Abstract

Extreme-ultraviolet (EUV) lithography remains a leading contender for use in the mass production of nanoelectronics at the 32  nm node. Great progress has been made in all areas of EUV lithography, including the crucial issue of fabrication of diffraction-limited optics. To gain an accurate understanding of the projection optic wavefront error in a completed lithography tool requires lithography-based aberration measurements; however, making such measurements in EUV systems can be challenging. We describe the quantitative lithographic measurement of spherical aberration in a 0.3 numerical aperture. EUV microfield optic. The measurement method is based on use of the unique properties of a programmable coherence illuminator. The results show the optic to have 1  nm rms spherical error, whereas interferometric measurements performed during the alignment of the optic indicated a spherical error of less than 0.1  nm   rms.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Stulen and D. Sweeney, "Extreme ultraviolet lithography," IEEE J. Quantum Electron. 35, 694-699 (1999).
    [CrossRef]
  2. P. Naulleau, K. Goldberg, J. Cain, E. Anderson, P. Denham, K. Jackson, S. Rekawa, F. Salmassi, and G. Zhang, "EUV microexposures at the ALS using the 0.3-NA MET optic," J. Vac. Sci. Technol. B 22, 2962-2965 (2004).
    [CrossRef]
  3. P. Naulleau, K. Goldberg, E. Anderson, J. Cain, P. Denham, B. Hoef, K. Jackson, A. Morlens, S. Rekawa, and K. Dean, "EUV microexposures at the ALS using the 0.3-NA MET projection optics," in Emerging Lithographic Technologies IX, R. S. MacKay, ed., Proc. SPIE 5751, 56-63 (2005).
  4. A. Brunton, J. Cashmore, P. Elbourn, G. Elliner, M. Gower, P. Grunewald, M. Harman, S. Hough, N. McEntee, S. Mundair, D. Rees, P. Richards, V. Truffert, I. Wallhead, and M. Whitfield, "High-resolution EUV microstepper tool for resist testing and technology evaluation," in High-Power Laser Ablation V, C. R. Phipps, ed., Proc. SPIE 5448, 681-692 (2004).
  5. P. Dirksen, C. Juffermans, R. Pellens, M. Maenhoudt, and P. Debisschop, "Novel aberration monitor for optical lithography," in Optical Microlithography XII, L. Van den Hove, ed., Proc. SPIE 3679, 77-86 (1999).
    [CrossRef]
  6. H. Fukuda, K. Hayano, and S. Shirai, "Determination of high-order lens aberration using phase/amplitude linear algebra," J. Vac. Sci. Technol. B 17, 3318-3321 (1999).
    [CrossRef]
  7. G. Robins, K. Adam, and A. Neureuther, "Measuring optical image aberrations with pattern and probe based targets," J. Vac. Sci. Technol. B 20, 338-343 (2002).
    [CrossRef]
  8. P. Naulleau, J. Cain, and K. Goldberg, "Lithographic characterization of the field dependent astigmatism and alignment stability of a 0.3 numerical aperture EUV microfield optic," J. Vac. Sci. Technol. B (to be published).
  9. P. Naulleau, K. Goldberg, P. Batson, J. Bokor, P. Denham, and S. Rekawa, "A Fourier-synthesis custom-coherence illuminator for EUV microfield lithography," Appl. Opt. 42, 820-826 (2003).
    [CrossRef] [PubMed]
  10. PROLITH is a registered trademark of KLA-Tencor Corporation, 160 Rio Robles, San Jose, Calif. 95134.
  11. K. Goldberg, P. Naulleau, P. Denham, S. Rekawa, K. Jackson, E. Anderson, and J. Liddle, "At-wavelength alignment and testing of the 0.3 NA MET optic," J. Vac. Sci. Technol. B 22, 2956-2961 (2004).
    [CrossRef]
  12. R. Brainard, T. Koehler, P. Naulleau, and D. van Steenwinckel, "Performance of EUV photoresists on the ALS micro exposure tool," in Emerging Lithographic Technologies IX, R. S. Mackay, ed., Proc. SPIE 5751, 754-764 (2005).
  13. P. Naulleau, P. Denham, and S. Rekawa, "Design and implementation of a vacuum compatible laser-based subnanometer resolution absolute distance measurement system," Opt. Eng. 44, 13,605-13,609 (2005).
    [CrossRef]
  14. CODE V is a registered trademark of Optical Research Associates, Suite 300, 3280 East Foothill Boulevard, Pasadena, Calif. 91107-3103.
  15. P. Naulleau, K. Goldberg, E. Anderson, K. Bradley, R. Delano, P. Denham, B. Gunion, B. Harteneck, B. Hoef, H. Huang, K. Jackson, G. Jones, D. Kemp, A. Liddle, R. Oort, A. Rawlins, S. Rekawa, F. Salmassi, R. Tackaberry, C. Chung, L. Hale, D. Phillion, G. Sommargren, and J. Taylor, "Status of EUV microexposure capabilities at the ALS using the 0.3-NA MET optic," in Emerging Lithographic Technologies VIII, R. S. MacKay, ed., Proc. SPIE 5374, 881-891 (2004).
    [CrossRef]

2005 (3)

P. Naulleau, K. Goldberg, E. Anderson, J. Cain, P. Denham, B. Hoef, K. Jackson, A. Morlens, S. Rekawa, and K. Dean, "EUV microexposures at the ALS using the 0.3-NA MET projection optics," in Emerging Lithographic Technologies IX, R. S. MacKay, ed., Proc. SPIE 5751, 56-63 (2005).

R. Brainard, T. Koehler, P. Naulleau, and D. van Steenwinckel, "Performance of EUV photoresists on the ALS micro exposure tool," in Emerging Lithographic Technologies IX, R. S. Mackay, ed., Proc. SPIE 5751, 754-764 (2005).

P. Naulleau, P. Denham, and S. Rekawa, "Design and implementation of a vacuum compatible laser-based subnanometer resolution absolute distance measurement system," Opt. Eng. 44, 13,605-13,609 (2005).
[CrossRef]

2004 (4)

P. Naulleau, K. Goldberg, E. Anderson, K. Bradley, R. Delano, P. Denham, B. Gunion, B. Harteneck, B. Hoef, H. Huang, K. Jackson, G. Jones, D. Kemp, A. Liddle, R. Oort, A. Rawlins, S. Rekawa, F. Salmassi, R. Tackaberry, C. Chung, L. Hale, D. Phillion, G. Sommargren, and J. Taylor, "Status of EUV microexposure capabilities at the ALS using the 0.3-NA MET optic," in Emerging Lithographic Technologies VIII, R. S. MacKay, ed., Proc. SPIE 5374, 881-891 (2004).
[CrossRef]

A. Brunton, J. Cashmore, P. Elbourn, G. Elliner, M. Gower, P. Grunewald, M. Harman, S. Hough, N. McEntee, S. Mundair, D. Rees, P. Richards, V. Truffert, I. Wallhead, and M. Whitfield, "High-resolution EUV microstepper tool for resist testing and technology evaluation," in High-Power Laser Ablation V, C. R. Phipps, ed., Proc. SPIE 5448, 681-692 (2004).

