Abstract

The focusing characteristics of a planar waveguide solid-immersion mirror with parabolic design have been investigated. The solid-immersion mirror is integrated into an optical waveguide, and light focusing is achieved with a parabolic mirror parallel to the waveguide plane and waveguide mode confinement normal to the waveguide plane. Optical-quality tantala silica planar waveguides can be obtained by evaporation. The parabolic sidewall reflects over 50% of the incident waveguide mode and generates a diffraction-limited focus. The measured spot size for the solid-immersion mirror described here is less than one third of the wavelength. Polarization analysis shows that the electric field near the focal region has components parallel and normal to the polarization state of the incident beam. The planar solid-immersion mirror is essentially free of chromatic aberration, and the alignment of the illumination beam is within a fraction of degrees.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, "Near-field optical data storage using a solid immersion lens," Appl. Phys. Lett. 65, 388-390 (1994).
    [CrossRef]
  2. L. P. Ghislain and V. B. Elings, "Near-field scanning solid immersion microscope," Appl. Phys. Lett. 72, 2779-2781 (1998).
    [CrossRef]
  3. T. Mizuno, T. Yamada, H. Sakakibara, S. Kawakita, H. Ueda, and K. Watanabe, "Fabrication of a solid immersion mirror and its optical evaluation," Jpn. J. Appl. Phys. 41, 617-623 (2002).
    [CrossRef]
  4. K. Ueyanagi and T. Tomono, "Proposal of a near-field optical head using a new solid immersion mirror," Jpn. J. Appl. Phys. 39, 888-891 (2000).
    [CrossRef]
  5. K. Ueyanagi, Y. Uehara, Y. Adachi, T. Suzuki, S. Moriyasu, T. Suzuki, K. Wakabayashi, Y. Yamagata, and H. Ohmor, "Fabrication of a hemi-paraboloidal solid immersion mirror and designing of an optical head with the mirror," Jpn. J. Appl. Phys. 42, 898-903 (2003).
    [CrossRef]
  6. Y. S. Kim, S. J. Lee, Y. J. Kim, N. C. Park, and Y. P. Park, "Design of a super-paraboloidal solid immersion mirror for near-field recording," Jpn. J. Appl. Phys. 43, 5756-5760 (2004).
    [CrossRef]
  7. K. Konno, M. Okitsu, K. Ogura, and H. Hatano, "Design and evaluation of a solid immersion mirror using a dielectric layer stack for near-field optical recording," Jpn. J. Appl. Phys. 43, 2530-2535 (2004).
    [CrossRef]
  8. E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C.-H. Chang, "Near-field magneto-optics and high density data storage," Appl. Phys. Lett. 61, 142-144 (1992).
    [CrossRef]
  9. F. Issiki, K. Ito, K. Etoh, and S. Hosaka, "1.5-Mbit/s direct readout of line-and-space patterns using a scanning near-field optical microscopy probe slide with air-bearing control," Appl. Phys. Lett. 76, 804-806 (2000).
    [CrossRef]
  10. H. Yoshikawa, Y. Andoh, and M. Yamamoto, "7.5-MHz data-transfer rate with a planar aperture mounted upon a near-field optical slider," Opt. Lett. 25, 67-69 (2000).
  11. K. Sendur, C. Peng, and W. Challener, "Near-field radiation for a ridge waveguide transducer in the vicinity of a solid immersion lens," Phys. Rev. Lett. 94, 043901 (2005).
    [CrossRef]
  12. M. Shinoda, K. Saito, T. Kondo, T. Ishimoto, and A. Nakaoki, "High-density near-field readout over 50 GB capacity using solid immersion lens," Jpn. J. Appl. Phys. 42, 1101-1104 (2003).
    [CrossRef]
  13. T. Mizuno, T. Yamada, H. Sakakibara, S. Kawakita, H. Ueda, and K. Watanabe, "Fabrication of a solid immersion mirror and its optical evaluation," Jpn. J. Appl. Phys. 41, 617-623 (2002).
    [CrossRef]
  14. T. Mizuno, N. Kojima, T. Hitosugi, K. Sako, and K. Watanabe, "An optical configuration based on flying head structure for near-field recording," Jpn. J. Appl. Phys. 43, 1403-1409 (2004).
    [CrossRef]
  15. S. Ura, T. Suhara, H. Nishihara, and J. Koyama, "An integrated optic disk pickup device," J. Lightwave Technol. LT-4, 913-918 (1986).
  16. T. Shiono and H. Ogawa, "Planar-optic-disk pickup with diffractive micro-optics," Appl. Opt. 33, 7350-7355 (1994).
  17. J. Brazas, G. Kohnke, and J. McMullen, "Mode-index waveguide lens with novel gradient boundaries developed for application to optical recording," Appl. Opt. 31, 3420-3428 (1992).
  18. Y. Sohn, Y. Park, D. Suh, H. Ryu, and M. C. Paek, "Focusing grating coupler for blue laser light," IEEE Photon. Technol. Lett. 16, 162-164 (2004).
    [CrossRef]
  19. W. A. Challener, C. Mihalcea, C. Peng, and K. Pelhos, "Miniature planar solid immersion mirror with focused spot less than a quarter of a wavelength," Opt. Express 13, 7189-7197 (2005).
    [CrossRef]
  20. P. K. Ien and R. Ulrich, "Theory of prism coupler and thin-film light guides," J. Opt. Soc. Am. 60, 1325-1337 (1970).
  21. S. Monneret, P. Huguet-Chantome, and F. Flory, "M-lines techniques: prism coupling measurement and discussion of accuracy for homogeneous waveguides," J. Opt. A 2, 188-195 (2000).
  22. M. L. Dakss, L. Kuhn, P. F. Heidrich, and B. A. Scott, "Grating coupler for excitation of optical guided waves in thin films," Appl. Phys. Lett. 16, 523-525 (1970).
    [CrossRef]
  23. C. Peng and W. A. Challener, "Input-grating couplers for narrow Gaussian beam: influence of groove depth," Opt. Express 2, 6481-6490 (2004).
  24. C. Mihalcea, A. W. Scholz, S. Werner, S. Munster, E. Oesterschulze, and R. Kassing, "Multipurpose sensor tips for scanning near-field microscopy," Appl. Phys. Lett. 68, 3531-3533 (1996).
    [CrossRef]
  25. A. V. Itagi, T. E. Schlesinger, and D. D. Stancil, "Refraction theory for planar waveguides, modeling of a mode index integrated solid immersion lens," Jpn. J. Appl. Phys. 42, 740-749 (2003).
    [CrossRef]
  26. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 1985).
  27. P. K. Wei, R. Chang, J. H. Hsu, S. H. Lin, and W. S. Fann, "Two-dimensional near-field intensity distribution of tapered fiber probes," Opt. Lett. 21, 1876-1878 (1996).
  28. M. A. Lieb and A. J. Meixner, "A high numerical aperture parabolic mirror as imaging device for confocal microscopy," Opt. Express 8, 458-474 (2001).
  29. C. Peng, C. Mihalcea, D. Buchel, W. A. Challener, and E. C. Gage, "Near-field recording using a planar solid immersion mirror," Appl. Phys. Lett. 87, 151105 (2005).

