. Aigner, "Comparison of laser-induced incandescence method with scanning mobility particle sizer technique: the influence of probe sampling and laser heating on soot particle size distribution," Meas. Sci. Technol. 16, 1477-1486 (2005).
[CrossRef]

Greenhalgh, D. A.

V. Beyer and D. A. Greenhalgh, "Laser induced incandescence under high vacuum conditions," Appl. Phys. B 83, 455-467 (2006).
[CrossRef]

Gupta, S.

Hadef, R.

V. Krüger, C. Wahl, R. Hadef, K. P. Geigle, W. Stricker, and M. Aigner, "Comparison of laser-induced incandescence method with scanning mobility particle sizer technique: the influence of probe sampling and laser heating on soot particle size distribution," Meas. Sci. Technol. 16, 1477-1486 (2005).
[CrossRef]

Hahn, D. W.

Harilal, S. S.

S. S. Harilal, R. C. Isaac, C. V. Bindhu, V. P. N. Nampoori, and C. P. G. Vallabhan, "Optical emission studies of C2 species in laser-produced plasma from carbon," J. Phys. D 30, 1703-1709 (1997).
[CrossRef]

Harteneck, B.

A. L. D. Kilcoyne, T. Tyliszczak, W. F. Steele, S. Fakra, P. Hitchcock, K. Franck, E. Anderson, B. Harteneck, E. G. Rightor, G. E. Mitchell, A. P. Hitchcock, L. Yang, T. Warwick, and H. Ade, "Interferometer-controlled scanning transmission x-ray microscopes at the advanced light source," J. Synchrotron Radiat. 10, 125-136 (2003).
[CrossRef] [PubMed]

Heath, J. R.

H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, "C60: buckminsterfullerene," Nature 318, 162-163 (1985).
[CrossRef]

Henke, B. L.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, and B. K. Fuikawa, "Low-energy x-ray interaction coefficients: photoabsorption, scattering, and reflection −E = 100-2000 eV, Z = 1-94," At. Data Nucl. Data Tables 27, 1-144 (1982).
[CrossRef]

Heszler, P.

Z. Márton, L. Landstrom, and P. Heszler, "Early stage of the material removal during ArF laser ablation of graphite," Appl. Phys. A 79, 579-585 (2004).
[CrossRef]

Higgins, B. S.

C. B. Stipe, B. S. Higgins, D. Lucas, C. P. Koshland, and R. F. Sawyer, "Soot detection using excimer laser fragmentation fluorescence spectroscopy," Proc. Combust. Inst. 29, 2759-2766 (2002).
[CrossRef]

Hill, F. A.

F. Liu, M. Yang, F. A. Hill, D. R. Snelling, and G. J. Smallwood, "Influence of polydisperse distributions of both primary particle and aggregate size on soot temperature in low-fluence LII," Appl. Phys. B 83, 383-395 (2006).
[CrossRef]

Hitchcock, A. P.

A. L. D. Kilcoyne, T. Tyliszczak, W. F. Steele, S. Fakra, P. Hitchcock, K. Franck, E. Anderson, B. Harteneck, E. G. Rightor, G. E. Mitchell, A. P. Hitchcock, L. Yang, T. Warwick, and H. Ade, "Interferometer-controlled scanning transmission x-ray microscopes at the advanced light source," J. Synchrotron Radiat. 10, 125-136 (2003).
[CrossRef] [PubMed]

Hitchcock, P.

A. L. D. Kilcoyne, T. Tyliszczak, W. F. Steele, S. Fakra, P. Hitchcock, K. Franck, E. Anderson, B. Harteneck, E. G. Rightor, G. E. Mitchell, A. P. Hitchcock, L. Yang, T. Warwick, and H. Ade, "Interferometer-controlled scanning transmission x-ray microscopes at the advanced light source," J. Synchrotron Radiat. 10, 125-136 (2003).
[CrossRef] [PubMed]

Hochgreb, S.

Hornkolh, J. O.

Howe, J. A.

J. A. Howe, "Observations on the maser-induced graphite jet," J. Chem. Phys. 39, 1362-1363 (1963).
[CrossRef]

Hu, B.

B. Hu, B. Yang, and Ü. Ö. Köylü, "Soot measurements at the axis of an ethylene/air nonpremixed turbulent jet flame," Combust. Flame 134, 93-106 (2003).
[CrossRef]

Huang, N.

R. Gago, M. Vinnichenko, H. U. Jäger, A. Y. Belov, I. Jiménez, N. Huang, H. Sun, and M. F. Maitz, "Evolution of sp2 networks with substrate temperature in amorphous carbon films: experiment and theory," Phys. Rev. B 72, 014120 (2005).
[CrossRef]

Hurt, R. H.

R. H. Hurt, G. P. Crawford, and H.-S. Shim, "Equilibrium nanostructure of primary soot particles," Proc. Combust. Inst. 28, 2539-2546 (2000).
[CrossRef]

Iijima, S.

F. Kokai, K. Takahashi, D. Kasuya, A. Nakayama, Y. Koga, M. Yudasaka, and S. Iijima, "Laser vaporization synthesis of polyhedral graphite," Appl. Phys. A 77, 69-71 (2003).
[CrossRef]

F. Kokai, K. Takahashi, M. Yudasaka, and S. Iijima, "Emission imaging spectroscopic and shadowgraphic studies on the growth dynamics of graphitic carbon particles synthesized by CO2 laser vaporization," J. Phys. Chem. B 103, 8686-8693 (1999).
[CrossRef]

S. Iijima, T. Wakabayashi, and Y. Achiba, "Structures of carbon soot prepared by laser ablation," J. Phys. Chem. 100, 5839-5843 (1996).
[CrossRef]

Inagaki, K.

K. Inagaki, S. Takasu, and K. Nakakita, "In-cylinder quantitative soot concentration measurement by laser-induced incandescence," in Proceedings of the SAE (SAE, 1999), paper 1999-1901-0508.

Isaac, R. C.

S. S. Harilal, R. C. Isaac, C. V. Bindhu, V. P. N. Nampoori, and C. P. G. Vallabhan, "Optical emission studies of C2 species in laser-produced plasma from carbon," J. Phys. D 30, 1703-1709 (1997).
[CrossRef]

Ishigaki, T.

T. Ishigaki, S. Suzuki, H. Kataura, W. Krätschmer, and Y. Achiba, "Characterization of fullerenes and carbon nanoparticles generated with a laser-furnace technique," Appl. Phys. A 70, 121-124 (2000).
[CrossRef]

Ishiguro, T.

T. Ishiguro, Y. Takatori, and K. Akihama, "Microstructure of diesel soot particles probed by electron microscopy: first observation of inner core and outer shell," Combust. Flame 108, 231-234 (1997).
[CrossRef]

Jäger, H. U.

R. Gago, M. Vinnichenko, H. U. Jäger, A. Y. Belov, I. Jiménez, N. Huang, H. Sun, and M. F. Maitz, "Evolution of sp2 networks with substrate temperature in amorphous carbon films: experiment and theory," Phys. Rev. B 72, 014120 (2005).
[CrossRef]

Jensen, K. A.

Jeunehomme, M.

M. Jeunehomme and R. P. Schwenker, "Focused laser-beam experiment and the oscillator strength of the Swan system," J. Chem. Phys. 42, 2406-2408 (1965).
[CrossRef]

Jiménez, I.

R. Gago, M. Vinnichenko, H. U. Jäger, A. Y. Belov, I. Jiménez, N. Huang, H. Sun, and M. F. Maitz, "Evolution of sp2 networks with substrate temperature in amorphous carbon films: experiment and theory," Phys. Rev. B 72, 014120 (2005).
[CrossRef]

R. Gago, I. Jiménez, and J. M. Albella, "Detecting with x-ray absorption spectroscopy the modifications of the bonding structure of graphitic carbon by amorphisation, hydrogenation and nitrogenation," Surf. Sci. 482-485,530-536 (2001).
[CrossRef]

Johansson, B.

R. Ahuja, P. A. Brühwiler, J. M. Wills, B. Johansson, N. Mårtensson, and O. Eriksson, "Theoretical and experimental study of the graphite 1s x-ray absorption edges," Phys. Rev. B 54, 14396-14404 (1996).
[CrossRef]

Johnson, B. B.

M. B. Fernandes, J. O. Skjemstad, B. B. Johnson, J. D. Wells, and P. Brooks, "Characterization of carbonaceous combustion residues: I. Morphological, elemental and spectroscopic features," Chemosphere 51, 785-795 (2003).
[CrossRef] [PubMed]

Jungfleisch, B.

Junkin, A. L.

Y. P. Yang, P. Xia, A. L. Junkin, and L. A. Bloomfield, "Direct ejection of clusters from nonmetallic solids during laser vaporization," Phys. Rev. Lett. 66, 1205-1208 (1991).
[CrossRef] [PubMed]

Kadota, K.

K. Sasaki, T. Wakasaki, and K. Kadota, "Observation of continuum optical emission from laser ablation carbon plumes," Appl. Surf. Sci. 197-198,197-201 (2002).
[CrossRef]

K. Sasaki, T. Wakabayashi, S. Matsui, and K. Kadota, "Distributions of C2 and C3 radical densities in laser-ablation carbon plumes measured by laser-induced fluorescence imaging spectroscopy," J. Appl. Phys. 91, 4033-4039 (2002).
[CrossRef]

K. Shibagaki, T. Kawashima, K. Sasaki, and K. Kadota, "Formation of positive and negative carbon cluster ions in the initial phase of laser ablation in vacuum," Jpn. J. Appl. Phys. 39, 4959-4963 (2000).
[CrossRef]

Kaldor, A.

D. M. Cox, K. C. Reichmann, and A. Kaldor, "Carbon clusters revisited: the 'special' behavior of C60 and large carbon clusters," J. Chem. Phys. 88, 1588-1597 (1988).
[CrossRef]

E. A. Rohlfing, D. M. Cox, and A. Kaldor, "Production and characterization of supersonic carbon cluster beams," J. Chem. Phys. 81, 3322-3330 (1984).
[CrossRef]

Kamezaki, H.

H. Kamezaki, K. Tokunaga, S. Fukuda, N. Yoshida, and T. Muroga, "Pulse high heat flux experiment with laser beams on graphite," J. Nucl. Mater. 179, 193-196 (1991).
[CrossRef]

Kapoor, S.

F. L. Coffman, R. Cao, P. A. Pianetta, S. Kapoor, M. Kelly, and L. J. Terminello, "Near-edge x-ray absorption of carbon materials for determining bond hybridization in mixed sp2/sp3 bonded materials," Appl. Phys. Lett. 69, 568-570 (1996).
[CrossRef]

Kasuya, D.

F. Kokai, K. Takahashi, D. Kasuya, A. Nakayama, Y. Koga, M. Yudasaka, and S. Iijima, "Laser vaporization synthesis of polyhedral graphite," Appl. Phys. A 77, 69-71 (2003).
[CrossRef]

Kataura, H.

S. Suzuki, H. Yamagachi, R. Sen, H. Kataura, W. Krätschmer, and Y. Achiba, "Time and space evolution of carbon species generated with a laser furnace technique," AIP Conf. Proc. 590, 51-54 (2001).
[CrossRef]

T. Ishigaki, S. Suzuki, H. Kataura, W. Krätschmer, and Y. Achiba, "Characterization of fullerenes and carbon nanoparticles generated with a laser-furnace technique," Appl. Phys. A 70, 121-124 (2000).
[CrossRef]

Kawashima, T.

K. Shibagaki, T. Kawashima, K. Sasaki, and K. Kadota, "Formation of positive and negative carbon cluster ions in the initial phase of laser ablation in vacuum," Jpn. J. Appl. Phys. 39, 4959-4963 (2000).
[CrossRef]

Kayes, D.

Kelly, M.

F. L. Coffman, R. Cao, P. A. Pianetta, S. Kapoor, M. Kelly, and L. J. Terminello, "Near-edge x-ray absorption of carbon materials for determining bond hybridization in mixed sp2/sp3 bonded materials," Appl. Phys. Lett. 69, 568-570 (1996).
[CrossRef]

Kelly, R.

R. W. Dreyfus, R. Kelly, and R. E. Walkup, "Laser-induced fluorescence study of laser sputtering of graphite," Nucl. Instrum. Methods Phys. Res. B 23, 557-561 (1987).
[CrossRef]

Keszler, A. M.

Kilcoyne, A. L. D.

A. L. D. Kilcoyne, T. Tyliszczak, W. F. Steele, S. Fakra, P. Hitchcock, K. Franck, E. Anderson, B. Harteneck, E. G. Rightor, G. E. Mitchell, A. P. Hitchcock, L. Yang, T. Warwick, and H. Ade, "Interferometer-controlled scanning transmission x-ray microscopes at the advanced light source," J. Synchrotron Radiat. 10, 125-136 (2003).
[CrossRef] [PubMed]

Kimbrell, S. M.

Kobayashi, M.

T. Moriwaki, M. Kobayashi, M. Osaka, M. Ohara, H. Shiromaru, and Y. Achiba, "Dual pathway of carbon cluster formation in the laser vaporization," J. Chem. Phys. 107, 8927-8932 (1997).
[CrossRef]

Kock, B.

R. Starke, B. Kock, and P. Roth, "Nano-particle sizing by laser-induced incandescence (LII) in a shock wave reactor," Shock Waves 12, 351-360 (2003).
[CrossRef]

Kock, B. F.