P. Naulleau, K. Goldberg, J. Cain, E. Anderson, P. Denham, K. Jackson, S. Rekawa, F. Salmassi, and G. Zhang, "EUV microexposures at the ALS using the 0.3-NA MET optic," J. Vac. Sci. Technol. B 22, 2962-2965 (2004).
[CrossRef]

K. Goldberg, P. Naulleau, P. Denham, S. Rekawa, K. Jackson, E. Anderson, and J. Liddle, "At-wavelength alignment and testing of the 0.3 NA MET optic," J. Vac. Sci. Technol. B 22, 2956-2961 (2004).
[CrossRef]

2003 (1)

2002 (1)

G. Robins, K. Adam, and A. Neureuther, "Measuring optical image aberrations with pattern and probe based targets," J. Vac. Sci. Technol. B 20, 338-343 (2002).
[CrossRef]

1999 (3)

R. Stulen and D. Sweeney, "Extreme ultraviolet lithography," IEEE J. Quantum Electron. 35, 694-699 (1999).
[CrossRef]

P. Dirksen, C. Juffermans, R. Pellens, M. Maenhoudt, and P. Debisschop, "Novel aberration monitor for optical lithography," in Optical Microlithography XII, L. Van den Hove, ed., Proc. SPIE 3679, 77-86 (1999).
[CrossRef]

H. Fukuda, K. Hayano, and S. Shirai, "Determination of high-order lens aberration using phase/amplitude linear algebra," J. Vac. Sci. Technol. B 17, 3318-3321 (1999).
[CrossRef]

Adam, K.

G. Robins, K. Adam, and A. Neureuther, "Measuring optical image aberrations with pattern and probe based targets," J. Vac. Sci. Technol. B 20, 338-343 (2002).
[CrossRef]

Anderson, E.

P. Naulleau, K. Goldberg, E. Anderson, J. Cain, P. Denham, B. Hoef, K. Jackson, A. Morlens, S. Rekawa, and K. Dean, "EUV microexposures at the ALS using the 0.3-NA MET projection optics," in Emerging Lithographic Technologies IX, R. S. MacKay, ed., Proc. SPIE 5751, 56-63 (2005).

K. Goldberg, P. Naulleau, P. Denham, S. Rekawa, K. Jackson, E. Anderson, and J. Liddle, "At-wavelength alignment and testing of the 0.3 NA MET optic," J. Vac. Sci. Technol. B 22, 2956-2961 (2004).
[CrossRef]

P. Naulleau, K. Goldberg, J. Cain, E. Anderson, P. Denham, K. Jackson, S. Rekawa, F. Salmassi, and G. Zhang, "EUV microexposures at the ALS using the 0.3-NA MET optic," J. Vac. Sci. Technol. B 22, 2962-2965 (2004).
[CrossRef]

P. Naulleau, K. Goldberg, E. Anderson, K. Bradley, R. Delano, P. Denham, B. Gunion, B. Harteneck, B. Hoef, H. Huang, K. Jackson, G. Jones, D. Kemp, A. Liddle, R. Oort, A. Rawlins, S. Rekawa, F. Salmassi, R. Tackaberry, C. Chung, L. Hale, D. Phillion, G. Sommargren, and J. Taylor, "Status of EUV microexposure capabilities at the ALS using the 0.3-NA MET optic," in Emerging Lithographic Technologies VIII, R. S. MacKay, ed., Proc. SPIE 5374, 881-891 (2004).
[CrossRef]

Batson, P.

Bokor, J.

Bradley, K.

P. Naulleau, K. Goldberg, E. Anderson, K. Bradley, R. Delano, P. Denham, B. Gunion, B. Harteneck, B. Hoef, H. Huang, K. Jackson, G. Jones, D. Kemp, A. Liddle, R. Oort, A. Rawlins, S. Rekawa, F. Salmassi, R. Tackaberry, C. Chung, L. Hale, D. Phillion, G. Sommargren, and J. Taylor, "Status of EUV microexposure capabilities at the ALS using the 0.3-NA MET optic," in Emerging Lithographic Technologies VIII, R. S. MacKay, ed., Proc. SPIE 5374, 881-891 (2004).
[CrossRef]

Brainard, R.

R. Brainard, T. Koehler, P. Naulleau, and D. van Steenwinckel, "Performance of EUV photoresists on the ALS micro exposure tool," in Emerging Lithographic Technologies IX, R. S. Mackay, ed., Proc. SPIE 5751, 754-764 (2005).

Brunton, A.

A. Brunton, J. Cashmore, P. Elbourn, G. Elliner, M. Gower, P. Grunewald, M. Harman, S. Hough, N. McEntee, S. Mundair, D. Rees, P. Richards, V. Truffert, I. Wallhead, and M. Whitfield, "High-resolution EUV microstepper tool for resist testing and technology evaluation," in High-Power Laser Ablation V, C. R. Phipps, ed., Proc. SPIE 5448, 681-692 (2004).

Cain, J.

P. Naulleau, K. Goldberg, E. Anderson, J. Cain, P. Denham, B. Hoef, K. Jackson, A. Morlens, S. Rekawa, and K. Dean, "EUV microexposures at the ALS using the 0.3-NA MET projection optics," in Emerging Lithographic Technologies IX, R. S. MacKay, ed., Proc. SPIE 5751, 56-63 (2005).

P. Naulleau, K. Goldberg, J. Cain, E. Anderson, P. Denham, K. Jackson, S. Rekawa, F. Salmassi, and G. Zhang, "EUV microexposures at the ALS using the 0.3-NA MET optic," J. Vac. Sci. Technol. B 22, 2962-2965 (2004).
[CrossRef]

P. Naulleau, J. Cain, and K. Goldberg, "Lithographic characterization of the field dependent astigmatism and alignment stability of a 0.3 numerical aperture EUV microfield optic," J. Vac. Sci. Technol. B (to be published).

Cashmore, J.

A. Brunton, J. Cashmore, P. Elbourn, G. Elliner, M. Gower, P. Grunewald, M. Harman, S. Hough, N. McEntee, S. Mundair, D. Rees, P. Richards, V. Truffert, I. Wallhead, and M. Whitfield, "High-resolution EUV microstepper tool for resist testing and technology evaluation," in High-Power Laser Ablation V, C. R. Phipps, ed., Proc. SPIE 5448, 681-692 (2004).

Chung, C.

