Abstract

Dispersive multilayer coatings have found widespread use, particularly in the compensation of material dispersion in femtosecond oscillators and amplifiers. Other than prism or grating sequences, only chirped mirrors allow for the compensation of a much more general spectral dependence of the dispersion. The current state of the art in ultrabroadband mirror design for dispersion compensation is reviewed. Approaches to expand the utility of chirped-mirror coatings toward the coverage of an even-wider bandwidth beyond the optical octave are discussed.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. E. Spence, P. N. Kean, and W. Sibbett, '60-fsec pulse generation from a self-mode-locked Ti:sapphire laser,' Opt. Lett. 16, 42-44 (1991).
    [CrossRef] [PubMed]
  2. D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, and T. Tschudi, 'SESAM-assisted Kerr-lens mode-locked Ti:sapphire laser producing pulses in the two-cycle regime,' Opt. Lett. 24, 631-633 (1999).
    [CrossRef]
  3. U. Morgner, F. X. Kärtner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, 'Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser,' Opt. Lett. 24, 411-413 (1999).
    [CrossRef]
  4. M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, C. Spielmann, S. Sartania, and F. Krausz, 'Compression of high-energy laser pulses below 5 fs,' Opt. Lett. 22, 522-524 (1997).
    [CrossRef] [PubMed]
  5. G. Sansone, G. Steinmeyer, C. Vozzi, S. Stagira, M. Nisoli, S. De Silvestri, K. Starke, D. Ristau, B. Schenkel, J. Biegert, A. Gosteva, and U. Keller, 'Mirror dispersion control of a hollow fiber supercontinuum,' Appl. Phys. B 78, 551-555 (2004).
    [CrossRef]
  6. G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, 'Frontiers in ultrashort pulse generation: pushing the limits in linear and nonlinear optics,' Science 286, 1507-1512 (1999).
    [CrossRef] [PubMed]
  7. G. Steinmeyer, 'A review of ultrafast optics and optoelectronics,' J. Opt. A 5, R1-R15 (2003).
    [CrossRef]
  8. R. L. Fork, C. H. Brito Cruz, P. C. Becker, and C. V. Shank, 'Compression of optical pulses to six femtoseconds by using cubic phase compensation,' Opt. Lett. 12, 483-485 (1987).
    [CrossRef] [PubMed]
  9. R. Szipöcs, K. Ferencz, C. Spielmann, and F. Krausz, 'Chirped multilayer coatings for broad-band dispersion control in femtosecond lasers,' Opt. Lett. 19, 201-203 (1994).
    [CrossRef] [PubMed]
  10. F. Gires and P. Tournois, 'Interféromètre utilisable pour la compression dimpulsions lumineuses modulées en fréquence,' C. R. Acad. Sci. 258, 6112-6115 (1964).
  11. F. X. Kärtner, N. Matuschek, T. Schibli, U. Keller, H. A. Haus, C. Heine, R. Morf, V. Scheuer, M. Tilsch, and T. Tschudi, 'Design and fabrication of double-chirped mirrors,' Opt. Lett. 22, 831-833 (1997).
    [CrossRef] [PubMed]
  12. J. A. Dobrowolski, A. V. Tikhonravov, M. K. Trubetskov, B. T. Sullivan, and P. G. Verly, 'Optimal single-band normal-incidence antireflection coatings,' Appl. Opt. 35, 644-658 (1996).
    [CrossRef] [PubMed]
  13. G. Steinmeyer, 'Dispersion oscillations in ultrafast phase-correction devices,' IEEE J. Quantum Electron. 39, 1027-1034 (2003).
    [CrossRef]
  14. J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale (Academic, 1996).
  15. N. Matuschek, F. X. Kärtner, and U. Keller, 'Analytical design of double-chirped mirrors with custom-tailored dispersion characteristics,' IEEE J. Quantum Electron. 35, 129-137 (1999).
    [CrossRef]
  16. I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, G. Zhang, U. Keller, V. Scheuer, M. Tilsch, and T. Tschudi, 'Self-starting 6.5 fs pulses from a Ti:sapphire laser,' Opt. Lett. 22, 1009-1011 (1997).
    [CrossRef] [PubMed]
  17. M. Zavelani-Rossi, G. Cerullo, S. De Silvestri, L. Gallmann, N. Matuschek, G. Steinmeyer, U. Keller, G. Angelow, V. Scheuer, and T. Tschudi, 'Pulse compression in the visible over 200-THz bandwidth using only chirped mirrors,' Opt. Lett. 26, 1155-1157 (2001).
    [CrossRef]
  18. V. Laude and P. Tournois, 'Chirped mirror pairs for ultrabroadband dispersion control,' in Digest of Conference on Lasers and Electro-Optics (CLEO/US) (Optical Society of America, 1999) pp. 187-188.
  19. F. X. Kärtner, U. Morgner, R. Ell, T. Schibli, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, 'Ultrabroadband double-chirped mirror pairs for generation of octave spectra,' J. Opt. Soc. Am. B 18, 882-885 (2001).
    [CrossRef]
  20. N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, 'Back-side-coated chirped mirrors with ultra-smooth broadband dispersion characteristics,' Appl. Phys. B 71, 509-522 (2000).
    [CrossRef]
  21. G. Tempea, V. Yakovlev, B. Bacovic, F. Krausz, and K. Ferencz, 'Tilted-front-interface chirped mirrors,' J. Opt. Soc. Am. B 18, 1747-1750 (2001).
    [CrossRef]
  22. V. S. Yakovlev, P. Dombi, G. Tempea, C. Lemell, J. Burgdörder, T. Udem, and A. Apolonski, 'Phase-stabilized 4-fs pulses at the full oscillator repetition rate for a photoemission experiment,' Appl. Phys. B 76, 329-332 (2003).
    [CrossRef]
  23. G. Steinmeyer, 'Brewster-angled chirped mirrors for high-fidelity dispersion compensation and bandwidths exceeding one optical octave,' Opt. Express 11, 2385-2396 (2003).
    [CrossRef] [PubMed]