2005 (2)

K. Sendur, C. Peng, and W. Challener, "Near-field radiation for a ridge waveguide transducer in the vicinity of a solid immersion lens," Phys. Rev. Lett. 94, 043901 (2005).
[CrossRef]

W. A. Challener, C. Mihalcea, C. Peng, and K. Pelhos, "Miniature planar solid immersion mirror with focused spot less than a quarter of a wavelength," Opt. Express 13, 7189-7197 (2005).
[CrossRef]

2004 (4)

T. Mizuno, N. Kojima, T. Hitosugi, K. Sako, and K. Watanabe, "An optical configuration based on flying head structure for near-field recording," Jpn. J. Appl. Phys. 43, 1403-1409 (2004).
[CrossRef]

Y. Sohn, Y. Park, D. Suh, H. Ryu, and M. C. Paek, "Focusing grating coupler for blue laser light," IEEE Photon. Technol. Lett. 16, 162-164 (2004).
[CrossRef]

Y. S. Kim, S. J. Lee, Y. J. Kim, N. C. Park, and Y. P. Park, "Design of a super-paraboloidal solid immersion mirror for near-field recording," Jpn. J. Appl. Phys. 43, 5756-5760 (2004).
[CrossRef]

K. Konno, M. Okitsu, K. Ogura, and H. Hatano, "Design and evaluation of a solid immersion mirror using a dielectric layer stack for near-field optical recording," Jpn. J. Appl. Phys. 43, 2530-2535 (2004).
[CrossRef]

2003 (3)

K. Ueyanagi, Y. Uehara, Y. Adachi, T. Suzuki, S. Moriyasu, T. Suzuki, K. Wakabayashi, Y. Yamagata, and H. Ohmor, "Fabrication of a hemi-paraboloidal solid immersion mirror and designing of an optical head with the mirror," Jpn. J. Appl. Phys. 42, 898-903 (2003).
[CrossRef]

M. Shinoda, K. Saito, T. Kondo, T. Ishimoto, and A. Nakaoki, "High-density near-field readout over 50 GB capacity using solid immersion lens," Jpn. J. Appl. Phys. 42, 1101-1104 (2003).
[CrossRef]

A. V. Itagi, T. E. Schlesinger, and D. D. Stancil, "Refraction theory for planar waveguides, modeling of a mode index integrated solid immersion lens," Jpn. J. Appl. Phys. 42, 740-749 (2003).
[CrossRef]

2002 (2)

T. Mizuno, T. Yamada, H. Sakakibara, S. Kawakita, H. Ueda, and K. Watanabe, "Fabrication of a solid immersion mirror and its optical evaluation," Jpn. J. Appl. Phys. 41, 617-623 (2002).
[CrossRef]

T. Mizuno, T. Yamada, H. Sakakibara, S. Kawakita, H. Ueda, and K. Watanabe, "Fabrication of a solid immersion mirror and its optical evaluation," Jpn. J. Appl. Phys. 41, 617-623 (2002).
[CrossRef]

2001 (1)

2000 (4)

S. Monneret, P. Huguet-Chantome, and F. Flory, "M-lines techniques: prism coupling measurement and discussion of accuracy for homogeneous waveguides," J. Opt. A 2, 188-195 (2000).

K. Ueyanagi and T. Tomono, "Proposal of a near-field optical head using a new solid immersion mirror," Jpn. J. Appl. Phys. 39, 888-891 (2000).
[CrossRef]

F. Issiki, K. Ito, K. Etoh, and S. Hosaka, "1.5-Mbit/s direct readout of line-and-space patterns using a scanning near-field optical microscopy probe slide with air-bearing control," Appl. Phys. Lett. 76, 804-806 (2000).
[CrossRef]

H. Yoshikawa, Y. Andoh, and M. Yamamoto, "7.5-MHz data-transfer rate with a planar aperture mounted upon a near-field optical slider," Opt. Lett. 25, 67-69 (2000).

1998 (1)

L. P. Ghislain and V. B. Elings, "Near-field scanning solid immersion microscope," Appl. Phys. Lett. 72, 2779-2781 (1998).
[CrossRef]

1996 (2)

C. Mihalcea, A. W. Scholz, S. Werner, S. Munster, E. Oesterschulze, and R. Kassing, "Multipurpose sensor tips for scanning near-field microscopy," Appl. Phys. Lett. 68, 3531-3533 (1996).
[CrossRef]

P. K. Wei, R. Chang, J. H. Hsu, S. H. Lin, and W. S. Fann, "Two-dimensional near-field intensity distribution of tapered fiber probes," Opt. Lett. 21, 1876-1878 (1996).

1994 (2)

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, "Near-field optical data storage using a solid immersion lens," Appl. Phys. Lett. 65, 388-390 (1994).
[CrossRef]

T. Shiono and H. Ogawa, "Planar-optic-disk pickup with diffractive micro-optics," Appl. Opt. 33, 7350-7355 (1994).

1992 (2)

J. Brazas, G. Kohnke, and J. McMullen, "Mode-index waveguide lens with novel gradient boundaries developed for application to optical recording," Appl. Opt. 31, 3420-3428 (1992).