P. Naulleau, K. Goldberg, E. Anderson, K. Bradley, R. Delano, P. Denham, B. Gunion, B. Harteneck, B. Hoef, H. Huang, K. Jackson, G. Jones, D. Kemp, A. Liddle, R. Oort, A. Rawlins, S. Rekawa, F. Salmassi, R. Tackaberry, C. Chung, L. Hale, D. Phillion, G. Sommargren, and J. Taylor, "Status of EUV microexposure capabilities at the ALS using the 0.3-NA MET optic," in Emerging Lithographic Technologies VIII, R. S. MacKay, ed., Proc. SPIE 5374, 881-891 (2004).
[CrossRef]

Dean, K.

P. Naulleau, K. Goldberg, E. Anderson, J. Cain, P. Denham, B. Hoef, K. Jackson, A. Morlens, S. Rekawa, and K. Dean, "EUV microexposures at the ALS using the 0.3-NA MET projection optics," in Emerging Lithographic Technologies IX, R. S. MacKay, ed., Proc. SPIE 5751, 56-63 (2005).

Debisschop, P.

P. Dirksen, C. Juffermans, R. Pellens, M. Maenhoudt, and P. Debisschop, "Novel aberration monitor for optical lithography," in Optical Microlithography XII, L. Van den Hove, ed., Proc. SPIE 3679, 77-86 (1999).
[CrossRef]

Delano, R.

P. Naulleau, K. Goldberg, E. Anderson, K. Bradley, R. Delano, P. Denham, B. Gunion, B. Harteneck, B. Hoef, H. Huang, K. Jackson, G. Jones, D. Kemp, A. Liddle, R. Oort, A. Rawlins, S. Rekawa, F. Salmassi, R. Tackaberry, C. Chung, L. Hale, D. Phillion, G. Sommargren, and J. Taylor, "Status of EUV microexposure capabilities at the ALS using the 0.3-NA MET optic," in Emerging Lithographic Technologies VIII, R. S. MacKay, ed., Proc. SPIE 5374, 881-891 (2004).
[CrossRef]

Denham, P.

P. Naulleau, P. Denham, and S. Rekawa, "Design and implementation of a vacuum compatible laser-based subnanometer resolution absolute distance measurement system," Opt. Eng. 44, 13,605-13,609 (2005).
[CrossRef]

P. Naulleau, K. Goldberg, E. Anderson, J. Cain, P. Denham, B. Hoef, K. Jackson, A. Morlens, S. Rekawa, and K. Dean, "EUV microexposures at the ALS using the 0.3-NA MET projection optics," in Emerging Lithographic Technologies IX, R. S. MacKay, ed., Proc. SPIE 5751, 56-63 (2005).

K. Goldberg, P. Naulleau, P. Denham, S. Rekawa, K. Jackson, E. Anderson, and J. Liddle, "At-wavelength alignment and testing of the 0.3 NA MET optic," J. Vac. Sci. Technol. B 22, 2956-2961 (2004).
[CrossRef]

P. Naulleau, K. Goldberg, E. Anderson, K. Bradley, R. Delano, P. Denham, B. Gunion, B. Harteneck, B. Hoef, H. Huang, K. Jackson, G. Jones, D. Kemp, A. Liddle, R. Oort, A. Rawlins, S. Rekawa, F. Salmassi, R. Tackaberry, C. Chung, L. Hale, D. Phillion, G. Sommargren, and J. Taylor, "Status of EUV microexposure capabilities at the ALS using the 0.3-NA MET optic," in Emerging Lithographic Technologies VIII, R. S. MacKay, ed., Proc. SPIE 5374, 881-891 (2004).
[CrossRef]

P. Naulleau, K. Goldberg, J. Cain, E. Anderson, P. Denham, K. Jackson, S. Rekawa, F. Salmassi, and G. Zhang, "EUV microexposures at the ALS using the 0.3-NA MET optic," J. Vac. Sci. Technol. B 22, 2962-2965 (2004).
[CrossRef]

P. Naulleau, K. Goldberg, P. Batson, J. Bokor, P. Denham, and S. Rekawa, "A Fourier-synthesis custom-coherence illuminator for EUV microfield lithography," Appl. Opt. 42, 820-826 (2003).
[CrossRef] [PubMed]

Dirksen, P.

P. Dirksen, C. Juffermans, R. Pellens, M. Maenhoudt, and P. Debisschop, "Novel aberration monitor for optical lithography," in Optical Microlithography XII, L. Van den Hove, ed., Proc. SPIE 3679, 77-86 (1999).
[CrossRef]

Elbourn, P.

A. Brunton, J. Cashmore, P. Elbourn, G. Elliner, M. Gower, P. Grunewald, M. Harman, S. Hough, N. McEntee, S. Mundair, D. Rees, P. Richards, V. Truffert, I. Wallhead, and M. Whitfield, "High-resolution EUV microstepper tool for resist testing and technology evaluation," in High-Power Laser Ablation V, C. R. Phipps, ed., Proc. SPIE 5448, 681-692 (2004).

Elliner, G.

A. Brunton, J. Cashmore, P. Elbourn, G. Elliner, M. Gower, P. Grunewald, M. Harman, S. Hough, N. McEntee, S. Mundair, D. Rees, P. Richards, V. Truffert, I. Wallhead, and M. Whitfield, "High-resolution EUV microstepper tool for resist testing and technology evaluation," in High-Power Laser Ablation V, C. R. Phipps, ed., Proc. SPIE 5448, 681-692 (2004).

Fukuda, H.

H. Fukuda, K. Hayano, and S. Shirai, "Determination of high-order lens aberration using phase/amplitude linear algebra," J. Vac. Sci. Technol. B 17, 3318-3321 (1999).
[CrossRef]

Goldberg, K.

P. Naulleau, K. Goldberg, E. Anderson, J. Cain, P. Denham, B. Hoef, K. Jackson, A. Morlens, S. Rekawa, and K. Dean, "EUV microexposures at the ALS using the 0.3-NA MET projection optics," in Emerging Lithographic Technologies IX, R. S. MacKay, ed., Proc. SPIE 5751, 56-63 (2005).

K. Goldberg, P. Naulleau, P. Denham, S. Rekawa, K. Jackson, E. Anderson, and J. Liddle, "At-wavelength alignment and testing of the 0.3 NA MET optic," J. Vac. Sci. Technol. B 22, 2956-2961 (2004).
[CrossRef]

P. Naulleau, K. Goldberg, J. Cain, E. Anderson, P. Denham, K. Jackson, S. Rekawa, F. Salmassi, and G. Zhang, "EUV microexposures at the ALS using the 0.3-NA MET optic," J. Vac. Sci. Technol. B 22, 2962-2965 (2004).
[CrossRef]

P. Naulleau, K. Goldberg, E. Anderson, K. Bradley, R. Delano, P. Denham, B. Gunion, B. Harteneck, B. Hoef, H. Huang, K. Jackson, G. Jones, D. Kemp, A. Liddle, R. Oort, A. Rawlins, S. Rekawa, F. Salmassi, R. Tackaberry, C. Chung, L. Hale, D. Phillion, G. Sommargren, and J. Taylor, "Status of EUV microexposure capabilities at the ALS using the 0.3-NA MET optic," in Emerging Lithographic Technologies VIII, R. S. MacKay, ed., Proc. SPIE 5374, 881-891 (2004).
[CrossRef]

P. Naulleau, K. Goldberg, P. Batson, J. Bokor, P. Denham, and S. Rekawa, "A Fourier-synthesis custom-coherence illuminator for EUV microfield lithography," Appl. Opt. 42, 820-826 (2003).
[CrossRef] [PubMed]

P. Naulleau, J. Cain, and K. Goldberg, "Lithographic characterization of the field dependent astigmatism and alignment stability of a 0.3 numerical aperture EUV microfield optic," J. Vac. Sci. Technol. B (to be published).

