Abstract

The emission spectra of photonic-quantum-ring lasers can be explained by a three-dimensional Rayleigh–Fabry–Perot cavity resonance model. The proposed model for the emission spectral peaks fits well with the observed blueshift of the emission spectrum envelope as a function of the view angle. Furthermore, we observe that the emission spectra with the high-order mode index showed blueshift behaviors as functions of the injection current, whereas those with the low-order mode index showed redshift behaviors. These phenomena might result in lowering the effective refractive index by the carrier inhomogeneity in the active disk.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Yamamoto and R. E. Slusher, "Optical processes in microcavities," Phys. Today 46(6), 66-73 (1993).
    [CrossRef]
  2. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, "Whispering-gallery mode microdisk lasers," Appl. Phys. Lett. 60, 289-291 (1992).
    [CrossRef]
  3. A. F. J. Levi, R. E. Slusher, S. L. McCall, T. S. J. Pearton, and W. S. Hobson, "Room-temperature lasing action in In0.51Ga0.49P/In0.2Ga0.8As microcylinder laser diodes," Appl. Phys. Lett. 62, 2021-2023 (1993).
    [CrossRef]
  4. N. C. Frateschi and A. F. J. Levi, "Resonant modes and laser spectrum of microdisk lasers," Appl. Phys. Lett. 66, 2932-2934 (1995).
    [CrossRef]
  5. N. C. Frateschi and A. F. J. Levi, "The spectrum of microdisk lasers," J. Appl. Phys. 80, 644-653 (1996).
    [CrossRef]
  6. A. W. Poon, F. Courvoisier, and R. K. Chang, "Multimode resonances in square-shaped optical microcavities," Opt. Lett. 26, 632-634 (2001).
    [CrossRef]
  7. A. Yariv, "Scaling laws and minimum threshold currents for quantum-confined semiconductor lasers," Appl. Phys. Lett. 53, 1033-1035 (1988).
    [CrossRef]
  8. J. C. Ahn, K. S. Kwak, B. H. Park, H. Y. Kang, J. Y. Kim, and O. Kwon, "Photonic quantum ring," Phys. Rev. Lett. 82, 536-539 (1999).
    [CrossRef]
  9. B. H. Park, S. D. Baek, J. Y. Kim, J. Bae, H. Han, and O. Kwon, "Optical sensing by using photonic quantum ring lasers and resonance enhanced photodetectors," Opt. Eng. 41, 1339-1345 (2002).
    [CrossRef]
  10. B. H. Park, J. Bae, M. J. Kim, and O. Kwon, "Chiral wave propagation manifold of the photonic quantum ring laser," Appl. Phys. Lett. 81, 580-582 (2002).
    [CrossRef]
  11. J. Bae, J. Lee, O. Kwon, and V. G. Minogin, "Spectrum of three-dimensional photonic quantum-ring microdisk cavities: comparison between theory and experiment," Opt. Lett. 26, 632-635 (2001).
  12. M. K. Chin, D. Y. Chu, and S. T. Ho, "Estimation of the spontaneous emission factor for microdisk lasers via the approximation of whispering gallery modes," J. Appl. Phys. 75, 3302-3307 (1994).
    [CrossRef]
  13. R. P. Wang and M. M. Dumitrescu, "Theory of optical modes in semiconductor microdisk lasers," J. Appl. Phys. 81, 3391-3397 (1997).
    [CrossRef]
  14. J.-Y. Kim, K. S. Kwak, J. S. Kim, B. Kang, and O. Kwon, "Fabrication of photonic quantum ring laser using chemically assisted ion beam etching," J. Vac. Sci. Technol. B 19, 1334-1338 (2001).
    [CrossRef]
  15. J.-Y. Kim, J. Lee, J. Kim, B. K. Kang, and O. Kwon, "Effect of surface treatment on leakage current of GaAs/AlGaAs laser microcavities," Appl. Phys. Lett. 82, 4504-4506 (2003).
    [CrossRef]
  16. C. Wilmsen, H. Temkin, and L. Coldren, "Fabrication and performance of vertical-cavity surface-emitting lasers," in Vertical-Cavity Surface-Emitting Lasers: Design, Fabrication, Characterization, and Applications, K.D.Choquette and K.M.Geib, eds. (Cambridge U. Press, 1999), pp. 193-232.
  17. G. R. Hadley, "Effective index model for vertical-cavity surface-emitting lasers," Opt. Lett. 20, 1483-1485 (1995).
    [CrossRef] [PubMed]
  18. G. R. Hadley, K. L. Lear, M. E. Warren, K. D. Choquette, J. W. Scott, and S. W. Corzine, "Comprehensive numerical modeling of vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 32, 607-616 (1996).
    [CrossRef]
  19. U. Mohideen, R. E. Slusher, F. Jahnke, and S. W. Koch, "Semiconductor microlaser linewidths," Phys. Rev. Lett. 73, 1785-1788 (1994).
    [CrossRef] [PubMed]
  20. S. M. K. Thiyagarajan and A. F. J. Levi, "Dynamic behavior of scaled microdisk lasers," Solid-State Electron. 45, 1821-1826 (2001).
    [CrossRef]
  21. B. H. Park, J. C. Ahn, J. Bae, J. Y. Kim, M. S. Kim, S. D. Baek, and O. Kwon, "Evanescent and propagating wave characteristics of the photonic quantum ring laser," Appl. Phys. Lett. 79, 1593-1595 (2001).
    [CrossRef]