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C.-H. Chang, "Near-field magneto-optics and high density data storage," Appl. Phys. Lett. 61, 142-144 (1992).
[CrossRef]

1986 (1)

S. Ura, T. Suhara, H. Nishihara, and J. Koyama, "An integrated optic disk pickup device," J. Lightwave Technol. LT-4, 913-918 (1986).

1970 (2)

M. L. Dakss, L. Kuhn, P. F. Heidrich, and B. A. Scott, "Grating coupler for excitation of optical guided waves in thin films," Appl. Phys. Lett. 16, 523-525 (1970).
[CrossRef]

P. K. Ien and R. Ulrich, "Theory of prism coupler and thin-film light guides," J. Opt. Soc. Am. 60, 1325-1337 (1970).

Adachi, Y.

K. Ueyanagi, Y. Uehara, Y. Adachi, T. Suzuki, S. Moriyasu, T. Suzuki, K. Wakabayashi, Y. Yamagata, and H. Ohmor, "Fabrication of a hemi-paraboloidal solid immersion mirror and designing of an optical head with the mirror," Jpn. J. Appl. Phys. 42, 898-903 (2003).
[CrossRef]

Andoh, Y.

Betzig, E.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C.-H. Chang, "Near-field magneto-optics and high density data storage," Appl. Phys. Lett. 61, 142-144 (1992).
[CrossRef]

Brazas, J.

Buchel, D.

C. Peng, C. Mihalcea, D. Buchel, W. A. Challener, and E. C. Gage, "Near-field recording using a planar solid immersion mirror," Appl. Phys. Lett. 87, 151105 (2005).

Challener, W.

K. Sendur, C. Peng, and W. Challener, "Near-field radiation for a ridge waveguide transducer in the vicinity of a solid immersion lens," Phys. Rev. Lett. 94, 043901 (2005).
[CrossRef]

Challener, W. A.

W. A. Challener, C. Mihalcea, C. Peng, and K. Pelhos, "Miniature planar solid immersion mirror with focused spot less than a quarter of a wavelength," Opt. Express 13, 7189-7197 (2005).
[CrossRef]

C. Peng and W. A. Challener, "Input-grating couplers for narrow Gaussian beam: influence of groove depth," Opt. Express 2, 6481-6490 (2004).

C. Peng, C. Mihalcea, D. Buchel, W. A. Challener, and E. C. Gage, "Near-field recording using a planar solid immersion mirror," Appl. Phys. Lett. 87, 151105 (2005).

Chang, C.-H.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C.-H. Chang, "Near-field magneto-optics and high density data storage," Appl. Phys. Lett. 61, 142-144 (1992).
[CrossRef]

Chang, R.

Dakss, M. L.

M. L. Dakss, L. Kuhn, P. F. Heidrich, and B. A. Scott, "Grating coupler for excitation of optical guided waves in thin films," Appl. Phys. Lett. 16, 523-525 (1970).
[CrossRef]

Elings, V. B.

L. P. Ghislain and V. B. Elings, "Near-field scanning solid immersion microscope," Appl. Phys. Lett. 72, 2779-2781 (1998).
[CrossRef]

Etoh, K.

F. Issiki, K. Ito, K. Etoh, and S. Hosaka, "1.5-Mbit/s direct readout of line-and-space patterns using a scanning near-field optical microscopy probe slide with air-bearing control," Appl. Phys. Lett. 76, 804-806 (2000).
[CrossRef]

Fann, W. S.

Finn, P. L.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C.-H. Chang, "Near-field magneto-optics and high density data storage," Appl. Phys. Lett. 61, 142-144 (1992).
[CrossRef]

Flory, F.

S. Monneret, P. Huguet-Chantome, and F. Flory, "M-lines techniques: prism coupling measurement and discussion of accuracy for homogeneous waveguides," J. Opt. A 2, 188-195 (2000).

Gage, E. C.

C. Peng, C. Mihalcea, D. Buchel, W. A. Challener, and E. C. Gage, "Near-field recording using a planar solid immersion mirror," Appl. Phys. Lett. 87, 151105 (2005).

Ghislain, L. P.

L. P. Ghislain and V. B. Elings, "Near-field scanning solid immersion microscope," Appl. Phys. Lett. 72, 2779-2781 (1998).
[CrossRef]

Gyorgy, E. M.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C.-H. Chang, "Near-field magneto-optics and high density data storage," Appl. Phys. Lett. 61, 142-144 (1992).
[CrossRef]

Hatano, H.

K. Konno, M. Okitsu, K. Ogura, and H. Hatano, "Design and evaluation of a solid immersion mirror using a dielectric layer stack for near-field optical recording," Jpn. J. Appl. Phys. 43, 2530-2535 (2004).
[CrossRef]

Heidrich, P. F.

M. L. Dakss, L. Kuhn, P. F. Heidrich, and B. A. Scott, "Grating coupler for excitation of optical guided waves in thin films," Appl. Phys. Lett. 16, 523-525 (1970).
[CrossRef]

Hitosugi, T.

T. Mizuno, N. Kojima, T. Hitosugi, K. Sako, and K. Watanabe, "An optical configuration based on flying head structure for near-field recording," Jpn. J. Appl. Phys. 43, 1403-1409 (2004).
[CrossRef]

Hosaka, S.

F. Issiki, K. Ito, K. Etoh, and S. Hosaka, "1.5-Mbit/s direct readout of line-and-space patterns using a scanning near-field optical microscopy probe slide with air-bearing control," Appl. Phys. Lett. 76, 804-806 (2000).
[CrossRef]

Hsu, J. H.

Huguet-Chantome, P.

S. Monneret, P. Huguet-Chantome, and F. Flory, "M-lines techniques: prism coupling measurement and discussion of accuracy for homogeneous waveguides," J. Opt. A 2, 188-195 (2000).

Ien, P. K.

Ishimoto, T.

M. Shinoda, K. Saito, T. Kondo, T. Ishimoto, and A. Nakaoki, "High-density near-field readout over 50 GB capacity using solid immersion lens," Jpn. J. Appl. Phys. 42, 1101-1104 (2003).
[CrossRef]

Issiki, F.

F. Issiki, K. Ito, K. Etoh, and S. Hosaka, "1.5-Mbit/s direct readout of line-and-space patterns using a scanning near-field optical microscopy probe slide with air-bearing control," Appl. Phys. Lett. 76, 804-806 (2000).
[CrossRef]

Itagi, A. V.