Gower, M.

A. Brunton, J. Cashmore, P. Elbourn, G. Elliner, M. Gower, P. Grunewald, M. Harman, S. Hough, N. McEntee, S. Mundair, D. Rees, P. Richards, V. Truffert, I. Wallhead, and M. Whitfield, "High-resolution EUV microstepper tool for resist testing and technology evaluation," in High-Power Laser Ablation V, C. R. Phipps, ed., Proc. SPIE 5448, 681-692 (2004).

Grunewald, P.

A. Brunton, J. Cashmore, P. Elbourn, G. Elliner, M. Gower, P. Grunewald, M. Harman, S. Hough, N. McEntee, S. Mundair, D. Rees, P. Richards, V. Truffert, I. Wallhead, and M. Whitfield, "High-resolution EUV microstepper tool for resist testing and technology evaluation," in High-Power Laser Ablation V, C. R. Phipps, ed., Proc. SPIE 5448, 681-692 (2004).

Gunion, B.

P. Naulleau, K. Goldberg, E. Anderson, K. Bradley, R. Delano, P. Denham, B. Gunion, B. Harteneck, B. Hoef, H. Huang, K. Jackson, G. Jones, D. Kemp, A. Liddle, R. Oort, A. Rawlins, S. Rekawa, F. Salmassi, R. Tackaberry, C. Chung, L. Hale, D. Phillion, G. Sommargren, and J. Taylor, "Status of EUV microexposure capabilities at the ALS using the 0.3-NA MET optic," in Emerging Lithographic Technologies VIII, R. S. MacKay, ed., Proc. SPIE 5374, 881-891 (2004).
[CrossRef]

Hale, L.

P. Naulleau, K. Goldberg, E. Anderson, K. Bradley, R. Delano, P. Denham, B. Gunion, B. Harteneck, B. Hoef, H. Huang, K. Jackson, G. Jones, D. Kemp, A. Liddle, R. Oort, A. Rawlins, S. Rekawa, F. Salmassi, R. Tackaberry, C. Chung, L. Hale, D. Phillion, G. Sommargren, and J. Taylor, "Status of EUV microexposure capabilities at the ALS using the 0.3-NA MET optic," in Emerging Lithographic Technologies VIII, R. S. MacKay, ed., Proc. SPIE 5374, 881-891 (2004).
[CrossRef]

Harman, M.

A. Brunton, J. Cashmore, P. Elbourn, G. Elliner, M. Gower, P. Grunewald, M. Harman, S. Hough, N. McEntee, S. Mundair, D. Rees, P. Richards, V. Truffert, I. Wallhead, and M. Whitfield, "High-resolution EUV microstepper tool for resist testing and technology evaluation," in High-Power Laser Ablation V, C. R. Phipps, ed., Proc. SPIE 5448, 681-692 (2004).

Harteneck, B.

P. Naulleau, K. Goldberg, E. Anderson, K. Bradley, R. Delano, P. Denham, B. Gunion, B. Harteneck, B. Hoef, H. Huang, K. Jackson, G. Jones, D. Kemp, A. Liddle, R. Oort, A. Rawlins, S. Rekawa, F. Salmassi, R. Tackaberry, C. Chung, L. Hale, D. Phillion, G. Sommargren, and J. Taylor, "Status of EUV microexposure capabilities at the ALS using the 0.3-NA MET optic," in Emerging Lithographic Technologies VIII, R. S. MacKay, ed., Proc. SPIE 5374, 881-891 (2004).
[CrossRef]

Hayano, K.

H. Fukuda, K. Hayano, and S. Shirai, "Determination of high-order lens aberration using phase/amplitude linear algebra," J. Vac. Sci. Technol. B 17, 3318-3321 (1999).
[CrossRef]

Hoef, B.

P. Naulleau, K. Goldberg, E. Anderson, J. Cain, P. Denham, B. Hoef, K. Jackson, A. Morlens, S. Rekawa, and K. Dean, "EUV microexposures at the ALS using the 0.3-NA MET projection optics," in Emerging Lithographic Technologies IX, R. S. MacKay, ed., Proc. SPIE 5751, 56-63 (2005).

P. Naulleau, K. Goldberg, E. Anderson, K. Bradley, R. Delano, P. Denham, B. Gunion, B. Harteneck, B. Hoef, H. Huang, K. Jackson, G. Jones, D. Kemp, A. Liddle, R. Oort, A. Rawlins, S. Rekawa, F. Salmassi, R. Tackaberry, C. Chung, L. Hale, D. Phillion, G. Sommargren, and J. Taylor, "Status of EUV microexposure capabilities at the ALS using the 0.3-NA MET optic," in Emerging Lithographic Technologies VIII, R. S. MacKay, ed., Proc. SPIE 5374, 881-891 (2004).
[CrossRef]

Hough, S.

A. Brunton, J. Cashmore, P. Elbourn, G. Elliner, M. Gower, P. Grunewald, M. Harman, S. Hough, N. McEntee, S. Mundair, D. Rees, P. Richards, V. Truffert, I. Wallhead, and M. Whitfield, "High-resolution EUV microstepper tool for resist testing and technology evaluation," in High-Power Laser Ablation V, C. R. Phipps, ed., Proc. SPIE 5448, 681-692 (2004).

Huang, H.

P. Naulleau, K. Goldberg, E. Anderson, K. Bradley, R. Delano, P. Denham, B. Gunion, B. Harteneck, B. Hoef, H. Huang, K. Jackson, G. Jones, D. Kemp, A. Liddle, R. Oort, A. Rawlins, S. Rekawa, F. Salmassi, R. Tackaberry, C. Chung, L. Hale, D. Phillion, G. Sommargren, and J. Taylor, "Status of EUV microexposure capabilities at the ALS using the 0.3-NA MET optic," in Emerging Lithographic Technologies VIII, R. S. MacKay, ed., Proc. SPIE 5374, 881-891 (2004).
[CrossRef]

Jackson, K.

P. Naulleau, K. Goldberg, E. Anderson, J. Cain, P. Denham, B. Hoef, K. Jackson, A. Morlens, S. Rekawa, and K. Dean, "EUV microexposures at the ALS using the 0.3-NA MET projection optics," in Emerging Lithographic Technologies IX, R. S. MacKay, ed., Proc. SPIE 5751, 56-63 (2005).