B. F. Kock, Ph.D. dissertation (Universität Duisburg-Essen, 2006).

Koga, Y.

F. Kokai, K. Takahashi, D. Kasuya, A. Nakayama, Y. Koga, M. Yudasaka, and S. Iijima, "Laser vaporization synthesis of polyhedral graphite," Appl. Phys. A 77, 69-71 (2003).
[CrossRef]

F. Kokai and Y. Koga, "Time-of-flight mass spectrometric studies on the plume dynamics of laser ablation of graphite," Nucl. Instrum. Methods Phys. Res. B 121, 387-391 (1997).
[CrossRef]

Kokai, F.

F. Kokai, K. Takahashi, D. Kasuya, A. Nakayama, Y. Koga, M. Yudasaka, and S. Iijima, "Laser vaporization synthesis of polyhedral graphite," Appl. Phys. A 77, 69-71 (2003).
[CrossRef]

F. Kokai, K. Takahashi, M. Yudasaka, and S. Iijima, "Emission imaging spectroscopic and shadowgraphic studies on the growth dynamics of graphitic carbon particles synthesized by CO2 laser vaporization," J. Phys. Chem. B 103, 8686-8693 (1999).
[CrossRef]

F. Kokai, "Optical emission spectra from laser ablation of graphite at 266 nm and 1064 nm under a magnetic field," Jpn. J. Appl. Phys. 36, 3504-3509 (1997).
[CrossRef]

F. Kokai and Y. Koga, "Time-of-flight mass spectrometric studies on the plume dynamics of laser ablation of graphite," Nucl. Instrum. Methods Phys. Res. B 121, 387-391 (1997).
[CrossRef]

Koshland, C. P.

C. B. Stipe, J. H. Choi, D. Lucas, C. P. Koshland, and R. F. Sawyer, "Nanoparticle production by UV irradiation of combustion generated soot particles," J. Nanopart. Res. 6, 467-477 (2004).
[CrossRef]

C. B. Stipe, B. S. Higgins, D. Lucas, C. P. Koshland, and R. F. Sawyer, "Soot detection using excimer laser fragmentation fluorescence spectroscopy," Proc. Combust. Inst. 29, 2759-2766 (2002).
[CrossRef]

C. J. Damm, D. Lucas, R. F. Sawyer, and C. P. Koshland, "Characterization of diesel particulate matter with excimer laser fragmentation fluorescence spectroscopy," Proc. Combust. Inst. 29, 2767-2774 (2002).
[CrossRef]

Köylü, Ü. Ö.

B. Hu, B. Yang, and Ü. Ö. Köylü, "Soot measurements at the axis of an ethylene/air nonpremixed turbulent jet flame," Combust. Flame 134, 93-106 (2003).
[CrossRef]

T. L. Farias, Ü. Ö. Köylü, and M. G. Carvalho, "Range of validity of the Rayleigh-Debye-Gans theory for optics of fractal aggregates," Appl. Opt. 35, 6560-6567 (1996).
[CrossRef] [PubMed]

Ü. Ö. Köylü, "Quantitative analysis of in situ optical diagnostics for inferring particle/aggregate parameters in flames: Implications for soot surface growth and total emissivity," Combust. Flame 109, 488-500 (1996).
[CrossRef]

Ü. Ö. Köylü and G. M. Faeth, "Fractal and projected structure properties of soot aggregates," Combust. Flame 100, 621-633 (1995).
[CrossRef]

T. L. Farias, M. G. Carvalho, Ü. Ö. Köylü, and G. M. Faeth, "Computational evaluation of approximate Rayleigh-Debye-Gans/fractal-aggregate theory for the absorption and scattering properties of soot," J. Heat Transfer 117, 152-159 (1995).
[CrossRef]

Ü. Ö. Köylü, Y. C. Xing, and D. E. Rosner, "Fractal morphology analysis of combustion-generated aggregates using angular light scattering and electron microscope images," Langmuir 11, 4848-4854 (1995).
[CrossRef]

Ü. Ö. Köylü and G. M. Faeth, "Structure and overfire soot in buoyant turbulent diffusion flames at long residence times," Combust. Flame 89, 140-156 (1992).
[CrossRef]

Krajnovich, D. J.

D. J. Krajnovich, "Laser sputtering of highly oriented pyrolytic graphite at 248 nm," J. Chem. Phys. 102, 726-743 (1995).
[CrossRef]

Krätschmer, W.

S. Suzuki, H. Yamagachi, R. Sen, H. Kataura, W. Krätschmer, and Y. Achiba, "Time and space evolution of carbon species generated with a laser furnace technique," AIP Conf. Proc. 590, 51-54 (2001).
[CrossRef]

T. Ishigaki, S. Suzuki, H. Kataura, W. Krätschmer, and Y. Achiba, "Characterization of fullerenes and carbon nanoparticles generated with a laser-furnace technique," Appl. Phys. A 70, 121-124 (2000).
[CrossRef]

Krishnan, S. S.

J.-S. Wu, S. S. Krishnan, and G. M. Faeth, "Refractive indices at visible wavelengths of soot emitted from buoyant turbulent diffusion flames," J. Heat Transfer 119, 230-237 (1997).
[CrossRef]

Kroto, H. W.

H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, "C60: buckminsterfullerene," Nature 318, 162-163 (1985).
[CrossRef]

Krüger, V.

V. Krüger, C. Wahl, R. Hadef, K. P. Geigle, W. Stricker, and M. Aigner, "Comparison of laser-induced incandescence method with scanning mobility particle sizer technique: the influence of probe sampling and laser heating on soot particle size distribution," Meas. Sci. Technol. 16, 1477-1486 (2005).
[CrossRef]

Ku, J. C.

J. C. Ku and K.-H. Shim, "A comparison of solutions for light scattering and absorption by aggregated and arbitrarily-shaped particles," J. Quant. Spectrosc. Radiat. Transfer 47, 201-220 (1992).
[CrossRef]

J. C. Ku and K.-H. Shim, "Optical diagnostics and radiative properties of simulated soot aggregates," J. Heat Transfer 113, 953-958 (1991).
[CrossRef]

Ladommatos, N.

Lahaye, J.

J. Lahaye and F. Ehrburger-Dolle, "Mechanisms of carbon black formation: correlation with the morphology of aggregates," Carbon 32, 1319-1324 (1994).
[CrossRef]

J. Lahaye and G. Prado, "Morphology and internal structure of soot and carbon blacks," in Particulate Carbon: Formation during Combustion, D.C.Siegla and G.W.Smith, eds. (Plenum, 1981), pp. 33-35.

Landstrom, L.

Z. Márton, L. Landstrom, and P. Heszler, "Early stage of the material removal during ArF laser ablation of graphite," Appl. Phys. A 79, 579-585 (2004).
[CrossRef]

Lee, K. O.

R. L. Vander Wal, C. Y. Choi, and K. O. Lee, "The effects of rapid heating of soot: implications when using laser-induced incandescence for soot diagnostics," Combust. Flame 102, 200-204 (1995).
[CrossRef]

Lee, P.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, and B. K. Fuikawa, "Low-energy x-ray interaction coefficients: photoabsorption, scattering, and reflection −E = 100-2000 eV, Z = 1-94," At. Data Nucl. Data Tables 27, 1-144 (1982).
[CrossRef]

Lee, T.-W.

B. Quay, T.-W. Lee, T. Ni, and R. J. Santoro, "Spatially resolved measurements of soot volume fraction using laser-induced incandescence," Combust. Flame 97, 384-392 (1994).
[CrossRef]

Lehre, T.

Leipertz, A.

S. Schraml, S. Dankers, K. Bader, S. Will, and A. Leipertz, "Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII)," Combust. Flame 120, 439-450 (2000).
[CrossRef]

S. Schraml, S. Will, and A. Leipertz, "Simultaneous measurement of soot mass concentration and primary particle size in the exhaust of a DI diesel engine by time-resolved laser-induced incandescence," in Proceedings of the SAE (SAE, 1994), paper 1999-1901-0146.

Lenardi, C.

C. Lenardi, M. Marino, E. Barborini, P. Piseri, and P. Milani, "Evaluation of hydrogen chemisorption in nanostructured carbon films by near edge x-ray absorption spectroscopy," Eur. Phys. J. B 46, 441-447 (2005).
[CrossRef]

Lermé, J.

M. Pellarin, E. Cottancin, J. Lermé, J. L. Vialle, and M. Broyer, "Coating and polymerization of C60 with carbon: a gas phase photodissociation study," J. Chem. Phys. 117, 3088-3097 (2002).
[CrossRef]

Li, Z. S.

J. Walewski, M. Rupinski, H. Bladh, Z. S. Li, P.-E. Bengtsson, and M. Aldén, "Soot visualisation by use of laser-induced soot vapourisation in combination with polarisation spectroscopy," Appl. Phys. B 77, 447-454 (2003).
[CrossRef]

Lincoln, K. A.

K. A. Lincoln and M. A. Covington, "Dynamic sampling of laser-induced vapor plumes by mass spectrometry," Int. J. Mass Spectrom. Ion Phys. 16, 191-208 (1975).
[CrossRef]

Litzinger, T. A.

J. A. Pinson, T. Ni, and T. A. Litzinger, "Quantitative imaging study of the effects of intake air temperature on soot evaluation in an optically-accessible D. I. diesel engine," in Proceedings of the SAE (SAE, 1994), paper 942044.

Liu, F.

F. Liu, M. Yang, F. A. Hill, D. R. Snelling, and G. J. Smallwood, "Influence of polydisperse distributions of both primary particle and aggregate size on soot temperature in low-fluence LII," Appl. Phys. B 83, 383-395 (2006).
[CrossRef]

Lojacono, D.

G. F. Lorusso, V. Capozzi, P. Milani, A. Minafra, and D. Lojacono, "UV spectra of graphite microparticles produced by laser vaporization," Solid State Commun. 85, 729-734 (1993).
[CrossRef]

Lorusso, G. F.

G. F. Lorusso, V. Capozzi, P. Milani, A. Minafra, and D. Lojacono, "UV spectra of graphite microparticles produced by laser vaporization," Solid State Commun. 85, 729-734 (1993).
[CrossRef]

Love, P. J.

R. A. Rosenberg, P. J. Love, and V. Rehn, "Polarization-dependent C(K) near-edge x-ray-absorption fine structure of graphite," Phys. Rev. B 33, 4034-4037 (1986).
[CrossRef]

Lucas, D.

C. B. Stipe, J. H. Choi, D. Lucas, C. P. Koshland, and R. F. Sawyer, "Nanoparticle production by UV irradiation of combustion generated soot particles," J. Nanopart. Res. 6, 467-477 (2004).
[CrossRef]

C. B. Stipe, B. S. Higgins, D. Lucas, C. P. Koshland, and R. F. Sawyer, "Soot detection using excimer laser fragmentation fluorescence spectroscopy," Proc. Combust. Inst. 29, 2759-2766 (2002).
[CrossRef]

C. J. Damm, D. Lucas, R. F. Sawyer, and C. P. Koshland, "Characterization of diesel particulate matter with excimer laser fragmentation fluorescence spectroscopy," Proc. Combust. Inst. 29, 2767-2774 (2002).
[CrossRef]

Ma, Y.

Y. Ma, C. T. Chen, G. Meigs, K. Randall, and F. Sette, "High-resolution K-shell photoabsorption measurements of simple molecules," Phys. Rev. A 44, 1848-1858 (1991).
[CrossRef] [PubMed]

Maitz, M. F.

R. Gago, M. Vinnichenko, H. U. Jäger, A. Y. Belov, I. Jiménez, N. Huang, H. Sun, and M. F. Maitz, "Evolution of sp2 networks with substrate temperature in amorphous carbon films: experiment and theory," Phys. Rev. B 72, 014120 (2005).
[CrossRef]

Marino, M.

C. Lenardi, M. Marino, E. Barborini, P. Piseri, and P. Milani, "Evaluation of hydrogen chemisorption in nanostructured carbon films by near edge x-ray absorption spectroscopy," Eur. Phys. J. B 46, 441-447 (2005).
[CrossRef]

Markus, M. W.

A. V. Filippov, M. W. Markus, and P. Roth, "In situ characterization of ultrafine particles by laser-induced incandescence: sizing and particle structure determination," J. Aerosol Sci. 30, 71-87 (1999).
[CrossRef]

Mårtensson, N.

R. Ahuja, P. A. Brühwiler, J. M. Wills, B. Johansson, N. Mårtensson, and O. Eriksson, "Theoretical and experimental study of the graphite 1s x-ray absorption edges," Phys. Rev. B 54, 14396-14404 (1996).
[CrossRef]

Márton, Z.

Z. Márton, L. Landstrom, and P. Heszler, "Early stage of the material removal during ArF laser ablation of graphite," Appl. Phys. A 79, 579-585 (2004).
[CrossRef]

Matsui, S.

K. Sasaki, T. Wakabayashi, S. Matsui, and K. Kadota, "Distributions of C2 and C3 radical densities in laser-ablation carbon plumes measured by laser-induced fluorescence imaging spectroscopy," J. Appl. Phys. 91, 4033-4039 (2002).
[CrossRef]

Mayo, R. M.