2003 (1)

J.-Y. Kim, J. Lee, J. Kim, B. K. Kang, and O. Kwon, "Effect of surface treatment on leakage current of GaAs/AlGaAs laser microcavities," Appl. Phys. Lett. 82, 4504-4506 (2003).
[CrossRef]

2002 (2)

B. H. Park, S. D. Baek, J. Y. Kim, J. Bae, H. Han, and O. Kwon, "Optical sensing by using photonic quantum ring lasers and resonance enhanced photodetectors," Opt. Eng. 41, 1339-1345 (2002).
[CrossRef]

B. H. Park, J. Bae, M. J. Kim, and O. Kwon, "Chiral wave propagation manifold of the photonic quantum ring laser," Appl. Phys. Lett. 81, 580-582 (2002).
[CrossRef]

2001 (5)

J. Bae, J. Lee, O. Kwon, and V. G. Minogin, "Spectrum of three-dimensional photonic quantum-ring microdisk cavities: comparison between theory and experiment," Opt. Lett. 26, 632-635 (2001).

J.-Y. Kim, K. S. Kwak, J. S. Kim, B. Kang, and O. Kwon, "Fabrication of photonic quantum ring laser using chemically assisted ion beam etching," J. Vac. Sci. Technol. B 19, 1334-1338 (2001).
[CrossRef]

A. W. Poon, F. Courvoisier, and R. K. Chang, "Multimode resonances in square-shaped optical microcavities," Opt. Lett. 26, 632-634 (2001).
[CrossRef]

S. M. K. Thiyagarajan and A. F. J. Levi, "Dynamic behavior of scaled microdisk lasers," Solid-State Electron. 45, 1821-1826 (2001).
[CrossRef]

B. H. Park, J. C. Ahn, J. Bae, J. Y. Kim, M. S. Kim, S. D. Baek, and O. Kwon, "Evanescent and propagating wave characteristics of the photonic quantum ring laser," Appl. Phys. Lett. 79, 1593-1595 (2001).
[CrossRef]

1999 (1)

J. C. Ahn, K. S. Kwak, B. H. Park, H. Y. Kang, J. Y. Kim, and O. Kwon, "Photonic quantum ring," Phys. Rev. Lett. 82, 536-539 (1999).
[CrossRef]

1997 (1)

R. P. Wang and M. M. Dumitrescu, "Theory of optical modes in semiconductor microdisk lasers," J. Appl. Phys. 81, 3391-3397 (1997).
[CrossRef]

1996 (2)

N. C. Frateschi and A. F. J. Levi, "The spectrum of microdisk lasers," J. Appl. Phys. 80, 644-653 (1996).
[CrossRef]

G. R. Hadley, K. L. Lear, M. E. Warren, K. D. Choquette, J. W. Scott, and S. W. Corzine, "Comprehensive numerical modeling of vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 32, 607-616 (1996).
[CrossRef]

1995 (2)

N. C. Frateschi and A. F. J. Levi, "Resonant modes and laser spectrum of microdisk lasers," Appl. Phys. Lett. 66, 2932-2934 (1995).
[CrossRef]

G. R. Hadley, "Effective index model for vertical-cavity surface-emitting lasers," Opt. Lett. 20, 1483-1485 (1995).
[CrossRef] [PubMed]

1994 (2)