A. V. Itagi, T. E. Schlesinger, and D. D. Stancil, "Refraction theory for planar waveguides, modeling of a mode index integrated solid immersion lens," Jpn. J. Appl. Phys. 42, 740-749 (2003).
[CrossRef]

Ito, K.

F. Issiki, K. Ito, K. Etoh, and S. Hosaka, "1.5-Mbit/s direct readout of line-and-space patterns using a scanning near-field optical microscopy probe slide with air-bearing control," Appl. Phys. Lett. 76, 804-806 (2000).
[CrossRef]

Kassing, R.

C. Mihalcea, A. W. Scholz, S. Werner, S. Munster, E. Oesterschulze, and R. Kassing, "Multipurpose sensor tips for scanning near-field microscopy," Appl. Phys. Lett. 68, 3531-3533 (1996).
[CrossRef]

Kawakita, S.

T. Mizuno, T. Yamada, H. Sakakibara, S. Kawakita, H. Ueda, and K. Watanabe, "Fabrication of a solid immersion mirror and its optical evaluation," Jpn. J. Appl. Phys. 41, 617-623 (2002).
[CrossRef]

T. Mizuno, T. Yamada, H. Sakakibara, S. Kawakita, H. Ueda, and K. Watanabe, "Fabrication of a solid immersion mirror and its optical evaluation," Jpn. J. Appl. Phys. 41, 617-623 (2002).
[CrossRef]

Kim, Y. J.

Y. S. Kim, S. J. Lee, Y. J. Kim, N. C. Park, and Y. P. Park, "Design of a super-paraboloidal solid immersion mirror for near-field recording," Jpn. J. Appl. Phys. 43, 5756-5760 (2004).
[CrossRef]

Kim, Y. S.

Y. S. Kim, S. J. Lee, Y. J. Kim, N. C. Park, and Y. P. Park, "Design of a super-paraboloidal solid immersion mirror for near-field recording," Jpn. J. Appl. Phys. 43, 5756-5760 (2004).
[CrossRef]

Kino, G. S.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, "Near-field optical data storage using a solid immersion lens," Appl. Phys. Lett. 65, 388-390 (1994).
[CrossRef]

Kohnke, G.

Kojima, N.

T. Mizuno, N. Kojima, T. Hitosugi, K. Sako, and K. Watanabe, "An optical configuration based on flying head structure for near-field recording," Jpn. J. Appl. Phys. 43, 1403-1409 (2004).
[CrossRef]

Kondo, T.

M. Shinoda, K. Saito, T. Kondo, T. Ishimoto, and A. Nakaoki, "High-density near-field readout over 50 GB capacity using solid immersion lens," Jpn. J. Appl. Phys. 42, 1101-1104 (2003).
[CrossRef]

Konno, K.

K. Konno, M. Okitsu, K. Ogura, and H. Hatano, "Design and evaluation of a solid immersion mirror using a dielectric layer stack for near-field optical recording," Jpn. J. Appl. Phys. 43, 2530-2535 (2004).
[CrossRef]

Koyama, J.

S. Ura, T. Suhara, H. Nishihara, and J. Koyama, "An integrated optic disk pickup device," J. Lightwave Technol. LT-4, 913-918 (1986).

Kryder, M. H.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C.-H. Chang, "Near-field magneto-optics and high density data storage," Appl. Phys. Lett. 61, 142-144 (1992).
[CrossRef]

Kuhn, L.

M. L. Dakss, L. Kuhn, P. F. Heidrich, and B. A. Scott, "Grating coupler for excitation of optical guided waves in thin films," Appl. Phys. Lett. 16, 523-525 (1970).
[CrossRef]

Lee, S. J.

Y. S. Kim, S. J. Lee, Y. J. Kim, N. C. Park, and Y. P. Park, "Design of a super-paraboloidal solid immersion mirror for near-field recording," Jpn. J. Appl. Phys. 43, 5756-5760 (2004).
[CrossRef]

Lieb, M. A.

Lin, S. H.

Mamin, H. J.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, "Near-field optical data storage using a solid immersion lens," Appl. Phys. Lett. 65, 388-390 (1994).
[CrossRef]

McMullen, J.

Meixner, A. J.

Mihalcea, C.

W. A. Challener, C. Mihalcea, C. Peng, and K. Pelhos, "Miniature planar solid immersion mirror with focused spot less than a quarter of a wavelength," Opt. Express 13, 7189-7197 (2005).
[CrossRef]

C. Mihalcea, A. W. Scholz, S. Werner, S. Munster, E. Oesterschulze, and R. Kassing, "Multipurpose sensor tips for scanning near-field microscopy," Appl. Phys. Lett. 68, 3531-3533 (1996).
[CrossRef]

C. Peng, C. Mihalcea, D. Buchel, W. A. Challener, and E. C. Gage, "Near-field recording using a planar solid immersion mirror," Appl. Phys. Lett. 87, 151105 (2005).

Mizuno, T.

T. Mizuno, N. Kojima, T. Hitosugi, K. Sako, and K. Watanabe, "An optical configuration based on flying head structure for near-field recording," Jpn. J. Appl. Phys. 43, 1403-1409 (2004).
[CrossRef]

T. Mizuno, T. Yamada, H. Sakakibara, S. Kawakita, H. Ueda, and K. Watanabe, "Fabrication of a solid immersion mirror and its optical evaluation," Jpn. J. Appl. Phys. 41, 617-623 (2002).
[CrossRef]

T. Mizuno, T. Yamada, H. Sakakibara, S. Kawakita, H. Ueda, and K. Watanabe, "Fabrication of a solid immersion mirror and its optical evaluation," Jpn. J. Appl. Phys. 41, 617-623 (2002).
[CrossRef]

Monneret, S.

S. Monneret, P. Huguet-Chantome, and F. Flory, "M-lines techniques: prism coupling measurement and discussion of accuracy for homogeneous waveguides," J. Opt. A 2, 188-195 (2000).

Moriyasu, S.