R. M. Mayo, J. W. Newman, Y. Yamagata, A. Sharma, and J. Narayan, "Comparative study of pulsed laser ablated plasma plumes from single crystal graphite and amorphous carbon targets: Part II. Electrostatic probe measurements," J. Appl. Phys. 88, 6868-6874 (2000).
[CrossRef]

Meigs, G.

Y. Ma, C. T. Chen, G. Meigs, K. Randall, and F. Sette, "High-resolution K-shell photoabsorption measurements of simple molecules," Phys. Rev. A 44, 1848-1858 (1991).
[CrossRef] [PubMed]

Mewes, B.

T. Schittkowski, B. Mewes, and D. Brüggemann, "Laser-induced incandescence and Raman measurements in sooting methane and ethylene flames," Phys. Chem. Chem. Phys. 4, 2063-2071 (2002).
[CrossRef]

B. Mewes and J. M. Seitzman, "Soot volume fraction and particle size measurements with laser-induced incandescence," Appl. Opt. 36, 709-717 (1997).
[CrossRef] [PubMed]

Michelsen, H. A.

Milani, P.

C. Lenardi, M. Marino, E. Barborini, P. Piseri, and P. Milani, "Evaluation of hydrogen chemisorption in nanostructured carbon films by near edge x-ray absorption spectroscopy," Eur. Phys. J. B 46, 441-447 (2005).
[CrossRef]

G. F. Lorusso, V. Capozzi, P. Milani, A. Minafra, and D. Lojacono, "UV spectra of graphite microparticles produced by laser vaporization," Solid State Commun. 85, 729-734 (1993).
[CrossRef]

Minafra, A.

G. F. Lorusso, V. Capozzi, P. Milani, A. Minafra, and D. Lojacono, "UV spectra of graphite microparticles produced by laser vaporization," Solid State Commun. 85, 729-734 (1993).
[CrossRef]

Mitchell, D. L.

J. A. Pinson, D. L. Mitchell, and R. J. Santoro, "Quantitative, planar soot measurements in a D. I. diesel engine using laser-induced incandescence and light scattering," in Proceedings of the SAE (SAE, 1993), paper 932650.

Mitchell, G. D.

G. D. Cody, H. Ade, S. Wirick, G. D. Mitchell, and A. Davis, "Determination of chemical-structural changes in vitrinite accompanying luminescence alteration using C-NEXAFS analysis," Org. Geochem. 28, 441-455 (1998).
[CrossRef]

Mitchell, G. E.

A. L. D. Kilcoyne, T. Tyliszczak, W. F. Steele, S. Fakra, P. Hitchcock, K. Franck, E. Anderson, B. Harteneck, E. G. Rightor, G. E. Mitchell, A. P. Hitchcock, L. Yang, T. Warwick, and H. Ade, "Interferometer-controlled scanning transmission x-ray microscopes at the advanced light source," J. Synchrotron Radiat. 10, 125-136 (2003).
[CrossRef] [PubMed]

Momose, T.

T. Wakabayashi, T. Momose, and T. Shida, "Mass spectroscopic studies of laser ablated carbon clusters as studied by photoionization with 10.5 eV photons under high vacuum," J. Chem. Phys. 111, 6260-6263 (1999).
[CrossRef]

Monchicourt, P.

P. Monchicourt, "Onset of carbon cluster formation inferred from light emission in a laser-induced expansion," Phys. Rev. Lett. 66, 1430-1433 (1991).
[CrossRef] [PubMed]

Moriwaki, T.

T. Moriwaki, M. Kobayashi, M. Osaka, M. Ohara, H. Shiromaru, and Y. Achiba, "Dual pathway of carbon cluster formation in the laser vaporization," J. Chem. Phys. 107, 8927-8932 (1997).
[CrossRef]

Mounaïm-Rousselle, C.

A. Boiarciuc, F. Foucher, and C. Mounaïm-Rousselle, "Soot volume fraction and primary particle size estimate by means of the simultaneous two-color-time-resolved and 2D laser-induced incandescence," Appl. Phys. B 83, 413-421 (2006).
[CrossRef]

Muroga, T.

H. Kamezaki, K. Tokunaga, S. Fukuda, N. Yoshida, and T. Muroga, "Pulse high heat flux experiment with laser beams on graphite," J. Nucl. Mater. 179, 193-196 (1991).
[CrossRef]

Murray, P. T.

P. T. Murray and D. T. Peeler, "Dynamics of graphite photoablation: kinetic energy of the precursors to diamond-like carbon," Appl. Surf. Sci. 69, 225-230 (1993).
[CrossRef]

Nakakita, K.

K. Inagaki, S. Takasu, and K. Nakakita, "In-cylinder quantitative soot concentration measurement by laser-induced incandescence," in Proceedings of the SAE (SAE, 1999), paper 1999-1901-0508.

Nakayama, A.

F. Kokai, K. Takahashi, D. Kasuya, A. Nakayama, Y. Koga, M. Yudasaka, and S. Iijima, "Laser vaporization synthesis of polyhedral graphite," Appl. Phys. A 77, 69-71 (2003).
[CrossRef]

Nampoori, V. P. N.

S. S. Harilal, R. C. Isaac, C. V. Bindhu, V. P. N. Nampoori, and C. P. G. Vallabhan, "Optical emission studies of C2 species in laser-produced plasma from carbon," J. Phys. D 30, 1703-1709 (1997).
[CrossRef]

Narayan, J.

R. M. Mayo, J. W. Newman, Y. Yamagata, A. Sharma, and J. Narayan, "Comparative study of pulsed laser ablated plasma plumes from single crystal graphite and amorphous carbon targets: Part II. Electrostatic probe measurements," J. Appl. Phys. 88, 6868-6874 (2000).
[CrossRef]

Y. Yamagata, A. Sharma, and J. Narayan, "Comparative study of pulsed laser ablated plasma plumes from single crystal graphite and amorphous carbon targets. Part 1. Optical emission spectroscopy," J. Appl. Phys. 88, 6861-6867 (2000).
[CrossRef]

Nemes, L.

Newman, J. W.

R. M. Mayo, J. W. Newman, Y. Yamagata, A. Sharma, and J. Narayan, "Comparative study of pulsed laser ablated plasma plumes from single crystal graphite and amorphous carbon targets: Part II. Electrostatic probe measurements," J. Appl. Phys. 88, 6868-6874 (2000).
[CrossRef]

Ni, T.

T. Ni, J. A. Pinson, S. Gupta, and R. J. Santoro, "Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence," Appl. Opt. 34, 7083-7091 (1995).
[CrossRef] [PubMed]

B. Quay, T.-W. Lee, T. Ni, and R. J. Santoro, "Spatially resolved measurements of soot volume fraction using laser-induced incandescence," Combust. Flame 97, 384-392 (1994).
[CrossRef]

J. A. Pinson, T. Ni, and T. A. Litzinger, "Quantitative imaging study of the effects of intake air temperature on soot evaluation in an optically-accessible D. I. diesel engine," in Proceedings of the SAE (SAE, 1994), paper 942044.

Noviello, C.

C. Allouis, A. D'Alessio, C. Noviello, and F. Beretta, "Time resolved laser induced incandescence for soot and cenospheres measurements in oil flames," Combust. Sci. Technol. 153, 51-63 (2000).
[CrossRef]

O'Brien, S. C.

H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, "C60: buckminsterfullerene," Nature 318, 162-163 (1985).
[CrossRef]

Ohara, M.

T. Moriwaki, M. Kobayashi, M. Osaka, M. Ohara, H. Shiromaru, and Y. Achiba, "Dual pathway of carbon cluster formation in the laser vaporization," J. Chem. Phys. 107, 8927-8932 (1997).
[CrossRef]

O'Keefe, A.

A. O'Keefe, M. M. Ross, and A. P. Baronavski, "Production of large carbon cluster ions by laser vaporization," Chem. Phys. Lett. 130, 17-19 (1986).
[CrossRef]

Ong, H. C.

H. C. Ong and R. P. H. Chang, "Effect of laser intensity on the properties of carbon plumes and deposited films," Phys. Rev. B 55, 13213-13220 (1997).
[CrossRef]

Ooie, T.

T. Shinozaki, T. Ooie, T. Yano, J. P. Zhao, Z. Y. Chen, and M. Yoneda, "Laser-induced optical emission of carbon plume by excimer and Nd:YAG laser irradiation," Appl. Surf. Sci. 197-198,263-267 (2002).
[CrossRef]

Osaka, M.

T. Moriwaki, M. Kobayashi, M. Osaka, M. Ohara, H. Shiromaru, and Y. Achiba, "Dual pathway of carbon cluster formation in the laser vaporization," J. Chem. Phys. 107, 8927-8932 (1997).
[CrossRef]

Painter, G. S.

R. F. Willis, B. Fitton, and G. S. Painter, "Secondary-electron emission spectroscopy and the observation of high-energy excited states in graphite: theory and experiment," Phys. Rev. B 9, 1926-1937 (1974).
[CrossRef]

Pandis, S. N.

J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics from Air Pollution to Climate Change (Wiley, 1998).

Parigger, C. G.

Peeler, D. T.

P. T. Murray and D. T. Peeler, "Dynamics of graphite photoablation: kinetic energy of the precursors to diamond-like carbon," Appl. Surf. Sci. 69, 225-230 (1993).
[CrossRef]

Pellarin, M.

M. Pellarin, E. Cottancin, J. Lermé, J. L. Vialle, and M. Broyer, "Coating and polymerization of C60 with carbon: a gas phase photodissociation study," J. Chem. Phys. 117, 3088-3097 (2002).
[CrossRef]

Pianetta, P. A.

F. L. Coffman, R. Cao, P. A. Pianetta, S. Kapoor, M. Kelly, and L. J. Terminello, "Near-edge x-ray absorption of carbon materials for determining bond hybridization in mixed sp2/sp3 bonded materials," Appl. Phys. Lett. 69, 568-570 (1996).
[CrossRef]

Pinson, J. A.

T. Ni, J. A. Pinson, S. Gupta, and R. J. Santoro, "Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence," Appl. Opt. 34, 7083-7091 (1995).
[CrossRef] [PubMed]

J. A. Pinson, D. L. Mitchell, and R. J. Santoro, "Quantitative, planar soot measurements in a D. I. diesel engine using laser-induced incandescence and light scattering," in Proceedings of the SAE (SAE, 1993), paper 932650.

J. A. Pinson, T. Ni, and T. A. Litzinger, "Quantitative imaging study of the effects of intake air temperature on soot evaluation in an optically-accessible D. I. diesel engine," in Proceedings of the SAE (SAE, 1994), paper 942044.

Piseri, P.

C. Lenardi, M. Marino, E. Barborini, P. Piseri, and P. Milani, "Evaluation of hydrogen chemisorption in nanostructured carbon films by near edge x-ray absorption spectroscopy," Eur. Phys. J. B 46, 441-447 (2005).
[CrossRef]

Prado, G.

J. Lahaye and G. Prado, "Morphology and internal structure of soot and carbon blacks," in Particulate Carbon: Formation during Combustion, D.C.Siegla and G.W.Smith, eds. (Plenum, 1981), pp. 33-35.

Quay, B.

B. Quay, T.-W. Lee, T. Ni, and R. J. Santoro, "Spatially resolved measurements of soot volume fraction using laser-induced incandescence," Combust. Flame 97, 384-392 (1994).
[CrossRef]

Randall, K.

Y. Ma, C. T. Chen, G. Meigs, K. Randall, and F. Sette, "High-resolution K-shell photoabsorption measurements of simple molecules," Phys. Rev. A 44, 1848-1858 (1991).
[CrossRef] [PubMed]

Rehn, V.

R. A. Rosenberg, P. J. Love, and V. Rehn, "Polarization-dependent C(K) near-edge x-ray-absorption fine structure of graphite," Phys. Rev. B 33, 4034-4037 (1986).
[CrossRef]

Reichmann, K. C.

D. M. Cox, K. C. Reichmann, and A. Kaldor, "Carbon clusters revisited: the 'special' behavior of C60 and large carbon clusters," J. Chem. Phys. 88, 1588-1597 (1988).
[CrossRef]

Rightor, E. G.

A. L. D. Kilcoyne, T. Tyliszczak, W. F. Steele, S. Fakra, P. Hitchcock, K. Franck, E. Anderson, B. Harteneck, E. G. Rightor, G. E. Mitchell, A. P. Hitchcock, L. Yang, T. Warwick, and H. Ade, "Interferometer-controlled scanning transmission x-ray microscopes at the advanced light source," J. Synchrotron Radiat. 10, 125-136 (2003).
[CrossRef] [PubMed]

Robertson, J.

J. Robertson, "Amorphous carbon," Adv. Phys. 35, 317-374 (1986).
[CrossRef]

Rohlfing, E. A.

E. A. Rohlfing and D. W. Chandler, "Two-color pyrometric imaging of laser-heated carbon particles in a supersonic flow," Chem. Phys. Lett. 170, 44-50 (1990).
[CrossRef]

E. A. Rohlfing, "Optical emission studies of atomic, molecular, and particulate carbon produced from a laser vaporization cluster source," J. Chem. Phys. 89, 6103-6112 (1988).
[CrossRef]

E. A. Rohlfing, D. M. Cox, and A. Kaldor, "Production and characterization of supersonic carbon cluster beams," J. Chem. Phys. 81, 3322-3330 (1984).
[CrossRef]

Rosenberg, R. A.