K. Goldberg, P. Naulleau, P. Denham, S. Rekawa, K. Jackson, E. Anderson, and J. Liddle, "At-wavelength alignment and testing of the 0.3 NA MET optic," J. Vac. Sci. Technol. B 22, 2956-2961 (2004).
[CrossRef]

P. Naulleau, K. Goldberg, E. Anderson, K. Bradley, R. Delano, P. Denham, B. Gunion, B. Harteneck, B. Hoef, H. Huang, K. Jackson, G. Jones, D. Kemp, A. Liddle, R. Oort, A. Rawlins, S. Rekawa, F. Salmassi, R. Tackaberry, C. Chung, L. Hale, D. Phillion, G. Sommargren, and J. Taylor, "Status of EUV microexposure capabilities at the ALS using the 0.3-NA MET optic," in Emerging Lithographic Technologies VIII, R. S. MacKay, ed., Proc. SPIE 5374, 881-891 (2004).
[CrossRef]

P. Naulleau, K. Goldberg, J. Cain, E. Anderson, P. Denham, K. Jackson, S. Rekawa, F. Salmassi, and G. Zhang, "EUV microexposures at the ALS using the 0.3-NA MET optic," J. Vac. Sci. Technol. B 22, 2962-2965 (2004).
[CrossRef]

Jones, G.

P. Naulleau, K. Goldberg, E. Anderson, K. Bradley, R. Delano, P. Denham, B. Gunion, B. Harteneck, B. Hoef, H. Huang, K. Jackson, G. Jones, D. Kemp, A. Liddle, R. Oort, A. Rawlins, S. Rekawa, F. Salmassi, R. Tackaberry, C. Chung, L. Hale, D. Phillion, G. Sommargren, and J. Taylor, "Status of EUV microexposure capabilities at the ALS using the 0.3-NA MET optic," in Emerging Lithographic Technologies VIII, R. S. MacKay, ed., Proc. SPIE 5374, 881-891 (2004).
[CrossRef]

Juffermans, C.

P. Dirksen, C. Juffermans, R. Pellens, M. Maenhoudt, and P. Debisschop, "Novel aberration monitor for optical lithography," in Optical Microlithography XII, L. Van den Hove, ed., Proc. SPIE 3679, 77-86 (1999).
[CrossRef]

Kemp, D.

P. Naulleau, K. Goldberg, E. Anderson, K. Bradley, R. Delano, P. Denham, B. Gunion, B. Harteneck, B. Hoef, H. Huang, K. Jackson, G. Jones, D. Kemp, A. Liddle, R. Oort, A. Rawlins, S. Rekawa, F. Salmassi, R. Tackaberry, C. Chung, L. Hale, D. Phillion, G. Sommargren, and J. Taylor, "Status of EUV microexposure capabilities at the ALS using the 0.3-NA MET optic," in Emerging Lithographic Technologies VIII, R. S. MacKay, ed., Proc. SPIE 5374, 881-891 (2004).
[CrossRef]

Koehler, T.

R. Brainard, T. Koehler, P. Naulleau, and D. van Steenwinckel, "Performance of EUV photoresists on the ALS micro exposure tool," in Emerging Lithographic Technologies IX, R. S. Mackay, ed., Proc. SPIE 5751, 754-764 (2005).

Liddle, A.

P. Naulleau, K. Goldberg, E. Anderson, K. Bradley, R. Delano, P. Denham, B. Gunion, B. Harteneck, B. Hoef, H. Huang, K. Jackson, G. Jones, D. Kemp, A. Liddle, R. Oort, A. Rawlins, S. Rekawa, F. Salmassi, R. Tackaberry, C. Chung, L. Hale, D. Phillion, G. Sommargren, and J. Taylor, "Status of EUV microexposure capabilities at the ALS using the 0.3-NA MET optic," in Emerging Lithographic Technologies VIII, R. S. MacKay, ed., Proc. SPIE 5374, 881-891 (2004).
[CrossRef]

Liddle, J.

K. Goldberg, P. Naulleau, P. Denham, S. Rekawa, K. Jackson, E. Anderson, and J. Liddle, "At-wavelength alignment and testing of the 0.3 NA MET optic," J. Vac. Sci. Technol. B 22, 2956-2961 (2004).
[CrossRef]

Maenhoudt, M.

P. Dirksen, C. Juffermans, R. Pellens, M. Maenhoudt, and P. Debisschop, "Novel aberration monitor for optical lithography," in Optical Microlithography XII, L. Van den Hove, ed., Proc. SPIE 3679, 77-86 (1999).
[CrossRef]

McEntee, N.

A. Brunton, J. Cashmore, P. Elbourn, G. Elliner, M. Gower, P. Grunewald, M. Harman, S. Hough, N. McEntee, S. Mundair, D. Rees, P. Richards, V. Truffert, I. Wallhead, and M. Whitfield, "High-resolution EUV microstepper tool for resist testing and technology evaluation," in High-Power Laser Ablation V, C. R. Phipps, ed., Proc. SPIE 5448, 681-692 (2004).

Morlens, A.

P. Naulleau, K. Goldberg, E. Anderson, J. Cain, P. Denham, B. Hoef, K. Jackson, A. Morlens, S. Rekawa, and K. Dean, "EUV microexposures at the ALS using the 0.3-NA MET projection optics," in Emerging Lithographic Technologies IX, R. S. MacKay, ed., Proc. SPIE 5751, 56-63 (2005).

Mundair, S.

A. Brunton, J. Cashmore, P. Elbourn, G. Elliner, M. Gower, P. Grunewald, M. Harman, S. Hough, N. McEntee, S. Mundair, D. Rees, P. Richards, V. Truffert, I. Wallhead, and M. Whitfield, "High-resolution EUV microstepper tool for resist testing and technology evaluation," in High-Power Laser Ablation V, C. R. Phipps, ed., Proc. SPIE 5448, 681-692 (2004).

Naulleau, P.

P. Naulleau, K. Goldberg, E. Anderson, J. Cain, P. Denham, B. Hoef, K. Jackson, A. Morlens, S. Rekawa, and K. Dean, "EUV microexposures at the ALS using the 0.3-NA MET projection optics," in Emerging Lithographic Technologies IX, R. S. MacKay, ed., Proc. SPIE 5751, 56-63 (2005).

R. Brainard, T. Koehler, P. Naulleau, and D. van Steenwinckel, "Performance of EUV photoresists on the ALS micro exposure tool," in Emerging Lithographic Technologies IX, R. S. Mackay, ed., Proc. SPIE 5751, 754-764 (2005).