2004 (1)

G. Sansone, G. Steinmeyer, C. Vozzi, S. Stagira, M. Nisoli, S. De Silvestri, K. Starke, D. Ristau, B. Schenkel, J. Biegert, A. Gosteva, and U. Keller, 'Mirror dispersion control of a hollow fiber supercontinuum,' Appl. Phys. B 78, 551-555 (2004).
[CrossRef]

2003 (4)

V. S. Yakovlev, P. Dombi, G. Tempea, C. Lemell, J. Burgdörder, T. Udem, and A. Apolonski, 'Phase-stabilized 4-fs pulses at the full oscillator repetition rate for a photoemission experiment,' Appl. Phys. B 76, 329-332 (2003).
[CrossRef]

G. Steinmeyer, 'A review of ultrafast optics and optoelectronics,' J. Opt. A 5, R1-R15 (2003).
[CrossRef]

G. Steinmeyer, 'Dispersion oscillations in ultrafast phase-correction devices,' IEEE J. Quantum Electron. 39, 1027-1034 (2003).
[CrossRef]

G. Steinmeyer, 'Brewster-angled chirped mirrors for high-fidelity dispersion compensation and bandwidths exceeding one optical octave,' Opt. Express 11, 2385-2396 (2003).
[CrossRef] [PubMed]

2001 (3)

2000 (1)

N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, 'Back-side-coated chirped mirrors with ultra-smooth broadband dispersion characteristics,' Appl. Phys. B 71, 509-522 (2000).
[CrossRef]

1999 (4)

U. Morgner, F. X. Kärtner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, 'Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser,' Opt. Lett. 24, 411-413 (1999).
[CrossRef]

D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, and T. Tschudi, 'SESAM-assisted Kerr-lens mode-locked Ti:sapphire laser producing pulses in the two-cycle regime,' Opt. Lett. 24, 631-633 (1999).
[CrossRef]

N. Matuschek, F. X. Kärtner, and U. Keller, 'Analytical design of double-chirped mirrors with custom-tailored dispersion characteristics,' IEEE J. Quantum Electron. 35, 129-137 (1999).
[CrossRef]

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, 'Frontiers in ultrashort pulse generation: pushing the limits in linear and nonlinear optics,' Science 286, 1507-1512 (1999).
[CrossRef] [PubMed]

1997 (3)

1996 (1)

1994 (1)

1991 (1)

1987 (1)

1964 (1)

F. Gires and P. Tournois, 'Interféromètre utilisable pour la compression dimpulsions lumineuses modulées en fréquence,' C. R. Acad. Sci. 258, 6112-6115 (1964).