R. A. Rosenberg, P. J. Love, and V. Rehn, "Polarization-dependent C(K) near-edge x-ray-absorption fine structure of graphite," Phys. Rev. B 33, 4034-4037 (1986).
[CrossRef]

Rosner, D. E.

Ü. Ö. Köylü, Y. C. Xing, and D. E. Rosner, "Fractal morphology analysis of combustion-generated aggregates using angular light scattering and electron microscope images," Langmuir 11, 4848-4854 (1995).
[CrossRef]

Ross, M. M.

A. O'Keefe, M. M. Ross, and A. P. Baronavski, "Production of large carbon cluster ions by laser vaporization," Chem. Phys. Lett. 130, 17-19 (1986).
[CrossRef]

Roth, P.

R. Starke, B. Kock, and P. Roth, "Nano-particle sizing by laser-induced incandescence (LII) in a shock wave reactor," Shock Waves 12, 351-360 (2003).
[CrossRef]

A. V. Filippov, M. W. Markus, and P. Roth, "In situ characterization of ultrafine particles by laser-induced incandescence: sizing and particle structure determination," J. Aerosol Sci. 30, 71-87 (1999).
[CrossRef]

P. Roth and A. V. Filippov, "In situ ultrafine particle sizing by a combination of pulsed laser heatup and particle thermal emission," J. Aerosol Sci. 27, 95-104 (1996).
[CrossRef]

Rupinski, M.

J. Walewski, M. Rupinski, H. Bladh, Z. S. Li, P.-E. Bengtsson, and M. Aldén, "Soot visualisation by use of laser-induced soot vapourisation in combination with polarisation spectroscopy," Appl. Phys. B 77, 447-454 (2003).
[CrossRef]

Sakai, Y.

M.-A. Bratescu, Y. Sakai, D. Yamaoka, Y. Suda, and H. Sugawara, "Electron and excited particle densities in a carbon ablation plume," Appl. Surf. Sci. 197-198,257-262 (2002).
[CrossRef]

Santoro, R. J.

T. Ni, J. A. Pinson, S. Gupta, and R. J. Santoro, "Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence," Appl. Opt. 34, 7083-7091 (1995).
[CrossRef] [PubMed]

B. Quay, T.-W. Lee, T. Ni, and R. J. Santoro, "Spatially resolved measurements of soot volume fraction using laser-induced incandescence," Combust. Flame 97, 384-392 (1994).
[CrossRef]

J. A. Pinson, D. L. Mitchell, and R. J. Santoro, "Quantitative, planar soot measurements in a D. I. diesel engine using laser-induced incandescence and light scattering," in Proceedings of the SAE (SAE, 1993), paper 932650.

R. J. Santoro and C. R. Shaddix, "Laser-induced incandescence," in Applied Combustion Diagnostics, K. Kohse-Höinghaus and J.B. Jeffries, eds. (Taylor & Francis, 2002), pp. 252-286.

Sasaki, K.

K. Sasaki, T. Wakabayashi, S. Matsui, and K. Kadota, "Distributions of C2 and C3 radical densities in laser-ablation carbon plumes measured by laser-induced fluorescence imaging spectroscopy," J. Appl. Phys. 91, 4033-4039 (2002).
[CrossRef]

K. Sasaki, T. Wakasaki, and K. Kadota, "Observation of continuum optical emission from laser ablation carbon plumes," Appl. Surf. Sci. 197-198,197-201 (2002).
[CrossRef]

K. Shibagaki, T. Kawashima, K. Sasaki, and K. Kadota, "Formation of positive and negative carbon cluster ions in the initial phase of laser ablation in vacuum," Jpn. J. Appl. Phys. 39, 4959-4963 (2000).
[CrossRef]

Sawyer, R. F.

C. B. Stipe, J. H. Choi, D. Lucas, C. P. Koshland, and R. F. Sawyer, "Nanoparticle production by UV irradiation of combustion generated soot particles," J. Nanopart. Res. 6, 467-477 (2004).
[CrossRef]

C. B. Stipe, B. S. Higgins, D. Lucas, C. P. Koshland, and R. F. Sawyer, "Soot detection using excimer laser fragmentation fluorescence spectroscopy," Proc. Combust. Inst. 29, 2759-2766 (2002).
[CrossRef]

C. J. Damm, D. Lucas, R. F. Sawyer, and C. P. Koshland, "Characterization of diesel particulate matter with excimer laser fragmentation fluorescence spectroscopy," Proc. Combust. Inst. 29, 2767-2774 (2002).
[CrossRef]

Schittkowski, T.

T. Schittkowski, B. Mewes, and D. Brüggemann, "Laser-induced incandescence and Raman measurements in sooting methane and ethylene flames," Phys. Chem. Chem. Phys. 4, 2063-2071 (2002).
[CrossRef]

Schmidt-Ott, A.

M. Ullmann, S. K. Friedlander, and A. Schmidt-Ott, "Nanoparticle formation by laser ablation," J. Nanopart. Res. 4, 499-509 (2002).
[CrossRef]

Schraml, S.

S. Schraml, S. Dankers, K. Bader, S. Will, and A. Leipertz, "Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII)," Combust. Flame 120, 439-450 (2000).
[CrossRef]

S. Schraml, S. Will, and A. Leipertz, "Simultaneous measurement of soot mass concentration and primary particle size in the exhaust of a DI diesel engine by time-resolved laser-induced incandescence," in Proceedings of the SAE (SAE, 1994), paper 1999-1901-0146.

Schwenker, R. P.

M. Jeunehomme and R. P. Schwenker, "Focused laser-beam experiment and the oscillator strength of the Swan system," J. Chem. Phys. 42, 2406-2408 (1965).
[CrossRef]

Seinfeld, J. H.

L. H. van Poppel, H. Friedrich, J. Spinsby, S. H. Chung, J. H. Seinfeld, and P. R. Buseck, "Electron tomography of nanoparticle clusters and implications for atmospheric lifetimes and radiative forcing of soot," Geophys. Res. Lett. 32, L24811 (2005).
[CrossRef]

J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics from Air Pollution to Climate Change (Wiley, 1998).

Seitzman, J. M.

Sen, R.

S. Suzuki, H. Yamagachi, R. Sen, H. Kataura, W. Krätschmer, and Y. Achiba, "Time and space evolution of carbon species generated with a laser furnace technique," AIP Conf. Proc. 590, 51-54 (2001).
[CrossRef]

Sette, F.

Y. Ma, C. T. Chen, G. Meigs, K. Randall, and F. Sette, "High-resolution K-shell photoabsorption measurements of simple molecules," Phys. Rev. A 44, 1848-1858 (1991).
[CrossRef] [PubMed]

Shaddix, C. R.

P. O. Witze, S. Hochgreb, D. Kayes, H. A. Michelsen, and C. R. Shaddix, "Time-resolved laser-induced incandescence and laser elastic scattering measurements in a propane diffusion flame," Appl. Opt. 40, 2443-2452 (2001).
[CrossRef]

C. R. Shaddix and K. C. Smyth, "Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames," Combust. Flame 107, 418-452 (1996).
[CrossRef]

R. J. Santoro and C. R. Shaddix, "Laser-induced incandescence," in Applied Combustion Diagnostics, K. Kohse-Höinghaus and J.B. Jeffries, eds. (Taylor & Francis, 2002), pp. 252-286.

Sharma, A.

R. M. Mayo, J. W. Newman, Y. Yamagata, A. Sharma, and J. Narayan, "Comparative study of pulsed laser ablated plasma plumes from single crystal graphite and amorphous carbon targets: Part II. Electrostatic probe measurements," J. Appl. Phys. 88, 6868-6874 (2000).
[CrossRef]

Y. Yamagata, A. Sharma, and J. Narayan, "Comparative study of pulsed laser ablated plasma plumes from single crystal graphite and amorphous carbon targets. Part 1. Optical emission spectroscopy," J. Appl. Phys. 88, 6861-6867 (2000).
[CrossRef]

Shibagaki, K.

K. Shibagaki, T. Kawashima, K. Sasaki, and K. Kadota, "Formation of positive and negative carbon cluster ions in the initial phase of laser ablation in vacuum," Jpn. J. Appl. Phys. 39, 4959-4963 (2000).
[CrossRef]

Shida, T.

T. Wakabayashi, T. Momose, and T. Shida, "Mass spectroscopic studies of laser ablated carbon clusters as studied by photoionization with 10.5 eV photons under high vacuum," J. Chem. Phys. 111, 6260-6263 (1999).
[CrossRef]

Shim, H.-S.

R. H. Hurt, G. P. Crawford, and H.-S. Shim, "Equilibrium nanostructure of primary soot particles," Proc. Combust. Inst. 28, 2539-2546 (2000).
[CrossRef]

Shim, K.-H.

J. C. Ku and K.-H. Shim, "A comparison of solutions for light scattering and absorption by aggregated and arbitrarily-shaped particles," J. Quant. Spectrosc. Radiat. Transfer 47, 201-220 (1992).
[CrossRef]

J. C. Ku and K.-H. Shim, "Optical diagnostics and radiative properties of simulated soot aggregates," J. Heat Transfer 113, 953-958 (1991).
[CrossRef]

Shimabukuro, R. L.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, and B. K. Fuikawa, "Low-energy x-ray interaction coefficients: photoabsorption, scattering, and reflection −E = 100-2000 eV, Z = 1-94," At. Data Nucl. Data Tables 27, 1-144 (1982).
[CrossRef]

Shimizu, Y.

J. J. Gaumet, A. Wakisaka, Y. Shimizu, and Y. Tamori, "Energetics for carbon clusters produced directly by laser vaporization of graphite: dependence on laser power and wavelength," J. Chem. Soc. Faraday Trans. 89, 1667-1670 (1993).
[CrossRef]

Shinozaki, T.

T. Shinozaki, T. Ooie, T. Yano, J. P. Zhao, Z. Y. Chen, and M. Yoneda, "Laser-induced optical emission of carbon plume by excimer and Nd:YAG laser irradiation," Appl. Surf. Sci. 197-198,263-267 (2002).
[CrossRef]

Shiromaru, H.

T. Moriwaki, M. Kobayashi, M. Osaka, M. Ohara, H. Shiromaru, and Y. Achiba, "Dual pathway of carbon cluster formation in the laser vaporization," J. Chem. Phys. 107, 8927-8932 (1997).
[CrossRef]

Skjemstad, J. O.

M. B. Fernandes, J. O. Skjemstad, B. B. Johnson, J. D. Wells, and P. Brooks, "Characterization of carbonaceous combustion residues: I. Morphological, elemental and spectroscopic features," Chemosphere 51, 785-795 (2003).
[CrossRef] [PubMed]

Smalley, R. E.

H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, "C60: buckminsterfullerene," Nature 318, 162-163 (1985).
[CrossRef]

Smallwood, G. J.

F. Liu, M. Yang, F. A. Hill, D. R. Snelling, and G. J. Smallwood, "Influence of polydisperse distributions of both primary particle and aggregate size on soot temperature in low-fluence LII," Appl. Phys. B 83, 383-395 (2006).
[CrossRef]

Smith, R. S.

M. Anselment, R. S. Smith, E. Daykin, and L. F. Dimauro, "Optical emission studies on graphite in a laser/vaporization supersonic jet cluster source," Chem. Phys. Lett. 134, 444-449 (1987).
[CrossRef]

Smyth, K. C.

C. R. Shaddix and K. C. Smyth, "Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames," Combust. Flame 107, 418-452 (1996).
[CrossRef]

Snelling, D. R.

F. Liu, M. Yang, F. A. Hill, D. R. Snelling, and G. J. Smallwood, "Influence of polydisperse distributions of both primary particle and aggregate size on soot temperature in low-fluence LII," Appl. Phys. B 83, 383-395 (2006).
[CrossRef]

Sorensen, C. M.

C. M. Sorensen, "Light scattering by fractal aggregates: a review," Aerosol Sci. Technol. 35, 648-687 (2001).

Spinsby, J.

L. H. van Poppel, H. Friedrich, J. Spinsby, S. H. Chung, J. H. Seinfeld, and P. R. Buseck, "Electron tomography of nanoparticle clusters and implications for atmospheric lifetimes and radiative forcing of soot," Geophys. Res. Lett. 32, L24811 (2005).
[CrossRef]

Starke, R.

R. Starke, B. Kock, and P. Roth, "Nano-particle sizing by laser-induced incandescence (LII) in a shock wave reactor," Shock Waves 12, 351-360 (2003).
[CrossRef]

Steele, W. F.

A. L. D. Kilcoyne, T. Tyliszczak, W. F. Steele, S. Fakra, P. Hitchcock, K. Franck, E. Anderson, B. Harteneck, E. G. Rightor, G. E. Mitchell, A. P. Hitchcock, L. Yang, T. Warwick, and H. Ade, "Interferometer-controlled scanning transmission x-ray microscopes at the advanced light source," J. Synchrotron Radiat. 10, 125-136 (2003).
[CrossRef] [PubMed]

Stephens, A. B.

R. L. Vander Wal, T. M. Ticich, and A. B. Stephens, "Can soot primary particle size be determined using laser-induced incandescence?," Combust. Flame 116, 291-296 (1999).
[CrossRef]

R. L. Vander Wal, T. M. Ticich, and A. B. Stephens, "Optical and microscopy investigations of soot structure alterations by laser-induced incandescence," Appl. Phys. B 67, 115-123 (1998).
[CrossRef]

Stipe, C. B.