P. Naulleau, P. Denham, and S. Rekawa, "Design and implementation of a vacuum compatible laser-based subnanometer resolution absolute distance measurement system," Opt. Eng. 44, 13,605-13,609 (2005).
[CrossRef]

P. Naulleau, K. Goldberg, J. Cain, E. Anderson, P. Denham, K. Jackson, S. Rekawa, F. Salmassi, and G. Zhang, "EUV microexposures at the ALS using the 0.3-NA MET optic," J. Vac. Sci. Technol. B 22, 2962-2965 (2004).
[CrossRef]

P. Naulleau, K. Goldberg, E. Anderson, K. Bradley, R. Delano, P. Denham, B. Gunion, B. Harteneck, B. Hoef, H. Huang, K. Jackson, G. Jones, D. Kemp, A. Liddle, R. Oort, A. Rawlins, S. Rekawa, F. Salmassi, R. Tackaberry, C. Chung, L. Hale, D. Phillion, G. Sommargren, and J. Taylor, "Status of EUV microexposure capabilities at the ALS using the 0.3-NA MET optic," in Emerging Lithographic Technologies VIII, R. S. MacKay, ed., Proc. SPIE 5374, 881-891 (2004).
[CrossRef]

K. Goldberg, P. Naulleau, P. Denham, S. Rekawa, K. Jackson, E. Anderson, and J. Liddle, "At-wavelength alignment and testing of the 0.3 NA MET optic," J. Vac. Sci. Technol. B 22, 2956-2961 (2004).
[CrossRef]

P. Naulleau, K. Goldberg, P. Batson, J. Bokor, P. Denham, and S. Rekawa, "A Fourier-synthesis custom-coherence illuminator for EUV microfield lithography," Appl. Opt. 42, 820-826 (2003).
[CrossRef] [PubMed]

P. Naulleau, J. Cain, and K. Goldberg, "Lithographic characterization of the field dependent astigmatism and alignment stability of a 0.3 numerical aperture EUV microfield optic," J. Vac. Sci. Technol. B (to be published).

Neureuther, A.

G. Robins, K. Adam, and A. Neureuther, "Measuring optical image aberrations with pattern and probe based targets," J. Vac. Sci. Technol. B 20, 338-343 (2002).
[CrossRef]

Oort, R.

P. Naulleau, K. Goldberg, E. Anderson, K. Bradley, R. Delano, P. Denham, B. Gunion, B. Harteneck, B. Hoef, H. Huang, K. Jackson, G. Jones, D. Kemp, A. Liddle, R. Oort, A. Rawlins, S. Rekawa, F. Salmassi, R. Tackaberry, C. Chung, L. Hale, D. Phillion, G. Sommargren, and J. Taylor, "Status of EUV microexposure capabilities at the ALS using the 0.3-NA MET optic," in Emerging Lithographic Technologies VIII, R. S. MacKay, ed., Proc. SPIE 5374, 881-891 (2004).
[CrossRef]

Pellens, R.

P. Dirksen, C. Juffermans, R. Pellens, M. Maenhoudt, and P. Debisschop, "Novel aberration monitor for optical lithography," in Optical Microlithography XII, L. Van den Hove, ed., Proc. SPIE 3679, 77-86 (1999).
[CrossRef]

Phillion, D.

P. Naulleau, K. Goldberg, E. Anderson, K. Bradley, R. Delano, P. Denham, B. Gunion, B. Harteneck, B. Hoef, H. Huang, K. Jackson, G. Jones, D. Kemp, A. Liddle, R. Oort, A. Rawlins, S. Rekawa, F. Salmassi, R. Tackaberry, C. Chung, L. Hale, D. Phillion, G. Sommargren, and J. Taylor, "Status of EUV microexposure capabilities at the ALS using the 0.3-NA MET optic," in Emerging Lithographic Technologies VIII, R. S. MacKay, ed., Proc. SPIE 5374, 881-891 (2004).
[CrossRef]

Rawlins, A.

P. Naulleau, K. Goldberg, E. Anderson, K. Bradley, R. Delano, P. Denham, B. Gunion, B. Harteneck, B. Hoef, H. Huang, K. Jackson, G. Jones, D. Kemp, A. Liddle, R. Oort, A. Rawlins, S. Rekawa, F. Salmassi, R. Tackaberry, C. Chung, L. Hale, D. Phillion, G. Sommargren, and J. Taylor, "Status of EUV microexposure capabilities at the ALS using the 0.3-NA MET optic," in Emerging Lithographic Technologies VIII, R. S. MacKay, ed., Proc. SPIE 5374, 881-891 (2004).
[CrossRef]

Rees, D.

A. Brunton, J. Cashmore, P. Elbourn, G. Elliner, M. Gower, P. Grunewald, M. Harman, S. Hough, N. McEntee, S. Mundair, D. Rees, P. Richards, V. Truffert, I. Wallhead, and M. Whitfield, "High-resolution EUV microstepper tool for resist testing and technology evaluation," in High-Power Laser Ablation V, C. R. Phipps, ed., Proc. SPIE 5448, 681-692 (2004).

Rekawa, S.

P. Naulleau, K. Goldberg, E. Anderson, J. Cain, P. Denham, B. Hoef, K. Jackson, A. Morlens, S. Rekawa, and K. Dean, "EUV microexposures at the ALS using the 0.3-NA MET projection optics," in Emerging Lithographic Technologies IX, R. S. MacKay, ed., Proc. SPIE 5751, 56-63 (2005).

P. Naulleau, P. Denham, and S. Rekawa, "Design and implementation of a vacuum compatible laser-based subnanometer resolution absolute distance measurement system," Opt. Eng. 44, 13,605-13,609 (2005).
[CrossRef]

P. Naulleau, K. Goldberg, E. Anderson, K. Bradley, R. Delano, P. Denham, B. Gunion, B. Harteneck, B. Hoef, H. Huang, K. Jackson, G. Jones, D. Kemp, A. Liddle, R. Oort, A. Rawlins, S. Rekawa, F. Salmassi, R. Tackaberry, C. Chung, L. Hale, D. Phillion, G. Sommargren, and J. Taylor, "Status of EUV microexposure capabilities at the ALS using the 0.3-NA MET optic," in Emerging Lithographic Technologies VIII, R. S. MacKay, ed., Proc. SPIE 5374, 881-891 (2004).
[CrossRef]

P. Naulleau, K. Goldberg, J. Cain, E. Anderson, P. Denham, K. Jackson, S. Rekawa, F. Salmassi, and G. Zhang, "EUV microexposures at the ALS using the 0.3-NA MET optic," J. Vac. Sci. Technol. B 22, 2962-2965 (2004).
[CrossRef]

K. Goldberg, P. Naulleau, P. Denham, S. Rekawa, K. Jackson, E. Anderson, and J. Liddle, "At-wavelength alignment and testing of the 0.3 NA MET optic," J. Vac. Sci. Technol. B 22, 2956-2961 (2004).
[CrossRef]

P. Naulleau, K. Goldberg, P. Batson, J. Bokor, P. Denham, and S. Rekawa, "A Fourier-synthesis custom-coherence illuminator for EUV microfield lithography," Appl. Opt. 42, 820-826 (2003).
[CrossRef] [PubMed]

Richards, P.