M. K. Chin, D. Y. Chu, and S. T. Ho, "Estimation of the spontaneous emission factor for microdisk lasers via the approximation of whispering gallery modes," J. Appl. Phys. 75, 3302-3307 (1994).
[CrossRef]

U. Mohideen, R. E. Slusher, F. Jahnke, and S. W. Koch, "Semiconductor microlaser linewidths," Phys. Rev. Lett. 73, 1785-1788 (1994).
[CrossRef] [PubMed]

1993 (2)

A. F. J. Levi, R. E. Slusher, S. L. McCall, T. S. J. Pearton, and W. S. Hobson, "Room-temperature lasing action in In0.51Ga0.49P/In0.2Ga0.8As microcylinder laser diodes," Appl. Phys. Lett. 62, 2021-2023 (1993).
[CrossRef]

Y. Yamamoto and R. E. Slusher, "Optical processes in microcavities," Phys. Today 46(6), 66-73 (1993).
[CrossRef]

1992 (1)

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, "Whispering-gallery mode microdisk lasers," Appl. Phys. Lett. 60, 289-291 (1992).
[CrossRef]

1988 (1)

A. Yariv, "Scaling laws and minimum threshold currents for quantum-confined semiconductor lasers," Appl. Phys. Lett. 53, 1033-1035 (1988).
[CrossRef]

Ahn, J. C.

B. H. Park, J. C. Ahn, J. Bae, J. Y. Kim, M. S. Kim, S. D. Baek, and O. Kwon, "Evanescent and propagating wave characteristics of the photonic quantum ring laser," Appl. Phys. Lett. 79, 1593-1595 (2001).
[CrossRef]

J. C. Ahn, K. S. Kwak, B. H. Park, H. Y. Kang, J. Y. Kim, and O. Kwon, "Photonic quantum ring," Phys. Rev. Lett. 82, 536-539 (1999).
[CrossRef]

Bae, J.

B. H. Park, S. D. Baek, J. Y. Kim, J. Bae, H. Han, and O. Kwon, "Optical sensing by using photonic quantum ring lasers and resonance enhanced photodetectors," Opt. Eng. 41, 1339-1345 (2002).
[CrossRef]

B. H. Park, J. Bae, M. J. Kim, and O. Kwon, "Chiral wave propagation manifold of the photonic quantum ring laser," Appl. Phys. Lett. 81, 580-582 (2002).
[CrossRef]

J. Bae, J. Lee, O. Kwon, and V. G. Minogin, "Spectrum of three-dimensional photonic quantum-ring microdisk cavities: comparison between theory and experiment," Opt. Lett. 26, 632-635 (2001).

B. H. Park, J. C. Ahn, J. Bae, J. Y. Kim, M. S. Kim, S. D. Baek, and O. Kwon, "Evanescent and propagating wave characteristics of the photonic quantum ring laser," Appl. Phys. Lett. 79, 1593-1595 (2001).
[CrossRef]

Baek, S. D.

B. H. Park, S. D. Baek, J. Y. Kim, J. Bae, H. Han, and O. Kwon, "Optical sensing by using photonic quantum ring lasers and resonance enhanced photodetectors," Opt. Eng. 41, 1339-1345 (2002).
[CrossRef]

B. H. Park, J. C. Ahn, J. Bae, J. Y. Kim, M. S. Kim, S. D. Baek, and O. Kwon, "Evanescent and propagating wave characteristics of the photonic quantum ring laser," Appl. Phys. Lett. 79, 1593-1595 (2001).
[CrossRef]

Chang, R. K.

Chin, M. K.

M. K. Chin, D. Y. Chu, and S. T. Ho, "Estimation of the spontaneous emission factor for microdisk lasers via the approximation of whispering gallery modes," J. Appl. Phys. 75, 3302-3307 (1994).
[CrossRef]

Choquette, K. D.

G. R. Hadley, K. L. Lear, M. E. Warren, K. D. Choquette, J. W. Scott, and S. W. Corzine, "Comprehensive numerical modeling of vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 32, 607-616 (1996).
[CrossRef]

Chu, D. Y.

M. K. Chin, D. Y. Chu, and S. T. Ho, "Estimation of the spontaneous emission factor for microdisk lasers via the approximation of whispering gallery modes," J. Appl. Phys. 75, 3302-3307 (1994).
[CrossRef]

Coldren, L.

C. Wilmsen, H. Temkin, and L. Coldren, "Fabrication and performance of vertical-cavity surface-emitting lasers," in Vertical-Cavity Surface-Emitting Lasers: Design, Fabrication, Characterization, and Applications, K.D.Choquette and K.M.Geib, eds. (Cambridge U. Press, 1999), pp. 193-232.