K. Ueyanagi, Y. Uehara, Y. Adachi, T. Suzuki, S. Moriyasu, T. Suzuki, K. Wakabayashi, Y. Yamagata, and H. Ohmor, "Fabrication of a hemi-paraboloidal solid immersion mirror and designing of an optical head with the mirror," Jpn. J. Appl. Phys. 42, 898-903 (2003).
[CrossRef]

Munster, S.

C. Mihalcea, A. W. Scholz, S. Werner, S. Munster, E. Oesterschulze, and R. Kassing, "Multipurpose sensor tips for scanning near-field microscopy," Appl. Phys. Lett. 68, 3531-3533 (1996).
[CrossRef]

Nakaoki, A.

M. Shinoda, K. Saito, T. Kondo, T. Ishimoto, and A. Nakaoki, "High-density near-field readout over 50 GB capacity using solid immersion lens," Jpn. J. Appl. Phys. 42, 1101-1104 (2003).
[CrossRef]

Nishihara, H.

S. Ura, T. Suhara, H. Nishihara, and J. Koyama, "An integrated optic disk pickup device," J. Lightwave Technol. LT-4, 913-918 (1986).

Oesterschulze, E.

C. Mihalcea, A. W. Scholz, S. Werner, S. Munster, E. Oesterschulze, and R. Kassing, "Multipurpose sensor tips for scanning near-field microscopy," Appl. Phys. Lett. 68, 3531-3533 (1996).
[CrossRef]

Ogawa, H.

Ogura, K.

K. Konno, M. Okitsu, K. Ogura, and H. Hatano, "Design and evaluation of a solid immersion mirror using a dielectric layer stack for near-field optical recording," Jpn. J. Appl. Phys. 43, 2530-2535 (2004).
[CrossRef]

Ohmor, H.

K. Ueyanagi, Y. Uehara, Y. Adachi, T. Suzuki, S. Moriyasu, T. Suzuki, K. Wakabayashi, Y. Yamagata, and H. Ohmor, "Fabrication of a hemi-paraboloidal solid immersion mirror and designing of an optical head with the mirror," Jpn. J. Appl. Phys. 42, 898-903 (2003).
[CrossRef]

Okitsu, M.

K. Konno, M. Okitsu, K. Ogura, and H. Hatano, "Design and evaluation of a solid immersion mirror using a dielectric layer stack for near-field optical recording," Jpn. J. Appl. Phys. 43, 2530-2535 (2004).
[CrossRef]

Paek, M. C.

Y. Sohn, Y. Park, D. Suh, H. Ryu, and M. C. Paek, "Focusing grating coupler for blue laser light," IEEE Photon. Technol. Lett. 16, 162-164 (2004).
[CrossRef]

Park, N. C.

Y. S. Kim, S. J. Lee, Y. J. Kim, N. C. Park, and Y. P. Park, "Design of a super-paraboloidal solid immersion mirror for near-field recording," Jpn. J. Appl. Phys. 43, 5756-5760 (2004).
[CrossRef]

Park, Y.

Y. Sohn, Y. Park, D. Suh, H. Ryu, and M. C. Paek, "Focusing grating coupler for blue laser light," IEEE Photon. Technol. Lett. 16, 162-164 (2004).
[CrossRef]

Park, Y. P.

Y. S. Kim, S. J. Lee, Y. J. Kim, N. C. Park, and Y. P. Park, "Design of a super-paraboloidal solid immersion mirror for near-field recording," Jpn. J. Appl. Phys. 43, 5756-5760 (2004).
[CrossRef]

Pelhos, K.

Peng, C.

W. A. Challener, C. Mihalcea, C. Peng, and K. Pelhos, "Miniature planar solid immersion mirror with focused spot less than a quarter of a wavelength," Opt. Express 13, 7189-7197 (2005).
[CrossRef]

K. Sendur, C. Peng, and W. Challener, "Near-field radiation for a ridge waveguide transducer in the vicinity of a solid immersion lens," Phys. Rev. Lett. 94, 043901 (2005).
[CrossRef]

C. Peng and W. A. Challener, "Input-grating couplers for narrow Gaussian beam: influence of groove depth," Opt. Express 2, 6481-6490 (2004).

C. Peng, C. Mihalcea, D. Buchel, W. A. Challener, and E. C. Gage, "Near-field recording using a planar solid immersion mirror," Appl. Phys. Lett. 87, 151105 (2005).

Rugar, D.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, "Near-field optical data storage using a solid immersion lens," Appl. Phys. Lett. 65, 388-390 (1994).
[CrossRef]

Ryu, H.

Y. Sohn, Y. Park, D. Suh, H. Ryu, and M. C. Paek, "Focusing grating coupler for blue laser light," IEEE Photon. Technol. Lett. 16, 162-164 (2004).
[CrossRef]

Saito, K.

M. Shinoda, K. Saito, T. Kondo, T. Ishimoto, and A. Nakaoki, "High-density near-field readout over 50 GB capacity using solid immersion lens," Jpn. J. Appl. Phys. 42, 1101-1104 (2003).
[CrossRef]

Sakakibara, H.

T. Mizuno, T. Yamada, H. Sakakibara, S. Kawakita, H. Ueda, and K. Watanabe, "Fabrication of a solid immersion mirror and its optical evaluation," Jpn. J. Appl. Phys. 41, 617-623 (2002).
[CrossRef]

T. Mizuno, T. Yamada, H. Sakakibara, S. Kawakita, H. Ueda, and K. Watanabe, "Fabrication of a solid immersion mirror and its optical evaluation," Jpn. J. Appl. Phys. 41, 617-623 (2002).
[CrossRef]

Sako, K.

T. Mizuno, N. Kojima, T. Hitosugi, K. Sako, and K. Watanabe, "An optical configuration based on flying head structure for near-field recording," Jpn. J. Appl. Phys. 43, 1403-1409 (2004).
[CrossRef]

Schlesinger, T. E.

A. V. Itagi, T. E. Schlesinger, and D. D. Stancil, "Refraction theory for planar waveguides, modeling of a mode index integrated solid immersion lens," Jpn. J. Appl. Phys. 42, 740-749 (2003).
[CrossRef]

Scholz, A. W.

C. Mihalcea, A. W. Scholz, S. Werner, S. Munster, E. Oesterschulze, and R. Kassing, "Multipurpose sensor tips for scanning near-field microscopy," Appl. Phys. Lett. 68, 3531-3533 (1996).
[CrossRef]

Scott, B. A.