C. B. Stipe, J. H. Choi, D. Lucas, C. P. Koshland, and R. F. Sawyer, "Nanoparticle production by UV irradiation of combustion generated soot particles," J. Nanopart. Res. 6, 467-477 (2004).
[CrossRef]

C. B. Stipe, B. S. Higgins, D. Lucas, C. P. Koshland, and R. F. Sawyer, "Soot detection using excimer laser fragmentation fluorescence spectroscopy," Proc. Combust. Inst. 29, 2759-2766 (2002).
[CrossRef]

Stöhr, J.

J. Stöhr, NEXAFS Spectroscopy (Springer, 1996).

Stricker, W.

V. Krüger, C. Wahl, R. Hadef, K. P. Geigle, W. Stricker, and M. Aigner, "Comparison of laser-induced incandescence method with scanning mobility particle sizer technique: the influence of probe sampling and laser heating on soot particle size distribution," Meas. Sci. Technol. 16, 1477-1486 (2005).
[CrossRef]

Suda, Y.

M.-A. Bratescu, Y. Sakai, D. Yamaoka, Y. Suda, and H. Sugawara, "Electron and excited particle densities in a carbon ablation plume," Appl. Surf. Sci. 197-198,257-262 (2002).
[CrossRef]

Sugawara, H.

M.-A. Bratescu, Y. Sakai, D. Yamaoka, Y. Suda, and H. Sugawara, "Electron and excited particle densities in a carbon ablation plume," Appl. Surf. Sci. 197-198,257-262 (2002).
[CrossRef]

Sun, H.

R. Gago, M. Vinnichenko, H. U. Jäger, A. Y. Belov, I. Jiménez, N. Huang, H. Sun, and M. F. Maitz, "Evolution of sp2 networks with substrate temperature in amorphous carbon films: experiment and theory," Phys. Rev. B 72, 014120 (2005).
[CrossRef]

Suntz, R.

Suzuki, S.

S. Suzuki, H. Yamagachi, R. Sen, H. Kataura, W. Krätschmer, and Y. Achiba, "Time and space evolution of carbon species generated with a laser furnace technique," AIP Conf. Proc. 590, 51-54 (2001).
[CrossRef]

T. Ishigaki, S. Suzuki, H. Kataura, W. Krätschmer, and Y. Achiba, "Characterization of fullerenes and carbon nanoparticles generated with a laser-furnace technique," Appl. Phys. A 70, 121-124 (2000).
[CrossRef]

Takahashi, K.

F. Kokai, K. Takahashi, D. Kasuya, A. Nakayama, Y. Koga, M. Yudasaka, and S. Iijima, "Laser vaporization synthesis of polyhedral graphite," Appl. Phys. A 77, 69-71 (2003).
[CrossRef]

F. Kokai, K. Takahashi, M. Yudasaka, and S. Iijima, "Emission imaging spectroscopic and shadowgraphic studies on the growth dynamics of graphitic carbon particles synthesized by CO2 laser vaporization," J. Phys. Chem. B 103, 8686-8693 (1999).
[CrossRef]

Takasu, S.

K. Inagaki, S. Takasu, and K. Nakakita, "In-cylinder quantitative soot concentration measurement by laser-induced incandescence," in Proceedings of the SAE (SAE, 1999), paper 1999-1901-0508.

Takatori, Y.

T. Ishiguro, Y. Takatori, and K. Akihama, "Microstructure of diesel soot particles probed by electron microscopy: first observation of inner core and outer shell," Combust. Flame 108, 231-234 (1997).
[CrossRef]

Tamori, Y.

J. J. Gaumet, A. Wakisaka, Y. Shimizu, and Y. Tamori, "Energetics for carbon clusters produced directly by laser vaporization of graphite: dependence on laser power and wavelength," J. Chem. Soc. Faraday Trans. 89, 1667-1670 (1993).
[CrossRef]

Tanaka, T. J.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, and B. K. Fuikawa, "Low-energy x-ray interaction coefficients: photoabsorption, scattering, and reflection −E = 100-2000 eV, Z = 1-94," At. Data Nucl. Data Tables 27, 1-144 (1982).
[CrossRef]

Terminello, L. J.

F. L. Coffman, R. Cao, P. A. Pianetta, S. Kapoor, M. Kelly, and L. J. Terminello, "Near-edge x-ray absorption of carbon materials for determining bond hybridization in mixed sp2/sp3 bonded materials," Appl. Phys. Lett. 69, 568-570 (1996).
[CrossRef]

Ticich, T. M.

R. L. Vander Wal, T. M. Ticich, and A. B. Stephens, "Can soot primary particle size be determined using laser-induced incandescence?," Combust. Flame 116, 291-296 (1999).
[CrossRef]

R. L. Vander Wal, T. M. Ticich, and A. B. Stephens, "Optical and microscopy investigations of soot structure alterations by laser-induced incandescence," Appl. Phys. B 67, 115-123 (1998).
[CrossRef]

Tokunaga, K.

H. Kamezaki, K. Tokunaga, S. Fukuda, N. Yoshida, and T. Muroga, "Pulse high heat flux experiment with laser beams on graphite," J. Nucl. Mater. 179, 193-196 (1991).
[CrossRef]

Tyliszczak, T.

A. L. D. Kilcoyne, T. Tyliszczak, W. F. Steele, S. Fakra, P. Hitchcock, K. Franck, E. Anderson, B. Harteneck, E. G. Rightor, G. E. Mitchell, A. P. Hitchcock, L. Yang, T. Warwick, and H. Ade, "Interferometer-controlled scanning transmission x-ray microscopes at the advanced light source," J. Synchrotron Radiat. 10, 125-136 (2003).
[CrossRef] [PubMed]

Ugarte, D.

W. S. Bacsa, W. A. de Heer, D. Ugarte, and A. Châtelain, "Raman spectroscopy of closed-shell carbon particles," Chem. Phys. Lett. 211, 346-352 (1993).
[CrossRef]

Ullmann, M.

M. Ullmann, S. K. Friedlander, and A. Schmidt-Ott, "Nanoparticle formation by laser ablation," J. Nanopart. Res. 4, 499-509 (2002).
[CrossRef]

Vallabhan, C. P. G.

S. S. Harilal, R. C. Isaac, C. V. Bindhu, V. P. N. Nampoori, and C. P. G. Vallabhan, "Optical emission studies of C2 species in laser-produced plasma from carbon," J. Phys. D 30, 1703-1709 (1997).
[CrossRef]

van Poppel, L. H.

L. H. van Poppel, H. Friedrich, J. Spinsby, S. H. Chung, J. H. Seinfeld, and P. R. Buseck, "Electron tomography of nanoparticle clusters and implications for atmospheric lifetimes and radiative forcing of soot," Geophys. Res. Lett. 32, L24811 (2005).
[CrossRef]

Vander Wal, R. L.

R. L. Vander Wal, T. M. Ticich, and A. B. Stephens, "Can soot primary particle size be determined using laser-induced incandescence?," Combust. Flame 116, 291-296 (1999).
[CrossRef]

R. L. Vander Wal and M. Y. Choi, "Pulsed laser heating of soot: morphological changes," Carbon 37, 231-239 (1999).
[CrossRef]

R. L. Vander Wal and K. A. Jensen, "Laser-induced incandescence: excitation intensity," Appl. Opt. 37, 1607-1616 (1998).
[CrossRef]

R. L. Vander Wal, T. M. Ticich, and A. B. Stephens, "Optical and microscopy investigations of soot structure alterations by laser-induced incandescence," Appl. Phys. B 67, 115-123 (1998).
[CrossRef]

R. L. Vander Wal, "A TEM methodology for the study of soot particle structure," Combust. Sci. Technol. 126, 333-357 (1997).
[CrossRef]

R. L. Vander Wal, C. Y. Choi, and K. O. Lee, "The effects of rapid heating of soot: implications when using laser-induced incandescence for soot diagnostics," Combust. Flame 102, 200-204 (1995).
[CrossRef]

R. L. Vander Wal and D. L. Dietrich, "Laser-induced incandescence applied to droplet combustion," Appl. Opt. 34, 1103-1107 (1995).
[CrossRef]

Vialle, J. L.

M. Pellarin, E. Cottancin, J. Lermé, J. L. Vialle, and M. Broyer, "Coating and polymerization of C60 with carbon: a gas phase photodissociation study," J. Chem. Phys. 117, 3088-3097 (2002).
[CrossRef]

Vinnichenko, M.

R. Gago, M. Vinnichenko, H. U. Jäger, A. Y. Belov, I. Jiménez, N. Huang, H. Sun, and M. F. Maitz, "Evolution of sp2 networks with substrate temperature in amorphous carbon films: experiment and theory," Phys. Rev. B 72, 014120 (2005).
[CrossRef]

Wahl, C.

V. Krüger, C. Wahl, R. Hadef, K. P. Geigle, W. Stricker, and M. Aigner, "Comparison of laser-induced incandescence method with scanning mobility particle sizer technique: the influence of probe sampling and laser heating on soot particle size distribution," Meas. Sci. Technol. 16, 1477-1486 (2005).
[CrossRef]

Wakabayashi, T.

K. Sasaki, T. Wakabayashi, S. Matsui, and K. Kadota, "Distributions of C2 and C3 radical densities in laser-ablation carbon plumes measured by laser-induced fluorescence imaging spectroscopy," J. Appl. Phys. 91, 4033-4039 (2002).
[CrossRef]

T. Wakabayashi, T. Momose, and T. Shida, "Mass spectroscopic studies of laser ablated carbon clusters as studied by photoionization with 10.5 eV photons under high vacuum," J. Chem. Phys. 111, 6260-6263 (1999).
[CrossRef]

S. Iijima, T. Wakabayashi, and Y. Achiba, "Structures of carbon soot prepared by laser ablation," J. Phys. Chem. 100, 5839-5843 (1996).
[CrossRef]

Wakasaki, T.

K. Sasaki, T. Wakasaki, and K. Kadota, "Observation of continuum optical emission from laser ablation carbon plumes," Appl. Surf. Sci. 197-198,197-201 (2002).
[CrossRef]

Wakisaka, A.

J. J. Gaumet, A. Wakisaka, Y. Shimizu, and Y. Tamori, "Energetics for carbon clusters produced directly by laser vaporization of graphite: dependence on laser power and wavelength," J. Chem. Soc. Faraday Trans. 89, 1667-1670 (1993).
[CrossRef]

Walewski, J.

J. Walewski, M. Rupinski, H. Bladh, Z. S. Li, P.-E. Bengtsson, and M. Aldén, "Soot visualisation by use of laser-induced soot vapourisation in combination with polarisation spectroscopy," Appl. Phys. B 77, 447-454 (2003).
[CrossRef]

Walkup, R. E.

R. W. Dreyfus, R. Kelly, and R. E. Walkup, "Laser-induced fluorescence study of laser sputtering of graphite," Nucl. Instrum. Methods Phys. Res. B 23, 557-561 (1987).
[CrossRef]

Warwick, T.

A. L. D. Kilcoyne, T. Tyliszczak, W. F. Steele, S. Fakra, P. Hitchcock, K. Franck, E. Anderson, B. Harteneck, E. G. Rightor, G. E. Mitchell, A. P. Hitchcock, L. Yang, T. Warwick, and H. Ade, "Interferometer-controlled scanning transmission x-ray microscopes at the advanced light source," J. Synchrotron Radiat. 10, 125-136 (2003).
[CrossRef] [PubMed]

Wells, J. D.

M. B. Fernandes, J. O. Skjemstad, B. B. Johnson, J. D. Wells, and P. Brooks, "Characterization of carbonaceous combustion residues: I. Morphological, elemental and spectroscopic features," Chemosphere 51, 785-795 (2003).
[CrossRef] [PubMed]

Will, S.

S. Schraml, S. Dankers, K. Bader, S. Will, and A. Leipertz, "Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII)," Combust. Flame 120, 439-450 (2000).
[CrossRef]

S. Schraml, S. Will, and A. Leipertz, "Simultaneous measurement of soot mass concentration and primary particle size in the exhaust of a DI diesel engine by time-resolved laser-induced incandescence," in Proceedings of the SAE (SAE, 1994), paper 1999-1901-0146.

Willis, R. F.

R. F. Willis, B. Fitton, and G. S. Painter, "Secondary-electron emission spectroscopy and the observation of high-energy excited states in graphite: theory and experiment," Phys. Rev. B 9, 1926-1937 (1974).
[CrossRef]

Wills, J. M.

R. Ahuja, P. A. Brühwiler, J. M. Wills, B. Johansson, N. Mårtensson, and O. Eriksson, "Theoretical and experimental study of the graphite 1s x-ray absorption edges," Phys. Rev. B 54, 14396-14404 (1996).
[CrossRef]

Wirick, S.

G. D. Cody, H. Ade, S. Wirick, G. D. Mitchell, and A. Davis, "Determination of chemical-structural changes in vitrinite accompanying luminescence alteration using C-NEXAFS analysis," Org. Geochem. 28, 441-455 (1998).
[CrossRef]

Witze, P. O.

Wu, J.-S.