Corzine, S. W.

G. R. Hadley, K. L. Lear, M. E. Warren, K. D. Choquette, J. W. Scott, and S. W. Corzine, "Comprehensive numerical modeling of vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 32, 607-616 (1996).
[CrossRef]

Courvoisier, F.

Dumitrescu, M. M.

R. P. Wang and M. M. Dumitrescu, "Theory of optical modes in semiconductor microdisk lasers," J. Appl. Phys. 81, 3391-3397 (1997).
[CrossRef]

Frateschi, N. C.

N. C. Frateschi and A. F. J. Levi, "The spectrum of microdisk lasers," J. Appl. Phys. 80, 644-653 (1996).
[CrossRef]

N. C. Frateschi and A. F. J. Levi, "Resonant modes and laser spectrum of microdisk lasers," Appl. Phys. Lett. 66, 2932-2934 (1995).
[CrossRef]

Hadley, G. R.

G. R. Hadley, K. L. Lear, M. E. Warren, K. D. Choquette, J. W. Scott, and S. W. Corzine, "Comprehensive numerical modeling of vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 32, 607-616 (1996).
[CrossRef]

G. R. Hadley, "Effective index model for vertical-cavity surface-emitting lasers," Opt. Lett. 20, 1483-1485 (1995).
[CrossRef] [PubMed]

Han, H.

B. H. Park, S. D. Baek, J. Y. Kim, J. Bae, H. Han, and O. Kwon, "Optical sensing by using photonic quantum ring lasers and resonance enhanced photodetectors," Opt. Eng. 41, 1339-1345 (2002).
[CrossRef]

Ho, S. T.

M. K. Chin, D. Y. Chu, and S. T. Ho, "Estimation of the spontaneous emission factor for microdisk lasers via the approximation of whispering gallery modes," J. Appl. Phys. 75, 3302-3307 (1994).
[CrossRef]

Hobson, W. S.

A. F. J. Levi, R. E. Slusher, S. L. McCall, T. S. J. Pearton, and W. S. Hobson, "Room-temperature lasing action in In0.51Ga0.49P/In0.2Ga0.8As microcylinder laser diodes," Appl. Phys. Lett. 62, 2021-2023 (1993).
[CrossRef]

Jahnke, F.

U. Mohideen, R. E. Slusher, F. Jahnke, and S. W. Koch, "Semiconductor microlaser linewidths," Phys. Rev. Lett. 73, 1785-1788 (1994).
[CrossRef] [PubMed]

Kang, B.

J.-Y. Kim, K. S. Kwak, J. S. Kim, B. Kang, and O. Kwon, "Fabrication of photonic quantum ring laser using chemically assisted ion beam etching," J. Vac. Sci. Technol. B 19, 1334-1338 (2001).
[CrossRef]

Kang, B. K.

J.-Y. Kim, J. Lee, J. Kim, B. K. Kang, and O. Kwon, "Effect of surface treatment on leakage current of GaAs/AlGaAs laser microcavities," Appl. Phys. Lett. 82, 4504-4506 (2003).
[CrossRef]

Kang, H. Y.

J. C. Ahn, K. S. Kwak, B. H. Park, H. Y. Kang, J. Y. Kim, and O. Kwon, "Photonic quantum ring," Phys. Rev. Lett. 82, 536-539 (1999).
[CrossRef]

Kim, J.

J.-Y. Kim, J. Lee, J. Kim, B. K. Kang, and O. Kwon, "Effect of surface treatment on leakage current of GaAs/AlGaAs laser microcavities," Appl. Phys. Lett. 82, 4504-4506 (2003).
[CrossRef]

Kim, J. S.

J.-Y. Kim, K. S. Kwak, J. S. Kim, B. Kang, and O. Kwon, "Fabrication of photonic quantum ring laser using chemically assisted ion beam etching," J. Vac. Sci. Technol. B 19, 1334-1338 (2001).
[CrossRef]

Kim, J. Y.