A. Brunton, J. Cashmore, P. Elbourn, G. Elliner, M. Gower, P. Grunewald, M. Harman, S. Hough, N. McEntee, S. Mundair, D. Rees, P. Richards, V. Truffert, I. Wallhead, and M. Whitfield, "High-resolution EUV microstepper tool for resist testing and technology evaluation," in High-Power Laser Ablation V, C. R. Phipps, ed., Proc. SPIE 5448, 681-692 (2004).

Robins, G.

G. Robins, K. Adam, and A. Neureuther, "Measuring optical image aberrations with pattern and probe based targets," J. Vac. Sci. Technol. B 20, 338-343 (2002).
[CrossRef]

Salmassi, F.

P. Naulleau, K. Goldberg, J. Cain, E. Anderson, P. Denham, K. Jackson, S. Rekawa, F. Salmassi, and G. Zhang, "EUV microexposures at the ALS using the 0.3-NA MET optic," J. Vac. Sci. Technol. B 22, 2962-2965 (2004).
[CrossRef]

P. Naulleau, K. Goldberg, E. Anderson, K. Bradley, R. Delano, P. Denham, B. Gunion, B. Harteneck, B. Hoef, H. Huang, K. Jackson, G. Jones, D. Kemp, A. Liddle, R. Oort, A. Rawlins, S. Rekawa, F. Salmassi, R. Tackaberry, C. Chung, L. Hale, D. Phillion, G. Sommargren, and J. Taylor, "Status of EUV microexposure capabilities at the ALS using the 0.3-NA MET optic," in Emerging Lithographic Technologies VIII, R. S. MacKay, ed., Proc. SPIE 5374, 881-891 (2004).
[CrossRef]

Shirai, S.

H. Fukuda, K. Hayano, and S. Shirai, "Determination of high-order lens aberration using phase/amplitude linear algebra," J. Vac. Sci. Technol. B 17, 3318-3321 (1999).
[CrossRef]

Sommargren, G.

P. Naulleau, K. Goldberg, E. Anderson, K. Bradley, R. Delano, P. Denham, B. Gunion, B. Harteneck, B. Hoef, H. Huang, K. Jackson, G. Jones, D. Kemp, A. Liddle, R. Oort, A. Rawlins, S. Rekawa, F. Salmassi, R. Tackaberry, C. Chung, L. Hale, D. Phillion, G. Sommargren, and J. Taylor, "Status of EUV microexposure capabilities at the ALS using the 0.3-NA MET optic," in Emerging Lithographic Technologies VIII, R. S. MacKay, ed., Proc. SPIE 5374, 881-891 (2004).
[CrossRef]

Stulen, R.

R. Stulen and D. Sweeney, "Extreme ultraviolet lithography," IEEE J. Quantum Electron. 35, 694-699 (1999).
[CrossRef]

Sweeney, D.

R. Stulen and D. Sweeney, "Extreme ultraviolet lithography," IEEE J. Quantum Electron. 35, 694-699 (1999).
[CrossRef]

Tackaberry, R.

P. Naulleau, K. Goldberg, E. Anderson, K. Bradley, R. Delano, P. Denham, B. Gunion, B. Harteneck, B. Hoef, H. Huang, K. Jackson, G. Jones, D. Kemp, A. Liddle, R. Oort, A. Rawlins, S. Rekawa, F. Salmassi, R. Tackaberry, C. Chung, L. Hale, D. Phillion, G. Sommargren, and J. Taylor, "Status of EUV microexposure capabilities at the ALS using the 0.3-NA MET optic," in Emerging Lithographic Technologies VIII, R. S. MacKay, ed., Proc. SPIE 5374, 881-891 (2004).
[CrossRef]

Taylor, J.

P. Naulleau, K. Goldberg, E. Anderson, K. Bradley, R. Delano, P. Denham, B. Gunion, B. Harteneck, B. Hoef, H. Huang, K. Jackson, G. Jones, D. Kemp, A. Liddle, R. Oort, A. Rawlins, S. Rekawa, F. Salmassi, R. Tackaberry, C. Chung, L. Hale, D. Phillion, G. Sommargren, and J. Taylor, "Status of EUV microexposure capabilities at the ALS using the 0.3-NA MET optic," in Emerging Lithographic Technologies VIII, R. S. MacKay, ed., Proc. SPIE 5374, 881-891 (2004).
[CrossRef]

Truffert, V.

A. Brunton, J. Cashmore, P. Elbourn, G. Elliner, M. Gower, P. Grunewald, M. Harman, S. Hough, N. McEntee, S. Mundair, D. Rees, P. Richards, V. Truffert, I. Wallhead, and M. Whitfield, "High-resolution EUV microstepper tool for resist testing and technology evaluation," in High-Power Laser Ablation V, C. R. Phipps, ed., Proc. SPIE 5448, 681-692 (2004).

van Steenwinckel, D.

R. Brainard, T. Koehler, P. Naulleau, and D. van Steenwinckel, "Performance of EUV photoresists on the ALS micro exposure tool," in Emerging Lithographic Technologies IX, R. S. Mackay, ed., Proc. SPIE 5751, 754-764 (2005).

Wallhead, I.

A. Brunton, J. Cashmore, P. Elbourn, G. Elliner, M. Gower, P. Grunewald, M. Harman, S. Hough, N. McEntee, S. Mundair, D. Rees, P. Richards, V. Truffert, I. Wallhead, and M. Whitfield, "High-resolution EUV microstepper tool for resist testing and technology evaluation," in High-Power Laser Ablation V, C. R. Phipps, ed., Proc. SPIE 5448, 681-692 (2004).

Whitfield, M.

A. Brunton, J. Cashmore, P. Elbourn, G. Elliner, M. Gower, P. Grunewald, M. Harman, S. Hough, N. McEntee, S. Mundair, D. Rees, P. Richards, V. Truffert, I. Wallhead, and M. Whitfield, "High-resolution EUV microstepper tool for resist testing and technology evaluation," in High-Power Laser Ablation V, C. R. Phipps, ed., Proc. SPIE 5448, 681-692 (2004).

Zhang, G.

P. Naulleau, K. Goldberg, J. Cain, E. Anderson, P. Denham, K. Jackson, S. Rekawa, F. Salmassi, and G. Zhang, "EUV microexposures at the ALS using the 0.3-NA MET optic," J. Vac. Sci. Technol. B 22, 2962-2965 (2004).
[CrossRef]

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

R. Stulen and D. Sweeney, "Extreme ultraviolet lithography," IEEE J. Quantum Electron. 35, 694-699 (1999).
[CrossRef]

J. Vac. Sci. Technol. B (5)

P. Naulleau, K. Goldberg, J. Cain, E. Anderson, P. Denham, K. Jackson, S. Rekawa, F. Salmassi, and G. Zhang, "EUV microexposures at the ALS using the 0.3-NA MET optic," J. Vac. Sci. Technol. B 22, 2962-2965 (2004).
[CrossRef]

H. Fukuda, K. Hayano, and S. Shirai, "Determination of high-order lens aberration using phase/amplitude linear algebra," J. Vac. Sci. Technol. B 17, 3318-3321 (1999).
[CrossRef]

G. Robins, K. Adam, and A. Neureuther, "Measuring optical image aberrations with pattern and probe based targets," J. Vac. Sci. Technol. B 20, 338-343 (2002).
[CrossRef]

P. Naulleau, J. Cain, and K. Goldberg, "Lithographic characterization of the field dependent astigmatism and alignment stability of a 0.3 numerical aperture EUV microfield optic," J. Vac. Sci. Technol. B (to be published).