M. L. Dakss, L. Kuhn, P. F. Heidrich, and B. A. Scott, "Grating coupler for excitation of optical guided waves in thin films," Appl. Phys. Lett. 16, 523-525 (1970).
[CrossRef]

Sendur, K.

K. Sendur, C. Peng, and W. Challener, "Near-field radiation for a ridge waveguide transducer in the vicinity of a solid immersion lens," Phys. Rev. Lett. 94, 043901 (2005).
[CrossRef]

Shinoda, M.

M. Shinoda, K. Saito, T. Kondo, T. Ishimoto, and A. Nakaoki, "High-density near-field readout over 50 GB capacity using solid immersion lens," Jpn. J. Appl. Phys. 42, 1101-1104 (2003).
[CrossRef]

Shiono, T.

Sohn, Y.

Y. Sohn, Y. Park, D. Suh, H. Ryu, and M. C. Paek, "Focusing grating coupler for blue laser light," IEEE Photon. Technol. Lett. 16, 162-164 (2004).
[CrossRef]

Stancil, D. D.

A. V. Itagi, T. E. Schlesinger, and D. D. Stancil, "Refraction theory for planar waveguides, modeling of a mode index integrated solid immersion lens," Jpn. J. Appl. Phys. 42, 740-749 (2003).
[CrossRef]

Studenmund, W. R.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, "Near-field optical data storage using a solid immersion lens," Appl. Phys. Lett. 65, 388-390 (1994).
[CrossRef]

Suh, D.

Y. Sohn, Y. Park, D. Suh, H. Ryu, and M. C. Paek, "Focusing grating coupler for blue laser light," IEEE Photon. Technol. Lett. 16, 162-164 (2004).
[CrossRef]

Suhara, T.

S. Ura, T. Suhara, H. Nishihara, and J. Koyama, "An integrated optic disk pickup device," J. Lightwave Technol. LT-4, 913-918 (1986).

Suzuki, T.

K. Ueyanagi, Y. Uehara, Y. Adachi, T. Suzuki, S. Moriyasu, T. Suzuki, K. Wakabayashi, Y. Yamagata, and H. Ohmor, "Fabrication of a hemi-paraboloidal solid immersion mirror and designing of an optical head with the mirror," Jpn. J. Appl. Phys. 42, 898-903 (2003).
[CrossRef]

K. Ueyanagi, Y. Uehara, Y. Adachi, T. Suzuki, S. Moriyasu, T. Suzuki, K. Wakabayashi, Y. Yamagata, and H. Ohmor, "Fabrication of a hemi-paraboloidal solid immersion mirror and designing of an optical head with the mirror," Jpn. J. Appl. Phys. 42, 898-903 (2003).
[CrossRef]

Taflove, A.

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 1985).

Terris, B. D.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, "Near-field optical data storage using a solid immersion lens," Appl. Phys. Lett. 65, 388-390 (1994).
[CrossRef]

Tomono, T.

K. Ueyanagi and T. Tomono, "Proposal of a near-field optical head using a new solid immersion mirror," Jpn. J. Appl. Phys. 39, 888-891 (2000).
[CrossRef]

Trautman, J. K.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C.-H. Chang, "Near-field magneto-optics and high density data storage," Appl. Phys. Lett. 61, 142-144 (1992).
[CrossRef]

Ueda, H.

T. Mizuno, T. Yamada, H. Sakakibara, S. Kawakita, H. Ueda, and K. Watanabe, "Fabrication of a solid immersion mirror and its optical evaluation," Jpn. J. Appl. Phys. 41, 617-623 (2002).
[CrossRef]

T. Mizuno, T. Yamada, H. Sakakibara, S. Kawakita, H. Ueda, and K. Watanabe, "Fabrication of a solid immersion mirror and its optical evaluation," Jpn. J. Appl. Phys. 41, 617-623 (2002).
[CrossRef]

Uehara, Y.

K. Ueyanagi, Y. Uehara, Y. Adachi, T. Suzuki, S. Moriyasu, T. Suzuki, K. Wakabayashi, Y. Yamagata, and H. Ohmor, "Fabrication of a hemi-paraboloidal solid immersion mirror and designing of an optical head with the mirror," Jpn. J. Appl. Phys. 42, 898-903 (2003).
[CrossRef]

Ueyanagi, K.

K. Ueyanagi, Y. Uehara, Y. Adachi, T. Suzuki, S. Moriyasu, T. Suzuki, K. Wakabayashi, Y. Yamagata, and H. Ohmor, "Fabrication of a hemi-paraboloidal solid immersion mirror and designing of an optical head with the mirror," Jpn. J. Appl. Phys. 42, 898-903 (2003).
[CrossRef]

K. Ueyanagi and T. Tomono, "Proposal of a near-field optical head using a new solid immersion mirror," Jpn. J. Appl. Phys. 39, 888-891 (2000).
[CrossRef]

Ulrich, R.

Ura, S.

S. Ura, T. Suhara, H. Nishihara, and J. Koyama, "An integrated optic disk pickup device," J. Lightwave Technol. LT-4, 913-918 (1986).

Wakabayashi, K.

K. Ueyanagi, Y. Uehara, Y. Adachi, T. Suzuki, S. Moriyasu, T. Suzuki, K. Wakabayashi, Y. Yamagata, and H. Ohmor, "Fabrication of a hemi-paraboloidal solid immersion mirror and designing of an optical head with the mirror," Jpn. J. Appl. Phys. 42, 898-903 (2003).
[CrossRef]

Watanabe, K.

T. Mizuno, N. Kojima, T. Hitosugi, K. Sako, and K. Watanabe, "An optical configuration based on flying head structure for near-field recording," Jpn. J. Appl. Phys. 43, 1403-1409 (2004).
[CrossRef]

T. Mizuno, T. Yamada, H. Sakakibara, S. Kawakita, H. Ueda, and K. Watanabe, "Fabrication of a solid immersion mirror and its optical evaluation," Jpn. J. Appl. Phys. 41, 617-623 (2002).
[CrossRef]

T. Mizuno, T. Yamada, H. Sakakibara, S. Kawakita, H. Ueda, and K. Watanabe, "Fabrication of a solid immersion mirror and its optical evaluation," Jpn. J. Appl. Phys. 41, 617-623 (2002).
[CrossRef]

Wei, P. K.