B. H. Park, S. D. Baek, J. Y. Kim, J. Bae, H. Han, and O. Kwon, "Optical sensing by using photonic quantum ring lasers and resonance enhanced photodetectors," Opt. Eng. 41, 1339-1345 (2002).
[CrossRef]

B. H. Park, J. C. Ahn, J. Bae, J. Y. Kim, M. S. Kim, S. D. Baek, and O. Kwon, "Evanescent and propagating wave characteristics of the photonic quantum ring laser," Appl. Phys. Lett. 79, 1593-1595 (2001).
[CrossRef]

J. C. Ahn, K. S. Kwak, B. H. Park, H. Y. Kang, J. Y. Kim, and O. Kwon, "Photonic quantum ring," Phys. Rev. Lett. 82, 536-539 (1999).
[CrossRef]

Kim, J.-Y.

J.-Y. Kim, J. Lee, J. Kim, B. K. Kang, and O. Kwon, "Effect of surface treatment on leakage current of GaAs/AlGaAs laser microcavities," Appl. Phys. Lett. 82, 4504-4506 (2003).
[CrossRef]

J.-Y. Kim, K. S. Kwak, J. S. Kim, B. Kang, and O. Kwon, "Fabrication of photonic quantum ring laser using chemically assisted ion beam etching," J. Vac. Sci. Technol. B 19, 1334-1338 (2001).
[CrossRef]

Kim, M. J.

B. H. Park, J. Bae, M. J. Kim, and O. Kwon, "Chiral wave propagation manifold of the photonic quantum ring laser," Appl. Phys. Lett. 81, 580-582 (2002).
[CrossRef]

Kim, M. S.

B. H. Park, J. C. Ahn, J. Bae, J. Y. Kim, M. S. Kim, S. D. Baek, and O. Kwon, "Evanescent and propagating wave characteristics of the photonic quantum ring laser," Appl. Phys. Lett. 79, 1593-1595 (2001).
[CrossRef]

Koch, S. W.

U. Mohideen, R. E. Slusher, F. Jahnke, and S. W. Koch, "Semiconductor microlaser linewidths," Phys. Rev. Lett. 73, 1785-1788 (1994).
[CrossRef] [PubMed]

Kwak, K. S.

J.-Y. Kim, K. S. Kwak, J. S. Kim, B. Kang, and O. Kwon, "Fabrication of photonic quantum ring laser using chemically assisted ion beam etching," J. Vac. Sci. Technol. B 19, 1334-1338 (2001).
[CrossRef]

J. C. Ahn, K. S. Kwak, B. H. Park, H. Y. Kang, J. Y. Kim, and O. Kwon, "Photonic quantum ring," Phys. Rev. Lett. 82, 536-539 (1999).
[CrossRef]

Kwon, O.

J.-Y. Kim, J. Lee, J. Kim, B. K. Kang, and O. Kwon, "Effect of surface treatment on leakage current of GaAs/AlGaAs laser microcavities," Appl. Phys. Lett. 82, 4504-4506 (2003).
[CrossRef]

B. H. Park, J. Bae, M. J. Kim, and O. Kwon, "Chiral wave propagation manifold of the photonic quantum ring laser," Appl. Phys. Lett. 81, 580-582 (2002).
[CrossRef]

B. H. Park, S. D. Baek, J. Y. Kim, J. Bae, H. Han, and O. Kwon, "Optical sensing by using photonic quantum ring lasers and resonance enhanced photodetectors," Opt. Eng. 41, 1339-1345 (2002).
[CrossRef]

J.-Y. Kim, K. S. Kwak, J. S. Kim, B. Kang, and O. Kwon, "Fabrication of photonic quantum ring laser using chemically assisted ion beam etching," J. Vac. Sci. Technol. B 19, 1334-1338 (2001).
[CrossRef]

J. Bae, J. Lee, O. Kwon, and V. G. Minogin, "Spectrum of three-dimensional photonic quantum-ring microdisk cavities: comparison between theory and experiment," Opt. Lett. 26, 632-635 (2001).

B. H. Park, J. C. Ahn, J. Bae, J. Y. Kim, M. S. Kim, S. D. Baek, and O. Kwon, "Evanescent and propagating wave characteristics of the photonic quantum ring laser," Appl. Phys. Lett. 79, 1593-1595 (2001).
[CrossRef]

J. C. Ahn, K. S. Kwak, B. H. Park, H. Y. Kang, J. Y. Kim, and O. Kwon, "Photonic quantum ring," Phys. Rev. Lett. 82, 536-539 (1999).
[CrossRef]

Lear, K. L.

G. R. Hadley, K. L. Lear, M. E. Warren, K. D. Choquette, J. W. Scott, and S. W. Corzine, "Comprehensive numerical modeling of vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 32, 607-616 (1996).
[CrossRef]

Lee, J.