Angelow, G.

Apolonski, A.

V. S. Yakovlev, P. Dombi, G. Tempea, C. Lemell, J. Burgdörder, T. Udem, and A. Apolonski, 'Phase-stabilized 4-fs pulses at the full oscillator repetition rate for a photoemission experiment,' Appl. Phys. B 76, 329-332 (2003).
[CrossRef]

Bacovic, B.

Becker, P. C.

Biegert, J.

G. Sansone, G. Steinmeyer, C. Vozzi, S. Stagira, M. Nisoli, S. De Silvestri, K. Starke, D. Ristau, B. Schenkel, J. Biegert, A. Gosteva, and U. Keller, 'Mirror dispersion control of a hollow fiber supercontinuum,' Appl. Phys. B 78, 551-555 (2004).
[CrossRef]

Brito Cruz, C. H.

Burgdörder, J.

V. S. Yakovlev, P. Dombi, G. Tempea, C. Lemell, J. Burgdörder, T. Udem, and A. Apolonski, 'Phase-stabilized 4-fs pulses at the full oscillator repetition rate for a photoemission experiment,' Appl. Phys. B 76, 329-332 (2003).
[CrossRef]

Cerullo, G.

Chen, Y.

Cho, S. H.

De Silvestri, S.

Diels, J.-C.

J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale (Academic, 1996).

Dobrowolski, J. A.

Dombi, P.

V. S. Yakovlev, P. Dombi, G. Tempea, C. Lemell, J. Burgdörder, T. Udem, and A. Apolonski, 'Phase-stabilized 4-fs pulses at the full oscillator repetition rate for a photoemission experiment,' Appl. Phys. B 76, 329-332 (2003).
[CrossRef]

Ell, R.

Ferencz, K.

Fork, R. L.

Fujimoto, J. G.

Gallmann, L.

M. Zavelani-Rossi, G. Cerullo, S. De Silvestri, L. Gallmann, N. Matuschek, G. Steinmeyer, U. Keller, G. Angelow, V. Scheuer, and T. Tschudi, 'Pulse compression in the visible over 200-THz bandwidth using only chirped mirrors,' Opt. Lett. 26, 1155-1157 (2001).
[CrossRef]

N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, 'Back-side-coated chirped mirrors with ultra-smooth broadband dispersion characteristics,' Appl. Phys. B 71, 509-522 (2000).
[CrossRef]

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, 'Frontiers in ultrashort pulse generation: pushing the limits in linear and nonlinear optics,' Science 286, 1507-1512 (1999).
[CrossRef] [PubMed]

D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, and T. Tschudi, 'SESAM-assisted Kerr-lens mode-locked Ti:sapphire laser producing pulses in the two-cycle regime,' Opt. Lett. 24, 631-633 (1999).
[CrossRef]

Gires, F.

F. Gires and P. Tournois, 'Interféromètre utilisable pour la compression dimpulsions lumineuses modulées en fréquence,' C. R. Acad. Sci. 258, 6112-6115 (1964).

Gosteva, A.

G. Sansone, G. Steinmeyer, C. Vozzi, S. Stagira, M. Nisoli, S. De Silvestri, K. Starke, D. Ristau, B. Schenkel, J. Biegert, A. Gosteva, and U. Keller, 'Mirror dispersion control of a hollow fiber supercontinuum,' Appl. Phys. B 78, 551-555 (2004).
[CrossRef]

Haus, H. A.

Heine, C.

Ippen, E. P.

Jung, I. D.

Kärtner, F. X.

Kean, P. N.

Keller, U.