J.-S. Wu, S. S. Krishnan, and G. M. Faeth, "Refractive indices at visible wavelengths of soot emitted from buoyant turbulent diffusion flames," J. Heat Transfer 119, 230-237 (1997).
[CrossRef]

Xia, P.

Y. P. Yang, P. Xia, A. L. Junkin, and L. A. Bloomfield, "Direct ejection of clusters from nonmetallic solids during laser vaporization," Phys. Rev. Lett. 66, 1205-1208 (1991).
[CrossRef] [PubMed]

Xing, Y. C.

Ü. Ö. Köylü, Y. C. Xing, and D. E. Rosner, "Fractal morphology analysis of combustion-generated aggregates using angular light scattering and electron microscope images," Langmuir 11, 4848-4854 (1995).
[CrossRef]

Yamagachi, H.

S. Suzuki, H. Yamagachi, R. Sen, H. Kataura, W. Krätschmer, and Y. Achiba, "Time and space evolution of carbon species generated with a laser furnace technique," AIP Conf. Proc. 590, 51-54 (2001).
[CrossRef]

Yamagata, Y.

Y. Yamagata, A. Sharma, and J. Narayan, "Comparative study of pulsed laser ablated plasma plumes from single crystal graphite and amorphous carbon targets. Part 1. Optical emission spectroscopy," J. Appl. Phys. 88, 6861-6867 (2000).
[CrossRef]

R. M. Mayo, J. W. Newman, Y. Yamagata, A. Sharma, and J. Narayan, "Comparative study of pulsed laser ablated plasma plumes from single crystal graphite and amorphous carbon targets: Part II. Electrostatic probe measurements," J. Appl. Phys. 88, 6868-6874 (2000).
[CrossRef]

Yamaoka, D.

M.-A. Bratescu, Y. Sakai, D. Yamaoka, Y. Suda, and H. Sugawara, "Electron and excited particle densities in a carbon ablation plume," Appl. Surf. Sci. 197-198,257-262 (2002).
[CrossRef]

Yang, B.

B. Hu, B. Yang, and Ü. Ö. Köylü, "Soot measurements at the axis of an ethylene/air nonpremixed turbulent jet flame," Combust. Flame 134, 93-106 (2003).
[CrossRef]

Yang, L.

A. L. D. Kilcoyne, T. Tyliszczak, W. F. Steele, S. Fakra, P. Hitchcock, K. Franck, E. Anderson, B. Harteneck, E. G. Rightor, G. E. Mitchell, A. P. Hitchcock, L. Yang, T. Warwick, and H. Ade, "Interferometer-controlled scanning transmission x-ray microscopes at the advanced light source," J. Synchrotron Radiat. 10, 125-136 (2003).
[CrossRef] [PubMed]

Yang, M.

F. Liu, M. Yang, F. A. Hill, D. R. Snelling, and G. J. Smallwood, "Influence of polydisperse distributions of both primary particle and aggregate size on soot temperature in low-fluence LII," Appl. Phys. B 83, 383-395 (2006).
[CrossRef]

Yang, Y. P.

Y. P. Yang, P. Xia, A. L. Junkin, and L. A. Bloomfield, "Direct ejection of clusters from nonmetallic solids during laser vaporization," Phys. Rev. Lett. 66, 1205-1208 (1991).
[CrossRef] [PubMed]

Yano, T.

T. Shinozaki, T. Ooie, T. Yano, J. P. Zhao, Z. Y. Chen, and M. Yoneda, "Laser-induced optical emission of carbon plume by excimer and Nd:YAG laser irradiation," Appl. Surf. Sci. 197-198,263-267 (2002).
[CrossRef]

Yeung, E. S.

Yoder, G. D.

Yoneda, M.

T. Shinozaki, T. Ooie, T. Yano, J. P. Zhao, Z. Y. Chen, and M. Yoneda, "Laser-induced optical emission of carbon plume by excimer and Nd:YAG laser irradiation," Appl. Surf. Sci. 197-198,263-267 (2002).
[CrossRef]

Yoshida, N.

H. Kamezaki, K. Tokunaga, S. Fukuda, N. Yoshida, and T. Muroga, "Pulse high heat flux experiment with laser beams on graphite," J. Nucl. Mater. 179, 193-196 (1991).
[CrossRef]

Yudasaka, M.

F. Kokai, K. Takahashi, D. Kasuya, A. Nakayama, Y. Koga, M. Yudasaka, and S. Iijima, "Laser vaporization synthesis of polyhedral graphite," Appl. Phys. A 77, 69-71 (2003).
[CrossRef]

F. Kokai, K. Takahashi, M. Yudasaka, and S. Iijima, "Emission imaging spectroscopic and shadowgraphic studies on the growth dynamics of graphitic carbon particles synthesized by CO2 laser vaporization," J. Phys. Chem. B 103, 8686-8693 (1999).
[CrossRef]

Zhao, H.

Zhao, J. P.

T. Shinozaki, T. Ooie, T. Yano, J. P. Zhao, Z. Y. Chen, and M. Yoneda, "Laser-induced optical emission of carbon plume by excimer and Nd:YAG laser irradiation," Appl. Surf. Sci. 197-198,263-267 (2002).
[CrossRef]

Adv. Phys.

J. Robertson, "Amorphous carbon," Adv. Phys. 35, 317-374 (1986).
[CrossRef]

Aerosol Sci. Technol.

C. M. Sorensen, "Light scattering by fractal aggregates: a review," Aerosol Sci. Technol. 35, 648-687 (2001).

AIP Conf. Proc.

S. Suzuki, H. Yamagachi, R. Sen, H. Kataura, W. Krätschmer, and Y. Achiba, "Time and space evolution of carbon species generated with a laser furnace technique," AIP Conf. Proc. 590, 51-54 (2001).
[CrossRef]

Appl. Opt.

L. Nemes, A. M. Keszler, J. O. Hornkolh, and C. G. Parigger, "Laser-induced carbon plasma emission spectroscopic measurements on solid targets and in gas-phase optical breakdown," Appl. Opt. 44, 3661-3667 (2005).
[CrossRef] [PubMed]

H. A. Michelsen, P. O. Witze, D. Kayes, and S. Hochgreb, "Time-resolved laser-induced incandescence of soot: the influence of experimental factors and microphysical mechanisms," Appl. Opt. 42, 5577-5590 (2003).
[CrossRef] [PubMed]

R. L. Vander Wal and D. L. Dietrich, "Laser-induced incandescence applied to droplet combustion," Appl. Opt. 34, 1103-1107 (1995).
[CrossRef]

T. Ni, J. A. Pinson, S. Gupta, and R. J. Santoro, "Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence," Appl. Opt. 34, 7083-7091 (1995).
[CrossRef] [PubMed]

B. Mewes and J. M. Seitzman, "Soot volume fraction and particle size measurements with laser-induced incandescence," Appl. Opt. 36, 709-717 (1997).
[CrossRef] [PubMed]

T. L. Farias, Ü. Ö. Köylü, and M. G. Carvalho, "Range of validity of the Rayleigh-Debye-Gans theory for optics of fractal aggregates," Appl. Opt. 35, 6560-6567 (1996).
[CrossRef] [PubMed]

D. J. Bryce, N. Ladommatos, and H. Zhao, "Quantitative investigation of soot distribution by laser-induced incandescence," Appl. Opt. 39, 5012-5022 (2000).
[CrossRef]

T. Lehre, B. Jungfleisch, R. Suntz, and H. Bockhorn, "Size distributions of nanoscaled particles and gas temperatures from time-resolved laser-induced incandescence measurements," Appl. Opt. 42, 2021-2030 (2003).
[CrossRef] [PubMed]

C. J. Dasch, "Continuous-wave probe laser investigation of laser vaporization of small soot particles in a flame," Appl. Opt. 23, 2209-2215 (1984).
[CrossRef] [PubMed]

P. O. Witze, S. Hochgreb, D. Kayes, H. A. Michelsen, and C. R. Shaddix, "Time-resolved laser-induced incandescence and laser elastic scattering measurements in a propane diffusion flame," Appl. Opt. 40, 2443-2452 (2001).
[CrossRef]

G. D. Yoder, P. K. Diwaker, and D. W. Hahn, "Assessment of soot particle vaporization effects during laser-induced incandescence with time-resolved light scattering," Appl. Opt. 44, 4211-4219 (2005).
[CrossRef] [PubMed]

R. L. Vander Wal and K. A. Jensen, "Laser-induced incandescence: excitation intensity," Appl. Opt. 37, 1607-1616 (1998).
[CrossRef]

Appl. Phys. A

F. Kokai, K. Takahashi, D. Kasuya, A. Nakayama, Y. Koga, M. Yudasaka, and S. Iijima, "Laser vaporization synthesis of polyhedral graphite," Appl. Phys. A 77, 69-71 (2003).
[CrossRef]

T. Ishigaki, S. Suzuki, H. Kataura, W. Krätschmer, and Y. Achiba, "Characterization of fullerenes and carbon nanoparticles generated with a laser-furnace technique," Appl. Phys. A 70, 121-124 (2000).
[CrossRef]

Z. Márton, L. Landstrom, and P. Heszler, "Early stage of the material removal during ArF laser ablation of graphite," Appl. Phys. A 79, 579-585 (2004).
[CrossRef]

Appl. Phys. B

P.-E. Bengtsson and M. Aldén, "Soot-visualization strategies using laser techniques," Appl. Phys. B 60, 51-59 (1995).
[CrossRef]

J. Walewski, M. Rupinski, H. Bladh, Z. S. Li, P.-E. Bengtsson, and M. Aldén, "Soot visualisation by use of laser-induced soot vapourisation in combination with polarisation spectroscopy," Appl. Phys. B 77, 447-454 (2003).
[CrossRef]

B. Axelsson, R. Collin, and P.-E. Bengtsson, "Laser-induced incandescence for soot particle size and volume fraction measurements using on-line extinction calibration," Appl. Phys. B 72, 367-372 (2001).

R. L. Vander Wal, T. M. Ticich, and A. B. Stephens, "Optical and microscopy investigations of soot structure alterations by laser-induced incandescence," Appl. Phys. B 67, 115-123 (1998).
[CrossRef]

V. Beyer and D. A. Greenhalgh, "Laser induced incandescence under high vacuum conditions," Appl. Phys. B 83, 455-467 (2006).
[CrossRef]

A. Boiarciuc, F. Foucher, and C. Mounaïm-Rousselle, "Soot volume fraction and primary particle size estimate by means of the simultaneous two-color-time-resolved and 2D laser-induced incandescence," Appl. Phys. B 83, 413-421 (2006).
[CrossRef]

F. Liu, M. Yang, F. A. Hill, D. R. Snelling, and G. J. Smallwood, "Influence of polydisperse distributions of both primary particle and aggregate size on soot temperature in low-fluence LII," Appl. Phys. B 83, 383-395 (2006).
[CrossRef]

Appl. Phys. Lett.

F. L. Coffman, R. Cao, P. A. Pianetta, S. Kapoor, M. Kelly, and L. J. Terminello, "Near-edge x-ray absorption of carbon materials for determining bond hybridization in mixed sp2/sp3 bonded materials," Appl. Phys. Lett. 69, 568-570 (1996).
[CrossRef]

Appl. Spectrosc.

Appl. Surf. Sci.

K. Sasaki, T. Wakasaki, and K. Kadota, "Observation of continuum optical emission from laser ablation carbon plumes," Appl. Surf. Sci. 197-198,197-201 (2002).
[CrossRef]

P. T. Murray and D. T. Peeler, "Dynamics of graphite photoablation: kinetic energy of the precursors to diamond-like carbon," Appl. Surf. Sci. 69, 225-230 (1993).
[CrossRef]

M.-A. Bratescu, Y. Sakai, D. Yamaoka, Y. Suda, and H. Sugawara, "Electron and excited particle densities in a carbon ablation plume," Appl. Surf. Sci. 197-198,257-262 (2002).
[CrossRef]

T. Shinozaki, T. Ooie, T. Yano, J. P. Zhao, Z. Y. Chen, and M. Yoneda, "Laser-induced optical emission of carbon plume by excimer and Nd:YAG laser irradiation," Appl. Surf. Sci. 197-198,263-267 (2002).
[CrossRef]

At. Data Nucl. Data Tables

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, and B. K. Fuikawa, "Low-energy x-ray interaction coefficients: photoabsorption, scattering, and reflection −E = 100-2000 eV, Z = 1-94," At. Data Nucl. Data Tables 27, 1-144 (1982).
[CrossRef]

Carbon

R. L. Vander Wal and M. Y. Choi, "Pulsed laser heating of soot: morphological changes," Carbon 37, 231-239 (1999).
[CrossRef]

J. Lahaye and F. Ehrburger-Dolle, "Mechanisms of carbon black formation: correlation with the morphology of aggregates," Carbon 32, 1319-1324 (1994).
[CrossRef]

Chem. Phys. Lett.