J.-Y. Kim, J. Lee, J. Kim, B. K. Kang, and O. Kwon, "Effect of surface treatment on leakage current of GaAs/AlGaAs laser microcavities," Appl. Phys. Lett. 82, 4504-4506 (2003).
[CrossRef]

J. Bae, J. Lee, O. Kwon, and V. G. Minogin, "Spectrum of three-dimensional photonic quantum-ring microdisk cavities: comparison between theory and experiment," Opt. Lett. 26, 632-635 (2001).

Levi, A. F. J.

S. M. K. Thiyagarajan and A. F. J. Levi, "Dynamic behavior of scaled microdisk lasers," Solid-State Electron. 45, 1821-1826 (2001).
[CrossRef]

N. C. Frateschi and A. F. J. Levi, "The spectrum of microdisk lasers," J. Appl. Phys. 80, 644-653 (1996).
[CrossRef]

N. C. Frateschi and A. F. J. Levi, "Resonant modes and laser spectrum of microdisk lasers," Appl. Phys. Lett. 66, 2932-2934 (1995).
[CrossRef]

A. F. J. Levi, R. E. Slusher, S. L. McCall, T. S. J. Pearton, and W. S. Hobson, "Room-temperature lasing action in In0.51Ga0.49P/In0.2Ga0.8As microcylinder laser diodes," Appl. Phys. Lett. 62, 2021-2023 (1993).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, "Whispering-gallery mode microdisk lasers," Appl. Phys. Lett. 60, 289-291 (1992).
[CrossRef]

Logan, R. A.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, "Whispering-gallery mode microdisk lasers," Appl. Phys. Lett. 60, 289-291 (1992).
[CrossRef]

McCall, S. L.

A. F. J. Levi, R. E. Slusher, S. L. McCall, T. S. J. Pearton, and W. S. Hobson, "Room-temperature lasing action in In0.51Ga0.49P/In0.2Ga0.8As microcylinder laser diodes," Appl. Phys. Lett. 62, 2021-2023 (1993).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, "Whispering-gallery mode microdisk lasers," Appl. Phys. Lett. 60, 289-291 (1992).
[CrossRef]

Minogin, V. G.

Mohideen, U.

U. Mohideen, R. E. Slusher, F. Jahnke, and S. W. Koch, "Semiconductor microlaser linewidths," Phys. Rev. Lett. 73, 1785-1788 (1994).
[CrossRef] [PubMed]

Park, B. H.

B. H. Park, S. D. Baek, J. Y. Kim, J. Bae, H. Han, and O. Kwon, "Optical sensing by using photonic quantum ring lasers and resonance enhanced photodetectors," Opt. Eng. 41, 1339-1345 (2002).
[CrossRef]

B. H. Park, J. Bae, M. J. Kim, and O. Kwon, "Chiral wave propagation manifold of the photonic quantum ring laser," Appl. Phys. Lett. 81, 580-582 (2002).
[CrossRef]

B. H. Park, J. C. Ahn, J. Bae, J. Y. Kim, M. S. Kim, S. D. Baek, and O. Kwon, "Evanescent and propagating wave characteristics of the photonic quantum ring laser," Appl. Phys. Lett. 79, 1593-1595 (2001).
[CrossRef]

J. C. Ahn, K. S. Kwak, B. H. Park, H. Y. Kang, J. Y. Kim, and O. Kwon, "Photonic quantum ring," Phys. Rev. Lett. 82, 536-539 (1999).
[CrossRef]

Pearton, S. J.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, "Whispering-gallery mode microdisk lasers," Appl. Phys. Lett. 60, 289-291 (1992).
[CrossRef]

Pearton, T. S. J.

A. F. J. Levi, R. E. Slusher, S. L. McCall, T. S. J. Pearton, and W. S. Hobson, "Room-temperature lasing action in In0.51Ga0.49P/In0.2Ga0.8As microcylinder laser diodes," Appl. Phys. Lett. 62, 2021-2023 (1993).
[CrossRef]

Poon, A. W.

Scott, J. W.

G. R. Hadley, K. L. Lear, M. E. Warren, K. D. Choquette, J. W. Scott, and S. W. Corzine, "Comprehensive numerical modeling of vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 32, 607-616 (1996).
[CrossRef]

Slusher, R. E.