G. Sansone, G. Steinmeyer, C. Vozzi, S. Stagira, M. Nisoli, S. De Silvestri, K. Starke, D. Ristau, B. Schenkel, J. Biegert, A. Gosteva, and U. Keller, 'Mirror dispersion control of a hollow fiber supercontinuum,' Appl. Phys. B 78, 551-555 (2004).
[CrossRef]

M. Zavelani-Rossi, G. Cerullo, S. De Silvestri, L. Gallmann, N. Matuschek, G. Steinmeyer, U. Keller, G. Angelow, V. Scheuer, and T. Tschudi, 'Pulse compression in the visible over 200-THz bandwidth using only chirped mirrors,' Opt. Lett. 26, 1155-1157 (2001).
[CrossRef]

N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, 'Back-side-coated chirped mirrors with ultra-smooth broadband dispersion characteristics,' Appl. Phys. B 71, 509-522 (2000).
[CrossRef]

N. Matuschek, F. X. Kärtner, and U. Keller, 'Analytical design of double-chirped mirrors with custom-tailored dispersion characteristics,' IEEE J. Quantum Electron. 35, 129-137 (1999).
[CrossRef]

D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, and T. Tschudi, 'SESAM-assisted Kerr-lens mode-locked Ti:sapphire laser producing pulses in the two-cycle regime,' Opt. Lett. 24, 631-633 (1999).
[CrossRef]

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, 'Frontiers in ultrashort pulse generation: pushing the limits in linear and nonlinear optics,' Science 286, 1507-1512 (1999).
[CrossRef] [PubMed]

I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, G. Zhang, U. Keller, V. Scheuer, M. Tilsch, and T. Tschudi, 'Self-starting 6.5 fs pulses from a Ti:sapphire laser,' Opt. Lett. 22, 1009-1011 (1997).
[CrossRef] [PubMed]

F. X. Kärtner, N. Matuschek, T. Schibli, U. Keller, H. A. Haus, C. Heine, R. Morf, V. Scheuer, M. Tilsch, and T. Tschudi, 'Design and fabrication of double-chirped mirrors,' Opt. Lett. 22, 831-833 (1997).
[CrossRef] [PubMed]

Krausz, F.

Laude, V.

V. Laude and P. Tournois, 'Chirped mirror pairs for ultrabroadband dispersion control,' in Digest of Conference on Lasers and Electro-Optics (CLEO/US) (Optical Society of America, 1999) pp. 187-188.

Lemell, C.

V. S. Yakovlev, P. Dombi, G. Tempea, C. Lemell, J. Burgdörder, T. Udem, and A. Apolonski, 'Phase-stabilized 4-fs pulses at the full oscillator repetition rate for a photoemission experiment,' Appl. Phys. B 76, 329-332 (2003).
[CrossRef]

Matuschek, N.

M. Zavelani-Rossi, G. Cerullo, S. De Silvestri, L. Gallmann, N. Matuschek, G. Steinmeyer, U. Keller, G. Angelow, V. Scheuer, and T. Tschudi, 'Pulse compression in the visible over 200-THz bandwidth using only chirped mirrors,' Opt. Lett. 26, 1155-1157 (2001).
[CrossRef]

N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, 'Back-side-coated chirped mirrors with ultra-smooth broadband dispersion characteristics,' Appl. Phys. B 71, 509-522 (2000).
[CrossRef]

N. Matuschek, F. X. Kärtner, and U. Keller, 'Analytical design of double-chirped mirrors with custom-tailored dispersion characteristics,' IEEE J. Quantum Electron. 35, 129-137 (1999).
[CrossRef]

D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, and T. Tschudi, 'SESAM-assisted Kerr-lens mode-locked Ti:sapphire laser producing pulses in the two-cycle regime,' Opt. Lett. 24, 631-633 (1999).
[CrossRef]

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, 'Frontiers in ultrashort pulse generation: pushing the limits in linear and nonlinear optics,' Science 286, 1507-1512 (1999).
[CrossRef] [PubMed]

I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, G. Zhang, U. Keller, V. Scheuer, M. Tilsch, and T. Tschudi, 'Self-starting 6.5 fs pulses from a Ti:sapphire laser,' Opt. Lett. 22, 1009-1011 (1997).
[CrossRef] [PubMed]

F. X. Kärtner, N. Matuschek, T. Schibli, U. Keller, H. A. Haus, C. Heine, R. Morf, V. Scheuer, M. Tilsch, and T. Tschudi, 'Design and fabrication of double-chirped mirrors,' Opt. Lett. 22, 831-833 (1997).
[CrossRef] [PubMed]

Morf, R.