K. Goldberg, P. Naulleau, P. Denham, S. Rekawa, K. Jackson, E. Anderson, and J. Liddle, "At-wavelength alignment and testing of the 0.3 NA MET optic," J. Vac. Sci. Technol. B 22, 2956-2961 (2004).
[CrossRef]

Opt. Eng. (1)

P. Naulleau, P. Denham, and S. Rekawa, "Design and implementation of a vacuum compatible laser-based subnanometer resolution absolute distance measurement system," Opt. Eng. 44, 13,605-13,609 (2005).
[CrossRef]

Proc. SPIE (3)

R. Brainard, T. Koehler, P. Naulleau, and D. van Steenwinckel, "Performance of EUV photoresists on the ALS micro exposure tool," in Emerging Lithographic Technologies IX, R. S. Mackay, ed., Proc. SPIE 5751, 754-764 (2005).

P. Dirksen, C. Juffermans, R. Pellens, M. Maenhoudt, and P. Debisschop, "Novel aberration monitor for optical lithography," in Optical Microlithography XII, L. Van den Hove, ed., Proc. SPIE 3679, 77-86 (1999).
[CrossRef]

P. Naulleau, K. Goldberg, E. Anderson, K. Bradley, R. Delano, P. Denham, B. Gunion, B. Harteneck, B. Hoef, H. Huang, K. Jackson, G. Jones, D. Kemp, A. Liddle, R. Oort, A. Rawlins, S. Rekawa, F. Salmassi, R. Tackaberry, C. Chung, L. Hale, D. Phillion, G. Sommargren, and J. Taylor, "Status of EUV microexposure capabilities at the ALS using the 0.3-NA MET optic," in Emerging Lithographic Technologies VIII, R. S. MacKay, ed., Proc. SPIE 5374, 881-891 (2004).
[CrossRef]

Other (4)

CODE V is a registered trademark of Optical Research Associates, Suite 300, 3280 East Foothill Boulevard, Pasadena, Calif. 91107-3103.

PROLITH is a registered trademark of KLA-Tencor Corporation, 160 Rio Robles, San Jose, Calif. 95134.

P. Naulleau, K. Goldberg, E. Anderson, J. Cain, P. Denham, B. Hoef, K. Jackson, A. Morlens, S. Rekawa, and K. Dean, "EUV microexposures at the ALS using the 0.3-NA MET projection optics," in Emerging Lithographic Technologies IX, R. S. MacKay, ed., Proc. SPIE 5751, 56-63 (2005).

A. Brunton, J. Cashmore, P. Elbourn, G. Elliner, M. Gower, P. Grunewald, M. Harman, S. Hough, N. McEntee, S. Mundair, D. Rees, P. Richards, V. Truffert, I. Wallhead, and M. Whitfield, "High-resolution EUV microstepper tool for resist testing and technology evaluation," in High-Power Laser Ablation V, C. R. Phipps, ed., Proc. SPIE 5448, 681-692 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Pupil-fill configuration enabling mask diffraction to be used to sample different radial offsets in the pupil while preventing the frequency-doubling problem from arising in the centrally obscured MET optic: (a) The pupil fill alone or in the presence of coarse lines and spaces on the mask, (b) the pupil fill modulated by the diffraction from a medium-pitch vertical line-space pattern on the mask, and (c) the pupil fill modulated by the diffraction from a fine-pitch vertical line-space pattern on the mask.

Fig. 2
Fig. 2

Variable-offset-pupil-fill method for sampling radial positions in the optic. The pupil-fill pattern is shown modulated by a coarse horizontal line-space structure on the mask.

Fig. 3
Fig. 3

Modeled focus as a function of feature half-pitch (CD) for the illumination configuration shown in Fig. 1. Two aberration conditions are considered in the model: The first is the wavefront error measured by EUV interferometry in late 2003, and the second is the same wavefront with the spherical error set to 0.8 nm rms. Note that the interferometrically measured wavefront includes approximately 0.1 nm rms spherical error.

Fig. 4
Fig. 4

Modeling results for the variable offset pupil-fill method. In this case, 0.8 nm spherical error causes a focus shift of greater than 250 nm as the pupil-fill offset σ is moved from 0.475 to 0.825. For the expected wavefront error the focus shift is less than 50 nm.

Fig. 5
Fig. 5

Modeled sensitivity of the focus as a function of feature half-pitch (CD) to first-order aberrations. Astigmatism (Z4, Z5), coma (Z6, Z7), and spherical (Z8) aberrations are shown. Excellent selectivity to spherical error can be observed.

Fig. 6
Fig. 6

Modeled sensitivity of the focus as a function of pupil-fill offset to first-order aberrations. Astigmatism (Z4, Z5), coma (Z6, Z7), and spherical (Z8) aberrations are shown. The only nonspherical term that shows any sensitivity is x-oriented coma. Because coma is an odd function, however, repeating the measurement on the opposite side of the pupil and averaging the results would serve as a means of eliminating sensitivity to coma. Of even more interest, these results indicate that pupil-dependent focus-shift methods can also potentially be used to quantify coma.

Fig. 7
Fig. 7

Measured focus as a function of feature half-pitch (CD). The pupil fill was a disk of radius 0.15 σ positioned directly above the central obscuration in accordance with Fig. 1.

Fig. 8
Fig. 8

Measured focus as a function of pupil-fill offset. The pupil fill was a disk of radius 0.15 σ and offset in the x direction. Three offsets were used: σ = 0.475, 0.65, 0.825.

Fig. 9
Fig. 9

Schematic of the exposure layout for the offset-dependent focus-shift wafer. Three separate focus-exposure matrices are exposed on the same wafer, with each matrix corresponding to a different pupil-fill offset. Because of wafer stage travel limits, only three dose values were used in each matrix.

Fig. 10
Fig. 10

Least-squares regression results to determine the expected value of the spherical aberration. The minimized function is the difference between the measured focus signature and the predicted focus signature as a function of the magnitude of spherical error. The predicted signature is determined through PROLITH modeling. Minimizing the error yields a predicted spherical aberration rms magnitude of 1 nm.

Tables (1)

Tables Icon

Table 1 Annular Zernike rms Magnitude Sensitivities to Misalignment States a

Metrics