U. Mohideen, R. E. Slusher, F. Jahnke, and S. W. Koch, "Semiconductor microlaser linewidths," Phys. Rev. Lett. 73, 1785-1788 (1994).
[CrossRef] [PubMed]

A. F. J. Levi, R. E. Slusher, S. L. McCall, T. S. J. Pearton, and W. S. Hobson, "Room-temperature lasing action in In0.51Ga0.49P/In0.2Ga0.8As microcylinder laser diodes," Appl. Phys. Lett. 62, 2021-2023 (1993).
[CrossRef]

Y. Yamamoto and R. E. Slusher, "Optical processes in microcavities," Phys. Today 46(6), 66-73 (1993).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, "Whispering-gallery mode microdisk lasers," Appl. Phys. Lett. 60, 289-291 (1992).
[CrossRef]

Temkin, H.

C. Wilmsen, H. Temkin, and L. Coldren, "Fabrication and performance of vertical-cavity surface-emitting lasers," in Vertical-Cavity Surface-Emitting Lasers: Design, Fabrication, Characterization, and Applications, K.D.Choquette and K.M.Geib, eds. (Cambridge U. Press, 1999), pp. 193-232.

Thiyagarajan, S. M. K.

S. M. K. Thiyagarajan and A. F. J. Levi, "Dynamic behavior of scaled microdisk lasers," Solid-State Electron. 45, 1821-1826 (2001).
[CrossRef]

Wang, R. P.

R. P. Wang and M. M. Dumitrescu, "Theory of optical modes in semiconductor microdisk lasers," J. Appl. Phys. 81, 3391-3397 (1997).
[CrossRef]

Warren, M. E.

G. R. Hadley, K. L. Lear, M. E. Warren, K. D. Choquette, J. W. Scott, and S. W. Corzine, "Comprehensive numerical modeling of vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 32, 607-616 (1996).
[CrossRef]

Wilmsen, C.

C. Wilmsen, H. Temkin, and L. Coldren, "Fabrication and performance of vertical-cavity surface-emitting lasers," in Vertical-Cavity Surface-Emitting Lasers: Design, Fabrication, Characterization, and Applications, K.D.Choquette and K.M.Geib, eds. (Cambridge U. Press, 1999), pp. 193-232.

Yamamoto, Y.

Y. Yamamoto and R. E. Slusher, "Optical processes in microcavities," Phys. Today 46(6), 66-73 (1993).
[CrossRef]

Yariv, A.

A. Yariv, "Scaling laws and minimum threshold currents for quantum-confined semiconductor lasers," Appl. Phys. Lett. 53, 1033-1035 (1988).
[CrossRef]

Appl. Phys. Lett. (7)

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, "Whispering-gallery mode microdisk lasers," Appl. Phys. Lett. 60, 289-291 (1992).
[CrossRef]

A. F. J. Levi, R. E. Slusher, S. L. McCall, T. S. J. Pearton, and W. S. Hobson, "Room-temperature lasing action in In0.51Ga0.49P/In0.2Ga0.8As microcylinder laser diodes," Appl. Phys. Lett. 62, 2021-2023 (1993).
[CrossRef]

N. C. Frateschi and A. F. J. Levi, "Resonant modes and laser spectrum of microdisk lasers," Appl. Phys. Lett. 66, 2932-2934 (1995).
[CrossRef]

A. Yariv, "Scaling laws and minimum threshold currents for quantum-confined semiconductor lasers," Appl. Phys. Lett. 53, 1033-1035 (1988).
[CrossRef]

B. H. Park, J. Bae, M. J. Kim, and O. Kwon, "Chiral wave propagation manifold of the photonic quantum ring laser," Appl. Phys. Lett. 81, 580-582 (2002).
[CrossRef]

J.-Y. Kim, J. Lee, J. Kim, B. K. Kang, and O. Kwon, "Effect of surface treatment on leakage current of GaAs/AlGaAs laser microcavities," Appl. Phys. Lett. 82, 4504-4506 (2003).
[CrossRef]

B. H. Park, J. C. Ahn, J. Bae, J. Y. Kim, M. S. Kim, S. D. Baek, and O. Kwon, "Evanescent and propagating wave characteristics of the photonic quantum ring laser," Appl. Phys. Lett. 79, 1593-1595 (2001).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. R. Hadley, K. L. Lear, M. E. Warren, K. D. Choquette, J. W. Scott, and S. W. Corzine, "Comprehensive numerical modeling of vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 32, 607-616 (1996).
[CrossRef]