Morgner, U.

Morier-Genoud, F.

Nisoli, M.

G. Sansone, G. Steinmeyer, C. Vozzi, S. Stagira, M. Nisoli, S. De Silvestri, K. Starke, D. Ristau, B. Schenkel, J. Biegert, A. Gosteva, and U. Keller, 'Mirror dispersion control of a hollow fiber supercontinuum,' Appl. Phys. B 78, 551-555 (2004).
[CrossRef]

M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, C. Spielmann, S. Sartania, and F. Krausz, 'Compression of high-energy laser pulses below 5 fs,' Opt. Lett. 22, 522-524 (1997).
[CrossRef] [PubMed]

Ristau, D.

G. Sansone, G. Steinmeyer, C. Vozzi, S. Stagira, M. Nisoli, S. De Silvestri, K. Starke, D. Ristau, B. Schenkel, J. Biegert, A. Gosteva, and U. Keller, 'Mirror dispersion control of a hollow fiber supercontinuum,' Appl. Phys. B 78, 551-555 (2004).
[CrossRef]

Rudolph, W.

J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale (Academic, 1996).

Sansone, G.

G. Sansone, G. Steinmeyer, C. Vozzi, S. Stagira, M. Nisoli, S. De Silvestri, K. Starke, D. Ristau, B. Schenkel, J. Biegert, A. Gosteva, and U. Keller, 'Mirror dispersion control of a hollow fiber supercontinuum,' Appl. Phys. B 78, 551-555 (2004).
[CrossRef]

Sartania, S.

Schenkel, B.

G. Sansone, G. Steinmeyer, C. Vozzi, S. Stagira, M. Nisoli, S. De Silvestri, K. Starke, D. Ristau, B. Schenkel, J. Biegert, A. Gosteva, and U. Keller, 'Mirror dispersion control of a hollow fiber supercontinuum,' Appl. Phys. B 78, 551-555 (2004).
[CrossRef]

Scheuer, V.

Schibli, T.

Shank, C. V.

Sibbett, W.

Spence, D. E.

Spielmann, C.

Stagira, S.

G. Sansone, G. Steinmeyer, C. Vozzi, S. Stagira, M. Nisoli, S. De Silvestri, K. Starke, D. Ristau, B. Schenkel, J. Biegert, A. Gosteva, and U. Keller, 'Mirror dispersion control of a hollow fiber supercontinuum,' Appl. Phys. B 78, 551-555 (2004).
[CrossRef]

Starke, K.

G. Sansone, G. Steinmeyer, C. Vozzi, S. Stagira, M. Nisoli, S. De Silvestri, K. Starke, D. Ristau, B. Schenkel, J. Biegert, A. Gosteva, and U. Keller, 'Mirror dispersion control of a hollow fiber supercontinuum,' Appl. Phys. B 78, 551-555 (2004).
[CrossRef]

Steinmeyer, G.

G. Sansone, G. Steinmeyer, C. Vozzi, S. Stagira, M. Nisoli, S. De Silvestri, K. Starke, D. Ristau, B. Schenkel, J. Biegert, A. Gosteva, and U. Keller, 'Mirror dispersion control of a hollow fiber supercontinuum,' Appl. Phys. B 78, 551-555 (2004).
[CrossRef]

G. Steinmeyer, 'A review of ultrafast optics and optoelectronics,' J. Opt. A 5, R1-R15 (2003).
[CrossRef]

G. Steinmeyer, 'Dispersion oscillations in ultrafast phase-correction devices,' IEEE J. Quantum Electron. 39, 1027-1034 (2003).
[CrossRef]