Werner, S.

C. Mihalcea, A. W. Scholz, S. Werner, S. Munster, E. Oesterschulze, and R. Kassing, "Multipurpose sensor tips for scanning near-field microscopy," Appl. Phys. Lett. 68, 3531-3533 (1996).
[CrossRef]

Wolfe, R.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C.-H. Chang, "Near-field magneto-optics and high density data storage," Appl. Phys. Lett. 61, 142-144 (1992).
[CrossRef]

Yamada, T.

T. Mizuno, T. Yamada, H. Sakakibara, S. Kawakita, H. Ueda, and K. Watanabe, "Fabrication of a solid immersion mirror and its optical evaluation," Jpn. J. Appl. Phys. 41, 617-623 (2002).
[CrossRef]

T. Mizuno, T. Yamada, H. Sakakibara, S. Kawakita, H. Ueda, and K. Watanabe, "Fabrication of a solid immersion mirror and its optical evaluation," Jpn. J. Appl. Phys. 41, 617-623 (2002).
[CrossRef]

Yamagata, Y.

K. Ueyanagi, Y. Uehara, Y. Adachi, T. Suzuki, S. Moriyasu, T. Suzuki, K. Wakabayashi, Y. Yamagata, and H. Ohmor, "Fabrication of a hemi-paraboloidal solid immersion mirror and designing of an optical head with the mirror," Jpn. J. Appl. Phys. 42, 898-903 (2003).
[CrossRef]

Yamamoto, M.

Yoshikawa, H.

Appl. Opt. (2)

Appl. Phys. Lett. (7)

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, "Near-field optical data storage using a solid immersion lens," Appl. Phys. Lett. 65, 388-390 (1994).
[CrossRef]

L. P. Ghislain and V. B. Elings, "Near-field scanning solid immersion microscope," Appl. Phys. Lett. 72, 2779-2781 (1998).
[CrossRef]

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C.-H. Chang, "Near-field magneto-optics and high density data storage," Appl. Phys. Lett. 61, 142-144 (1992).
[CrossRef]

F. Issiki, K. Ito, K. Etoh, and S. Hosaka, "1.5-Mbit/s direct readout of line-and-space patterns using a scanning near-field optical microscopy probe slide with air-bearing control," Appl. Phys. Lett. 76, 804-806 (2000).
[CrossRef]

M. L. Dakss, L. Kuhn, P. F. Heidrich, and B. A. Scott, "Grating coupler for excitation of optical guided waves in thin films," Appl. Phys. Lett. 16, 523-525 (1970).
[CrossRef]

C. Mihalcea, A. W. Scholz, S. Werner, S. Munster, E. Oesterschulze, and R. Kassing, "Multipurpose sensor tips for scanning near-field microscopy," Appl. Phys. Lett. 68, 3531-3533 (1996).
[CrossRef]

C. Peng, C. Mihalcea, D. Buchel, W. A. Challener, and E. C. Gage, "Near-field recording using a planar solid immersion mirror," Appl. Phys. Lett. 87, 151105 (2005).

IEEE Photon. Technol. Lett. (1)

Y. Sohn, Y. Park, D. Suh, H. Ryu, and M. C. Paek, "Focusing grating coupler for blue laser light," IEEE Photon. Technol. Lett. 16, 162-164 (2004).
[CrossRef]

J. Lightwave Technol. (1)

S. Ura, T. Suhara, H. Nishihara, and J. Koyama, "An integrated optic disk pickup device," J. Lightwave Technol. LT-4, 913-918 (1986).

J. Opt. A (1)

S. Monneret, P. Huguet-Chantome, and F. Flory, "M-lines techniques: prism coupling measurement and discussion of accuracy for homogeneous waveguides," J. Opt. A 2, 188-195 (2000).

J. Opt. Soc. Am. (1)

Jpn. J. Appl. Phys. (9)

M. Shinoda, K. Saito, T. Kondo, T. Ishimoto, and A. Nakaoki, "High-density near-field readout over 50 GB capacity using solid immersion lens," Jpn. J. Appl. Phys. 42, 1101-1104 (2003).
[CrossRef]

T. Mizuno, T. Yamada, H. Sakakibara, S. Kawakita, H. Ueda, and K. Watanabe, "Fabrication of a solid immersion mirror and its optical evaluation," Jpn. J. Appl. Phys. 41, 617-623 (2002).
[CrossRef]

T. Mizuno, N. Kojima, T. Hitosugi, K. Sako, and K. Watanabe, "An optical configuration based on flying head structure for near-field recording," Jpn. J. Appl. Phys. 43, 1403-1409 (2004).
[CrossRef]

T. Mizuno, T. Yamada, H. Sakakibara, S. Kawakita, H. Ueda, and K. Watanabe, "Fabrication of a solid immersion mirror and its optical evaluation," Jpn. J. Appl. Phys. 41, 617-623 (2002).
[CrossRef]

K. Ueyanagi and T. Tomono, "Proposal of a near-field optical head using a new solid immersion mirror," Jpn. J. Appl. Phys. 39, 888-891 (2000).
[CrossRef]

K. Ueyanagi, Y. Uehara, Y. Adachi, T. Suzuki, S. Moriyasu, T. Suzuki, K. Wakabayashi, Y. Yamagata, and H. Ohmor, "Fabrication of a hemi-paraboloidal solid immersion mirror and designing of an optical head with the mirror," Jpn. J. Appl. Phys. 42, 898-903 (2003).
[CrossRef]

Y. S. Kim, S. J. Lee, Y. J. Kim, N. C. Park, and Y. P. Park, "Design of a super-paraboloidal solid immersion mirror for near-field recording," Jpn. J. Appl. Phys. 43, 5756-5760 (2004).
[CrossRef]

K. Konno, M. Okitsu, K. Ogura, and H. Hatano, "Design and evaluation of a solid immersion mirror using a dielectric layer stack for near-field optical recording," Jpn. J. Appl. Phys. 43, 2530-2535 (2004).
[CrossRef]

A. V. Itagi, T. E. Schlesinger, and D. D. Stancil, "Refraction theory for planar waveguides, modeling of a mode index integrated solid immersion lens," Jpn. J. Appl. Phys. 42, 740-749 (2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

K. Sendur, C. Peng, and W. Challener, "Near-field radiation for a ridge waveguide transducer in the vicinity of a solid immersion lens," Phys. Rev. Lett. 94, 043901 (2005).
[CrossRef]

Other (2)

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 1985).