M. Anselment, R. S. Smith, E. Daykin, and L. F. Dimauro, "Optical emission studies on graphite in a laser/vaporization supersonic jet cluster source," Chem. Phys. Lett. 134, 444-449 (1987).
[CrossRef]

E. A. Rohlfing and D. W. Chandler, "Two-color pyrometric imaging of laser-heated carbon particles in a supersonic flow," Chem. Phys. Lett. 170, 44-50 (1990).
[CrossRef]

A. O'Keefe, M. M. Ross, and A. P. Baronavski, "Production of large carbon cluster ions by laser vaporization," Chem. Phys. Lett. 130, 17-19 (1986).
[CrossRef]

W. S. Bacsa, W. A. de Heer, D. Ugarte, and A. Châtelain, "Raman spectroscopy of closed-shell carbon particles," Chem. Phys. Lett. 211, 346-352 (1993).
[CrossRef]

Chemosphere

M. B. Fernandes, J. O. Skjemstad, B. B. Johnson, J. D. Wells, and P. Brooks, "Characterization of carbonaceous combustion residues: I. Morphological, elemental and spectroscopic features," Chemosphere 51, 785-795 (2003).
[CrossRef] [PubMed]

M. B. Fernandes and P. Brooks, "Characterization of carbonaceous combustion residues: II. Nonpolar organic compounds," Chemosphere 53, 447-458 (2003).
[CrossRef] [PubMed]

Combust. Flame

T. Ishiguro, Y. Takatori, and K. Akihama, "Microstructure of diesel soot particles probed by electron microscopy: first observation of inner core and outer shell," Combust. Flame 108, 231-234 (1997).
[CrossRef]

T. T. Charalampopoulos and H. Chang, "Agglomerate parameters and fractal dimension of soot using light scattering-effects of surface growth," Combust. Flame 87, 89-99 (1991).
[CrossRef]

Ü. Ö. Köylü, "Quantitative analysis of in situ optical diagnostics for inferring particle/aggregate parameters in flames: Implications for soot surface growth and total emissivity," Combust. Flame 109, 488-500 (1996).
[CrossRef]

Ü. Ö. Köylü and G. M. Faeth, "Structure and overfire soot in buoyant turbulent diffusion flames at long residence times," Combust. Flame 89, 140-156 (1992).
[CrossRef]

B. Hu, B. Yang, and Ü. Ö. Köylü, "Soot measurements at the axis of an ethylene/air nonpremixed turbulent jet flame," Combust. Flame 134, 93-106 (2003).
[CrossRef]

R. L. Vander Wal, T. M. Ticich, and A. B. Stephens, "Can soot primary particle size be determined using laser-induced incandescence?," Combust. Flame 116, 291-296 (1999).
[CrossRef]

R. L. Vander Wal, C. Y. Choi, and K. O. Lee, "The effects of rapid heating of soot: implications when using laser-induced incandescence for soot diagnostics," Combust. Flame 102, 200-204 (1995).
[CrossRef]

S. Schraml, S. Dankers, K. Bader, S. Will, and A. Leipertz, "Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII)," Combust. Flame 120, 439-450 (2000).
[CrossRef]

B. Quay, T.-W. Lee, T. Ni, and R. J. Santoro, "Spatially resolved measurements of soot volume fraction using laser-induced incandescence," Combust. Flame 97, 384-392 (1994).
[CrossRef]

C. R. Shaddix and K. C. Smyth, "Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames," Combust. Flame 107, 418-452 (1996).
[CrossRef]

Ü. Ö. Köylü and G. M. Faeth, "Fractal and projected structure properties of soot aggregates," Combust. Flame 100, 621-633 (1995).
[CrossRef]

Combust. Sci. Technol.

C. Allouis, A. D'Alessio, C. Noviello, and F. Beretta, "Time resolved laser induced incandescence for soot and cenospheres measurements in oil flames," Combust. Sci. Technol. 153, 51-63 (2000).
[CrossRef]

H. X. Chen and R. A. Dobbins, "Crystallogenesis of particles formed in hydrocarbon combustion," Combust. Sci. Technol. 159, 109-128 (2000).
[CrossRef]

R. L. Vander Wal, "A TEM methodology for the study of soot particle structure," Combust. Sci. Technol. 126, 333-357 (1997).
[CrossRef]

Eur. Phys. J. B

C. Lenardi, M. Marino, E. Barborini, P. Piseri, and P. Milani, "Evaluation of hydrogen chemisorption in nanostructured carbon films by near edge x-ray absorption spectroscopy," Eur. Phys. J. B 46, 441-447 (2005).
[CrossRef]

Exp. Therm. Fluid Sci.

C. Allouis, F. Beretta, and A. D'Alessio, "Sizing soot and micronic carbonaceous particle in spray flames base on time resolved LII," Exp. Therm. Fluid Sci. 27, 455-463 (2003).
[CrossRef]

Geophys. Res. Lett.

L. H. van Poppel, H. Friedrich, J. Spinsby, S. H. Chung, J. H. Seinfeld, and P. R. Buseck, "Electron tomography of nanoparticle clusters and implications for atmospheric lifetimes and radiative forcing of soot," Geophys. Res. Lett. 32, L24811 (2005).
[CrossRef]

Int. J. Mass Spectrom. Ion Phys.

K. A. Lincoln and M. A. Covington, "Dynamic sampling of laser-induced vapor plumes by mass spectrometry," Int. J. Mass Spectrom. Ion Phys. 16, 191-208 (1975).
[CrossRef]

J. Aerosol Sci.

P. Roth and A. V. Filippov, "In situ ultrafine particle sizing by a combination of pulsed laser heatup and particle thermal emission," J. Aerosol Sci. 27, 95-104 (1996).
[CrossRef]

A. V. Filippov, M. W. Markus, and P. Roth, "In situ characterization of ultrafine particles by laser-induced incandescence: sizing and particle structure determination," J. Aerosol Sci. 30, 71-87 (1999).
[CrossRef]

J. Appl. Phys.

K. Sasaki, T. Wakabayashi, S. Matsui, and K. Kadota, "Distributions of C2 and C3 radical densities in laser-ablation carbon plumes measured by laser-induced fluorescence imaging spectroscopy," J. Appl. Phys. 91, 4033-4039 (2002).
[CrossRef]

Y. Yamagata, A. Sharma, and J. Narayan, "Comparative study of pulsed laser ablated plasma plumes from single crystal graphite and amorphous carbon targets. Part 1. Optical emission spectroscopy," J. Appl. Phys. 88, 6861-6867 (2000).
[CrossRef]

R. M. Mayo, J. W. Newman, Y. Yamagata, A. Sharma, and J. Narayan, "Comparative study of pulsed laser ablated plasma plumes from single crystal graphite and amorphous carbon targets: Part II. Electrostatic probe measurements," J. Appl. Phys. 88, 6868-6874 (2000).
[CrossRef]

J. Chem. Phys.

E. A. Rohlfing, "Optical emission studies of atomic, molecular, and particulate carbon produced from a laser vaporization cluster source," J. Chem. Phys. 89, 6103-6112 (1988).
[CrossRef]

E. A. Rohlfing, D. M. Cox, and A. Kaldor, "Production and characterization of supersonic carbon cluster beams," J. Chem. Phys. 81, 3322-3330 (1984).
[CrossRef]

M. Jeunehomme and R. P. Schwenker, "Focused laser-beam experiment and the oscillator strength of the Swan system," J. Chem. Phys. 42, 2406-2408 (1965).
[CrossRef]

D. M. Cox, K. C. Reichmann, and A. Kaldor, "Carbon clusters revisited: the 'special' behavior of C60 and large carbon clusters," J. Chem. Phys. 88, 1588-1597 (1988).
[CrossRef]

M. Pellarin, E. Cottancin, J. Lermé, J. L. Vialle, and M. Broyer, "Coating and polymerization of C60 with carbon: a gas phase photodissociation study," J. Chem. Phys. 117, 3088-3097 (2002).
[CrossRef]

J. A. Howe, "Observations on the maser-induced graphite jet," J. Chem. Phys. 39, 1362-1363 (1963).
[CrossRef]

H. A. Michelsen, "Understanding and predicting the temporal response of laser-induced incandescence from carbonaceous particles," J. Chem. Phys. 118, 7012-7045 (2003).
[CrossRef]

D. J. Krajnovich, "Laser sputtering of highly oriented pyrolytic graphite at 248 nm," J. Chem. Phys. 102, 726-743 (1995).
[CrossRef]

T. Moriwaki, M. Kobayashi, M. Osaka, M. Ohara, H. Shiromaru, and Y. Achiba, "Dual pathway of carbon cluster formation in the laser vaporization," J. Chem. Phys. 107, 8927-8932 (1997).
[CrossRef]

T. Wakabayashi, T. Momose, and T. Shida, "Mass spectroscopic studies of laser ablated carbon clusters as studied by photoionization with 10.5 eV photons under high vacuum," J. Chem. Phys. 111, 6260-6263 (1999).
[CrossRef]

J. Berkowitz and W. A. Chupka, "Mass spectrometric study of vapor ejected from graphite and other solids by focused laser beams," J. Chem. Phys. 40, 2735-2736 (1964).
[CrossRef]

J. Chem. Soc. Faraday Trans.

J. J. Gaumet, A. Wakisaka, Y. Shimizu, and Y. Tamori, "Energetics for carbon clusters produced directly by laser vaporization of graphite: dependence on laser power and wavelength," J. Chem. Soc. Faraday Trans. 89, 1667-1670 (1993).
[CrossRef]

J. Heat Transfer

J. C. Ku and K.-H. Shim, "Optical diagnostics and radiative properties of simulated soot aggregates," J. Heat Transfer 113, 953-958 (1991).
[CrossRef]

T. L. Farias, M. G. Carvalho, Ü. Ö. Köylü, and G. M. Faeth, "Computational evaluation of approximate Rayleigh-Debye-Gans/fractal-aggregate theory for the absorption and scattering properties of soot," J. Heat Transfer 117, 152-159 (1995).
[CrossRef]

J.-S. Wu, S. S. Krishnan, and G. M. Faeth, "Refractive indices at visible wavelengths of soot emitted from buoyant turbulent diffusion flames," J. Heat Transfer 119, 230-237 (1997).
[CrossRef]

J. Mol. Struct.

A. M. Keszler and L. Nemes, "Time averaged emission spectra of Nd:YAG laser induced carbon plasmas," J. Mol. Struct. 695-696,211-218 (2004).
[CrossRef]

J. Nanopart. Res.

M. Ullmann, S. K. Friedlander, and A. Schmidt-Ott, "Nanoparticle formation by laser ablation," J. Nanopart. Res. 4, 499-509 (2002).
[CrossRef]

C. B. Stipe, J. H. Choi, D. Lucas, C. P. Koshland, and R. F. Sawyer, "Nanoparticle production by UV irradiation of combustion generated soot particles," J. Nanopart. Res. 6, 467-477 (2004).
[CrossRef]

J. Nucl. Mater.

H. Kamezaki, K. Tokunaga, S. Fukuda, N. Yoshida, and T. Muroga, "Pulse high heat flux experiment with laser beams on graphite," J. Nucl. Mater. 179, 193-196 (1991).
[CrossRef]

J. Phys. Chem.

S. Iijima, T. Wakabayashi, and Y. Achiba, "Structures of carbon soot prepared by laser ablation," J. Phys. Chem. 100, 5839-5843 (1996).
[CrossRef]

J. Phys. Chem. B

F. Kokai, K. Takahashi, M. Yudasaka, and S. Iijima, "Emission imaging spectroscopic and shadowgraphic studies on the growth dynamics of graphitic carbon particles synthesized by CO2 laser vaporization," J. Phys. Chem. B 103, 8686-8693 (1999).
[CrossRef]

J. Phys. D

S. S. Harilal, R. C. Isaac, C. V. Bindhu, V. P. N. Nampoori, and C. P. G. Vallabhan, "Optical emission studies of C2 species in laser-produced plasma from carbon," J. Phys. D 30, 1703-1709 (1997).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

J. C. Ku and K.-H. Shim, "A comparison of solutions for light scattering and absorption by aggregated and arbitrarily-shaped particles," J. Quant. Spectrosc. Radiat. Transfer 47, 201-220 (1992).
[CrossRef]

J. Synchrotron Radiat.

A. L. D. Kilcoyne, T. Tyliszczak, W. F. Steele, S. Fakra, P. Hitchcock, K. Franck, E. Anderson, B. Harteneck, E. G. Rightor, G. E. Mitchell, A. P. Hitchcock, L. Yang, T. Warwick, and H. Ade, "Interferometer-controlled scanning transmission x-ray microscopes at the advanced light source," J. Synchrotron Radiat. 10, 125-136 (2003).
[CrossRef] [PubMed]

Jpn. J. Appl. Phys.

K. Shibagaki, T. Kawashima, K. Sasaki, and K. Kadota, "Formation of positive and negative carbon cluster ions in the initial phase of laser ablation in vacuum," Jpn. J. Appl. Phys. 39, 4959-4963 (2000).
[CrossRef]

F. Kokai, "Optical emission spectra from laser ablation of graphite at 266 nm and 1064 nm under a magnetic field," Jpn. J. Appl. Phys. 36, 3504-3509 (1997).
[CrossRef]

Langmuir

Ü. Ö. Köylü, Y. C. Xing, and D. E. Rosner, "Fractal morphology analysis of combustion-generated aggregates using angular light scattering and electron microscope images," Langmuir 11, 4848-4854 (1995).
[CrossRef]

Meas. Sci. Technol.