G. Steinmeyer, 'Brewster-angled chirped mirrors for high-fidelity dispersion compensation and bandwidths exceeding one optical octave,' Opt. Express 11, 2385-2396 (2003).
[CrossRef] [PubMed]

M. Zavelani-Rossi, G. Cerullo, S. De Silvestri, L. Gallmann, N. Matuschek, G. Steinmeyer, U. Keller, G. Angelow, V. Scheuer, and T. Tschudi, 'Pulse compression in the visible over 200-THz bandwidth using only chirped mirrors,' Opt. Lett. 26, 1155-1157 (2001).
[CrossRef]

N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, 'Back-side-coated chirped mirrors with ultra-smooth broadband dispersion characteristics,' Appl. Phys. B 71, 509-522 (2000).
[CrossRef]

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, 'Frontiers in ultrashort pulse generation: pushing the limits in linear and nonlinear optics,' Science 286, 1507-1512 (1999).
[CrossRef] [PubMed]

D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, and T. Tschudi, 'SESAM-assisted Kerr-lens mode-locked Ti:sapphire laser producing pulses in the two-cycle regime,' Opt. Lett. 24, 631-633 (1999).
[CrossRef]

Sullivan, B. T.

Sutter, D. H.

N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, 'Back-side-coated chirped mirrors with ultra-smooth broadband dispersion characteristics,' Appl. Phys. B 71, 509-522 (2000).
[CrossRef]

D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, and T. Tschudi, 'SESAM-assisted Kerr-lens mode-locked Ti:sapphire laser producing pulses in the two-cycle regime,' Opt. Lett. 24, 631-633 (1999).
[CrossRef]

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, 'Frontiers in ultrashort pulse generation: pushing the limits in linear and nonlinear optics,' Science 286, 1507-1512 (1999).
[CrossRef] [PubMed]

I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, G. Zhang, U. Keller, V. Scheuer, M. Tilsch, and T. Tschudi, 'Self-starting 6.5 fs pulses from a Ti:sapphire laser,' Opt. Lett. 22, 1009-1011 (1997).
[CrossRef] [PubMed]

Svelto, O.

Szipöcs, R.

Tempea, G.

V. S. Yakovlev, P. Dombi, G. Tempea, C. Lemell, J. Burgdörder, T. Udem, and A. Apolonski, 'Phase-stabilized 4-fs pulses at the full oscillator repetition rate for a photoemission experiment,' Appl. Phys. B 76, 329-332 (2003).
[CrossRef]

G. Tempea, V. Yakovlev, B. Bacovic, F. Krausz, and K. Ferencz, 'Tilted-front-interface chirped mirrors,' J. Opt. Soc. Am. B 18, 1747-1750 (2001).
[CrossRef]

Tikhonravov, A. V.

Tilsch, M.

Tournois, P.

F. Gires and P. Tournois, 'Interféromètre utilisable pour la compression dimpulsions lumineuses modulées en fréquence,' C. R. Acad. Sci. 258, 6112-6115 (1964).

V. Laude and P. Tournois, 'Chirped mirror pairs for ultrabroadband dispersion control,' in Digest of Conference on Lasers and Electro-Optics (CLEO/US) (Optical Society of America, 1999) pp. 187-188.

Trubetskov, M. K.

Tschudi, T.

Udem, T.

V. S. Yakovlev, P. Dombi, G. Tempea, C. Lemell, J. Burgdörder, T. Udem, and A. Apolonski, 'Phase-stabilized 4-fs pulses at the full oscillator repetition rate for a photoemission experiment,' Appl. Phys. B 76, 329-332 (2003).
[CrossRef]

Verly, P. G.

Vozzi, C.

G. Sansone, G. Steinmeyer, C. Vozzi, S. Stagira, M. Nisoli, S. De Silvestri, K. Starke, D. Ristau, B. Schenkel, J. Biegert, A. Gosteva, and U. Keller, 'Mirror dispersion control of a hollow fiber supercontinuum,' Appl. Phys. B 78, 551-555 (2004).
[CrossRef]

Yakovlev, V.