C. Peng and W. A. Challener, "Input-grating couplers for narrow Gaussian beam: influence of groove depth," Opt. Express 2, 6481-6490 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Cross-sectional view of (a) a planar waveguide and (b) a PSIM. The simplest waveguide consists of a high-refractive-index dielectric core layer (Ta2O5) and a low-refractive-index cladding layer (SiO2) on a substrate. A two-dimensional parabola is etched down into the waveguide for light focusing.

Fig. 2
Fig. 2

Waveguide tester for characterizing mode propagation in a planar waveguide. A beam of light is focused onto the bottom of a rutile prism coupler, and a confocal detection module measures the scattered light from the waveguide along the streak of light propagating in the waveguide. A micrometer is used to control the air gap between the rutile prism and the film surface for launching a good amount of light into the waveguide. PMT, photomultiplier tube.

Fig. 3
Fig. 3

Testing structure for measuring mode reflection from a sidewall. Light is coupled into the waveguide by an input grating coupler and coupled out of the waveguide by an output grating coupler after reflection from the sidewall. One extra pair of input and output grating couplers is used for the calibration of mode reflection from the sidewall.

Fig. 4
Fig. 4

SNOM for characterization of PSIM focusing. Light is launched into the device by an input grating coupler and focused by the PSIM. An Al-coated silicon tip scans on the sample surface near the focus, and light propagation through the tip is collected by a confocal microscope detection module and detected by a photocounting PMT. Beam deflection from the cantilever is used to regulate the distance between the tip and the device surface.

Fig. 5
Fig. 5

Measured reflection versus angle of incidence on an asymmetric waveguide of 100 nm thick Ta2O5 on a thermally oxidized silicon wafer. The thickness of the oxidized layer is 2 μm. Light wavelength of λ = 633 nm.

Fig. 6
Fig. 6

Measured scattered light as the detection module moves along the streak of light on the film's surface for a waveguide with cladding layer thicknesses of 0.62, 1, 1.46, and 2 μm. Inset, 1∕e propagation length versus thickness of the oxidized cladding layer.

Fig. 7
Fig. 7

Measured TE0 mode reflection versus angle of incidence at three different sidewall depths. Light is launched into the waveguide by the input grating coupler. It propagates in the film, incident upon the sidewall, and gets reflected. The waveguide is a 100 nm thick Ta2O5 core layer coated on a thermally oxidized silicon wafer. Light wavelength of λ = 633 nm.

Fig. 8
Fig. 8

Calculated mode reflection as a function of incidence angle at sidewall depths of 0.1, 0.3, 0.5, and 0.8 μm. The waveguide simulated consists of a 100 nm thick Ta2O5 core layer coated on a SiO2 substrate. In the simulation it is assumed that the core layer has refractive index n = 2.09 and substrate n = 1.47. Light wavelength of λ = 633 nm.

Fig. 9
Fig. 9

Photograph images showing (a) PSIM focusing and (b) light bouncing off parabolic sidewall. There are 16 devices on each frame. Each parabola is 12 mm long and etched from the film's surface into the cladding layer of a waveguide consisting of a 100 nm thick Ta2O5 core layer on a thermally oxidized silicon wafer. Excitation light wavelength of λ = 633 nm.

Fig. 10
Fig. 10

Far-field images captured by a 10× microscope objective showing PSIM focusing. Light is launched into the waveguide by the grating coupler. It propagates ∼12 mm in the planar waveguide and is incident upon a 100 μm long and 50 μm wide PSIM in the opening from the bottom left-hand corner. In (a) the PSIM is truncated at the focus and in (b) two PSIMs are aligned, one for focusing light and the other for collimating light.

Fig. 11
Fig. 11

Characteristics of PSIM focusing: (a) near-field intensity distribution and (b) corresponding topography, obtained by a SNOM aperture scanning on the core layer surface. The scan area is 16 μm along the horizontal axis and 10 μm along the vertical axis. The distance between the grating coupling and the PSIM is 12 mm. Excitation light wavelength of λ = 660 nm.

Fig. 12
Fig. 12

PSIM focusing near-field intensity distribution as the optic axis of the analyzer placed in the SNOM is (a) parallel or (b) normal to the polarization state of the incident beam. The image is obtained by the scanning of a SNOM aperture on the surface of a tantala silica waveguide. The scan area is 14 μm (horizontal) × 7 μm (vertical). The distance between the grating coupling and the PSIM is 12 mm. Excitation light wavelength of λ = 650 nm.

Fig. 13
Fig. 13

Line scan of near-field intensity across the focused spot as the optic axis of the analyzer placed in the SNOM is (a) parallel or (b) normal to the polarization state of the incident beam. The distance between the grating coupling and the PSIM is 12 mm. Excitation light wavelength of λ = 650 nm.

Fig. 14
Fig. 14

PSIM focusing near-field intensity distribution as the optic axis of the analyzer placed in the SNOM is (a) parallel or (b) normal to the polarization state of the incident beam. The image is obtained by scanning a SNOM aperture on the surface of a tantala silica waveguide. The scan area is 12 μm (horizontal) × 8 μm (vertical). The distance between the grating coupling and the PSIM is 50 μm. Excitation light wavelength of λ = 635 nm.

Fig. 15
Fig. 15

Line scan of near-field intensity across the focused spot as the optic axis of the analyzer placed in the SNOM is (a) parallel or (b) normal to the polarization state of the incident beam. The distance between the grating coupling and the PSIM is 50 μm. Excitation light wavelength of λ = 635 nm.

Fig. 16
Fig. 16

Same as Fig. 14 but the plane of incidence is ∼1° off the normal plane.

Fig. 17
Fig. 17

Same as Fig. 15 but the plane of incidence is ∼1° off the normal plane.

Metrics