J. Appl. Phys. (3)

M. K. Chin, D. Y. Chu, and S. T. Ho, "Estimation of the spontaneous emission factor for microdisk lasers via the approximation of whispering gallery modes," J. Appl. Phys. 75, 3302-3307 (1994).
[CrossRef]

R. P. Wang and M. M. Dumitrescu, "Theory of optical modes in semiconductor microdisk lasers," J. Appl. Phys. 81, 3391-3397 (1997).
[CrossRef]

N. C. Frateschi and A. F. J. Levi, "The spectrum of microdisk lasers," J. Appl. Phys. 80, 644-653 (1996).
[CrossRef]

J. Vac. Sci. Technol. B (1)

J.-Y. Kim, K. S. Kwak, J. S. Kim, B. Kang, and O. Kwon, "Fabrication of photonic quantum ring laser using chemically assisted ion beam etching," J. Vac. Sci. Technol. B 19, 1334-1338 (2001).
[CrossRef]

Opt. Eng. (1)

B. H. Park, S. D. Baek, J. Y. Kim, J. Bae, H. Han, and O. Kwon, "Optical sensing by using photonic quantum ring lasers and resonance enhanced photodetectors," Opt. Eng. 41, 1339-1345 (2002).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. Lett. (2)

U. Mohideen, R. E. Slusher, F. Jahnke, and S. W. Koch, "Semiconductor microlaser linewidths," Phys. Rev. Lett. 73, 1785-1788 (1994).
[CrossRef] [PubMed]

J. C. Ahn, K. S. Kwak, B. H. Park, H. Y. Kang, J. Y. Kim, and O. Kwon, "Photonic quantum ring," Phys. Rev. Lett. 82, 536-539 (1999).
[CrossRef]

Phys. Today (1)

Y. Yamamoto and R. E. Slusher, "Optical processes in microcavities," Phys. Today 46(6), 66-73 (1993).
[CrossRef]

Solid-State Electron. (1)

S. M. K. Thiyagarajan and A. F. J. Levi, "Dynamic behavior of scaled microdisk lasers," Solid-State Electron. 45, 1821-1826 (2001).
[CrossRef]

Other (1)

C. Wilmsen, H. Temkin, and L. Coldren, "Fabrication and performance of vertical-cavity surface-emitting lasers," in Vertical-Cavity Surface-Emitting Lasers: Design, Fabrication, Characterization, and Applications, K.D.Choquette and K.M.Geib, eds. (Cambridge U. Press, 1999), pp. 193-232.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Emission spectra of the PQR laser of ∅ = 35 μm with injection currents of 6, 7, 8, 9, 10, 11, and 12 mA, and the vertical modes are also present for 9 to 12 mA currents. (b) Overlapped spectra of the PQR laser with 9 (solid curve), 10 (dotted curve), and 11 mA (dashed curve). The inset magnifies the figure from 850 to 851.5 nm for observing the detailed current-dependent spectral shifts.

Fig. 2
Fig. 2

(a) Spectral mode spacing, Δλ m measured (open squares) from the spectrum of the PQR laser of ∅ = 35 μm with an injection current of I 0 = 6 mA and its linear extrapolations (solid line) for the 3D RFP microcavity. (b) Emission wavelengths measured from the spectrum (filled squares and vertical solid lines) and calculated by Eqs. (1) and (2) (open squares and vertical dotted lines). (c) Emission angles evaluated by the measured wavelengths (filled squares) and calculated by Eq. (1) (open squares).

Fig. 3
Fig. 3

(a) Measured (open circles) and calculated (solid curves) wavelength behaviors along the mode order for a PQR laser of ∅ = 35 μm with injection currents of 6, 7, 8, 9, 10, 11, and 12 mA. The figure is shown at intervals of 2 mA to avoid visual confusion. (b) Emission wavelength as a function of the injection current for different modes of a PQR laser of diameter ∅ = 35 μm. (c) Effective refractive index as a function of the injection current for different modes of a PQR laser of diameter ∅ = 35 μm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

λ m = λ 0 n m n 0 [ 1 + ( λ 0 x m     1 2 π R n 0 ) 2 ] 1 / 2 , θ m = sin 1 ( λ m x m     1 2 π R ) ,
n m ( I 0 ) = n 0 ( I 0 ) + α m ( I 0 ) [ λ m ( I 0 ) λ 0 ( I 0 ) ] ,
n m ( I ) = n 0 ( I ) + α m ( I ) [ λ m ( I ) λ 0 ( I ) ] ,

Metrics