V. Krüger, C. Wahl, R. Hadef, K. P. Geigle, W. Stricker, and M. Aigner, "Comparison of laser-induced incandescence method with scanning mobility particle sizer technique: the influence of probe sampling and laser heating on soot particle size distribution," Meas. Sci. Technol. 16, 1477-1486 (2005).
[CrossRef]

Nature

H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, "C60: buckminsterfullerene," Nature 318, 162-163 (1985).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B

R. W. Dreyfus, R. Kelly, and R. E. Walkup, "Laser-induced fluorescence study of laser sputtering of graphite," Nucl. Instrum. Methods Phys. Res. B 23, 557-561 (1987).
[CrossRef]

F. Kokai and Y. Koga, "Time-of-flight mass spectrometric studies on the plume dynamics of laser ablation of graphite," Nucl. Instrum. Methods Phys. Res. B 121, 387-391 (1997).
[CrossRef]

Org. Geochem.

G. D. Cody, H. Ade, S. Wirick, G. D. Mitchell, and A. Davis, "Determination of chemical-structural changes in vitrinite accompanying luminescence alteration using C-NEXAFS analysis," Org. Geochem. 28, 441-455 (1998).
[CrossRef]

Phys. Chem. Chem. Phys.

T. Schittkowski, B. Mewes, and D. Brüggemann, "Laser-induced incandescence and Raman measurements in sooting methane and ethylene flames," Phys. Chem. Chem. Phys. 4, 2063-2071 (2002).
[CrossRef]

Phys. Rev. A

Y. Ma, C. T. Chen, G. Meigs, K. Randall, and F. Sette, "High-resolution K-shell photoabsorption measurements of simple molecules," Phys. Rev. A 44, 1848-1858 (1991).
[CrossRef] [PubMed]

Phys. Rev. B

R. Ahuja, P. A. Brühwiler, J. M. Wills, B. Johansson, N. Mårtensson, and O. Eriksson, "Theoretical and experimental study of the graphite 1s x-ray absorption edges," Phys. Rev. B 54, 14396-14404 (1996).
[CrossRef]

R. F. Willis, B. Fitton, and G. S. Painter, "Secondary-electron emission spectroscopy and the observation of high-energy excited states in graphite: theory and experiment," Phys. Rev. B 9, 1926-1937 (1974).
[CrossRef]

R. Gago, M. Vinnichenko, H. U. Jäger, A. Y. Belov, I. Jiménez, N. Huang, H. Sun, and M. F. Maitz, "Evolution of sp2 networks with substrate temperature in amorphous carbon films: experiment and theory," Phys. Rev. B 72, 014120 (2005).
[CrossRef]

R. A. Rosenberg, P. J. Love, and V. Rehn, "Polarization-dependent C(K) near-edge x-ray-absorption fine structure of graphite," Phys. Rev. B 33, 4034-4037 (1986).
[CrossRef]

H. C. Ong and R. P. H. Chang, "Effect of laser intensity on the properties of carbon plumes and deposited films," Phys. Rev. B 55, 13213-13220 (1997).
[CrossRef]

Phys. Rev. Lett.

P. Monchicourt, "Onset of carbon cluster formation inferred from light emission in a laser-induced expansion," Phys. Rev. Lett. 66, 1430-1433 (1991).
[CrossRef] [PubMed]

Y. P. Yang, P. Xia, A. L. Junkin, and L. A. Bloomfield, "Direct ejection of clusters from nonmetallic solids during laser vaporization," Phys. Rev. Lett. 66, 1205-1208 (1991).
[CrossRef] [PubMed]

Proc. Combust. Inst.

R. H. Hurt, G. P. Crawford, and H.-S. Shim, "Equilibrium nanostructure of primary soot particles," Proc. Combust. Inst. 28, 2539-2546 (2000).
[CrossRef]

C. B. Stipe, B. S. Higgins, D. Lucas, C. P. Koshland, and R. F. Sawyer, "Soot detection using excimer laser fragmentation fluorescence spectroscopy," Proc. Combust. Inst. 29, 2759-2766 (2002).
[CrossRef]

C. J. Damm, D. Lucas, R. F. Sawyer, and C. P. Koshland, "Characterization of diesel particulate matter with excimer laser fragmentation fluorescence spectroscopy," Proc. Combust. Inst. 29, 2767-2774 (2002).
[CrossRef]

Shock Waves

R. Starke, B. Kock, and P. Roth, "Nano-particle sizing by laser-induced incandescence (LII) in a shock wave reactor," Shock Waves 12, 351-360 (2003).
[CrossRef]

Solid State Commun.

G. F. Lorusso, V. Capozzi, P. Milani, A. Minafra, and D. Lojacono, "UV spectra of graphite microparticles produced by laser vaporization," Solid State Commun. 85, 729-734 (1993).
[CrossRef]

Surf. Sci.

R. Gago, I. Jiménez, and J. M. Albella, "Detecting with x-ray absorption spectroscopy the modifications of the bonding structure of graphitic carbon by amorphisation, hydrogenation and nitrogenation," Surf. Sci. 482-485,530-536 (2001).
[CrossRef]

Other

M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic, 1996).

J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics from Air Pollution to Climate Change (Wiley, 1998).

"Image processing and analysis in Java," http://rsb.info.nih.gov/ij/.

J. Stöhr, NEXAFS Spectroscopy (Springer, 1996).

K. Inagaki, S. Takasu, and K. Nakakita, "In-cylinder quantitative soot concentration measurement by laser-induced incandescence," in Proceedings of the SAE (SAE, 1999), paper 1999-1901-0508.

S. Schraml, S. Will, and A. Leipertz, "Simultaneous measurement of soot mass concentration and primary particle size in the exhaust of a DI diesel engine by time-resolved laser-induced incandescence," in Proceedings of the SAE (SAE, 1994), paper 1999-1901-0146.

J. Lahaye and G. Prado, "Morphology and internal structure of soot and carbon blacks," in Particulate Carbon: Formation during Combustion, D.C.Siegla and G.W.Smith, eds. (Plenum, 1981), pp. 33-35.

R. J. Santoro and C. R. Shaddix, "Laser-induced incandescence," in Applied Combustion Diagnostics, K. Kohse-Höinghaus and J.B. Jeffries, eds. (Taylor & Francis, 2002), pp. 252-286.

J. A. Pinson, D. L. Mitchell, and R. J. Santoro, "Quantitative, planar soot measurements in a D. I. diesel engine using laser-induced incandescence and light scattering," in Proceedings of the SAE (SAE, 1993), paper 932650.

J. A. Pinson, T. Ni, and T. A. Litzinger, "Quantitative imaging study of the effects of intake air temperature on soot evaluation in an optically-accessible D. I. diesel engine," in Proceedings of the SAE (SAE, 1994), paper 942044.

B. F. Kock, Ph.D. dissertation (Universität Duisburg-Essen, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Schematic of the soot flow tube.

Fig. 2
Fig. 2

SMPS electric-mobility size distributions of nonirradiated soot (solid curve) and particles irradiated at 532   nm and 0.7 J / cm 2 (dotted curve). Burner flow rates were 0.24 SLM for ethylene, 27.5 SLM for the air coflow, and 65 SLM for the air cross flow (see text for further details). Symbols represent the average geometric diameters determined from 325 measurements on each of two TEM samples, one collected with the DMA set to a mobility size of 100   nm and the other collected at a mobility size of 110 nm.

Fig. 3
Fig. 3

TEM images of nonirradiated soot particles. (a) Soot aggregate from a distribution with a mean geometric diameter of 110 ( ± 15 )   nm and a mean electric-mobility diameter of 112 ( ± 1 ) n m . (b) Higher-magnification TEM image of the same particle.

Fig. 4
Fig. 4

SMPS electric-mobility size distributions of irradiated and nonirradiated particles represented as particle volume distributions. The measured number concentrations (Fig. 2) were converted to volume assuming the particles to be spherical with diameters equivalent to the electric-mobility diameters. Particles were irradiated at 532   nm with a fluence of 0.7 J / cm 2 .

Fig. 5
Fig. 5

TEM images of a soot particle irradiated at 1064   nm with a fluence of 1 J / cm 2 . The particle electric-mobility diameter was 100   nm . (a) Aggregate in this TEM image has a branched-chain morphology similar to that of the nonirradiated particles, despite changes in the particle fine structure (b). (b) Higher-magnification TEM image of a part of the same aggregate.

Fig. 6
Fig. 6

TEM images of soot nanoparticles produced by laser irradiation. Particles were produced at (a) and (b) 1064   nm with a laser fluence of 1 J / cm 2 and (c) 532   nm with a laser fluence of 0.87 J / cm 2 and were collected at an electric-mobility diameter of 30   nm . (b) and (c) Higher-magnification TEM images of nanoparticles that appear to be predominantly composed of carbon with no apparent long-range order and that have isolated regions with some long-range order (arrows).

Fig. 7
Fig. 7

Single-energy images of representative particles imaged by STXM at the carbon edge. (a) Nonirradiated soot imaged with a step size of 60   nm . The image size is 15 × 15 μ m . (b) Soot particle irradiated at 532   nm with a fluence of 0.8 J / cm 2 and imaged with a step size of 30   nm . The image size is 2 × 2 μ m .

Fig. 8
Fig. 8

Representative carbon K-edge NEXAFS spectra of soot particles before (dotted curve) and after (solid curve) laser irradiation with a single laser pulse at 532   nm and a laser fluence of 0.8 J / cm 2 . The spectrum of HOPG (dashed curve) from Lenardi et al. (Ref. [11]) is provided for comparison.

Fig. 9
Fig. 9

Number concentration of electric mobility size distributions of nonirradiated soot particles (filled circles) and soot irradiated at 532   nm with fluences of 0.21 J / cm 2 (open circles), 0.33 J / cm 2 (squares), and 0.76 J / cm 2 (triangles). The distributions are plotted as n(ln D). Solid curves are the best fits to the data with a sum of two lognormal distributions, i.e., Eq. (3). The values of fitting parameters are listed in Table 1.

Fig. 10
Fig. 10

Electric-mobility size distributions plotted as a function of laser fluence. Soot was irradiated at 532   nm and sampled with the SMPS. The contour line spacing is 2 × 10 6 cm 3 .

Fig. 11
Fig. 11

Fluence dependence of median size and number concentration of small- and large-mode distributions. Results are shown for 532   nm (circles) and 1064   nm (squares) irradiation. Fits of Eq. (3) to the distributions were used to derive (a) the median particle size (D) for each mode and (b) the total number concentration (N) for each mode. Large-mode results (open symbols) correspond to the right axis, and small-mode results (closed symbols) correspond to the left axis. (c) Equations (3) and (4) were used to calculate the average number of small particles produced per soot aggregate. The curve represents the calculated mass fraction of carbon volatilized into small molecular clusters during 532   nm laser irradiation. Symbols correspond to the left axis; curves correspond to the right axis.

Fig. 12
Fig. 12

TEM images of a soot particle irradiated at 1064   nm with a fluence of 0.24 J / cm 2 . The particle electric-mobility diameter was 100   nm . (a) TEM image of an aggregate with a branched-chain morphology and fine structure similar to that of the nonirradiated particles. (b) Higher-magnification TEM image of a part of the same aggregate.

Fig. 13
Fig. 13

TEM images of a soot particle irradiated at 532   nm with a fluence of 0.3 J / cm 2 . The particle electric-mobility diameter was 100   nm . (a) TEM image of an aggregate with a branched-chain morphology similar to that of the nonirradiated particles. (b) Higher-magnification TEM image of a part of the same aggregate.

Fig. 14
Fig. 14

TEM images of small particles produced by laser irradiation of soot. (a) Higher-magnification TEM image of particles produced at 1064   nm with a fluence of 0.24 J / cm 2 and collected at a mobility diameter of 10   nm . The circle highlights an isolated region of turbostratic graphitic structure. (b) and (c) Higher-magnification TEM images of particles produced at 532   nm with a fluence of 0.3 J / cm 2 and collected at a mobility diameter of 28   nm .

Fig. 15
Fig. 15

Average carbon K-edge NEXAFS spectra of soot particles (a) before (top curve) and after laser irradiation with a single laser pulse at 532   nm and laser fluences of (a) 0.01 J / cm 2 , (a) 0.05 J / cm 2 , (b) 0.2 J / cm 2 , and (b) and (c) 0.80 J / cm 2 , as indicated. The curves have been normalized and offset from one another for clarity. Vertical dotted lines indicate energy levels for the 1s–π* transition of aromatic carbon (285.5 eV), 1s–σ* carbon transition ( 292.8   eV ) , and the exciton peak (291.7 eV).

Tables (1)

Tables Icon

Table 1 Results of Fits to Particle-Size Distributions (Solid Curves in Fig. 9)

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

n ( ln   D ) = N 2 π  ln   σ   exp { [ ln ( D / D 0 ) ] 2 2 ln 2 σ } .
n ( D ) = N 2 π D   ln   σ   exp { [ ln ( D / D 0 ) ] 2 2 ln 2 σ } .
n ( ln   D ) = n 1 ( ln   D 1 ) + n 2 ( ln   D 2 ) ,
F N P = 1 X 0 n 2 ( D ) d D 0 n 0 ( D ) d D = 1 X N 2 N 0 ,
f s p 2 = A C═C A 280 310 .
f s p 2 soot = A C═C A 280 310 A 280 310 H O P G A C═C H O P G .
I π = H 0   exp 1 / 2 ( E P 0 ) 2 ( Γ / c ) 2 ,

Metrics