Yakovlev, V. S.

V. S. Yakovlev, P. Dombi, G. Tempea, C. Lemell, J. Burgdörder, T. Udem, and A. Apolonski, 'Phase-stabilized 4-fs pulses at the full oscillator repetition rate for a photoemission experiment,' Appl. Phys. B 76, 329-332 (2003).
[CrossRef]

Zavelani-Rossi, M.

Zhang, G.

Appl. Opt. (1)

Appl. Phys. B (3)

G. Sansone, G. Steinmeyer, C. Vozzi, S. Stagira, M. Nisoli, S. De Silvestri, K. Starke, D. Ristau, B. Schenkel, J. Biegert, A. Gosteva, and U. Keller, 'Mirror dispersion control of a hollow fiber supercontinuum,' Appl. Phys. B 78, 551-555 (2004).
[CrossRef]

N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, 'Back-side-coated chirped mirrors with ultra-smooth broadband dispersion characteristics,' Appl. Phys. B 71, 509-522 (2000).
[CrossRef]

V. S. Yakovlev, P. Dombi, G. Tempea, C. Lemell, J. Burgdörder, T. Udem, and A. Apolonski, 'Phase-stabilized 4-fs pulses at the full oscillator repetition rate for a photoemission experiment,' Appl. Phys. B 76, 329-332 (2003).
[CrossRef]

C. R. Acad. Sci. (1)

F. Gires and P. Tournois, 'Interféromètre utilisable pour la compression dimpulsions lumineuses modulées en fréquence,' C. R. Acad. Sci. 258, 6112-6115 (1964).

IEEE J. Quantum Electron. (2)

N. Matuschek, F. X. Kärtner, and U. Keller, 'Analytical design of double-chirped mirrors with custom-tailored dispersion characteristics,' IEEE J. Quantum Electron. 35, 129-137 (1999).
[CrossRef]

G. Steinmeyer, 'Dispersion oscillations in ultrafast phase-correction devices,' IEEE J. Quantum Electron. 39, 1027-1034 (2003).
[CrossRef]

J. Opt. A (1)

G. Steinmeyer, 'A review of ultrafast optics and optoelectronics,' J. Opt. A 5, R1-R15 (2003).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Express (1)

Opt. Lett. (9)

M. Zavelani-Rossi, G. Cerullo, S. De Silvestri, L. Gallmann, N. Matuschek, G. Steinmeyer, U. Keller, G. Angelow, V. Scheuer, and T. Tschudi, 'Pulse compression in the visible over 200-THz bandwidth using only chirped mirrors,' Opt. Lett. 26, 1155-1157 (2001).
[CrossRef]

R. L. Fork, C. H. Brito Cruz, P. C. Becker, and C. V. Shank, 'Compression of optical pulses to six femtoseconds by using cubic phase compensation,' Opt. Lett. 12, 483-485 (1987).
[CrossRef] [PubMed]

D. E. Spence, P. N. Kean, and W. Sibbett, '60-fsec pulse generation from a self-mode-locked Ti:sapphire laser,' Opt. Lett. 16, 42-44 (1991).
[CrossRef] [PubMed]

R. Szipöcs, K. Ferencz, C. Spielmann, and F. Krausz, 'Chirped multilayer coatings for broad-band dispersion control in femtosecond lasers,' Opt. Lett. 19, 201-203 (1994).
[CrossRef] [PubMed]

M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, C. Spielmann, S. Sartania, and F. Krausz, 'Compression of high-energy laser pulses below 5 fs,' Opt. Lett. 22, 522-524 (1997).
[CrossRef] [PubMed]

F. X. Kärtner, N. Matuschek, T. Schibli, U. Keller, H. A. Haus, C. Heine, R. Morf, V. Scheuer, M. Tilsch, and T. Tschudi, 'Design and fabrication of double-chirped mirrors,' Opt. Lett. 22, 831-833 (1997).
[CrossRef] [PubMed]

I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, G. Zhang, U. Keller, V. Scheuer, M. Tilsch, and T. Tschudi, 'Self-starting 6.5 fs pulses from a Ti:sapphire laser,' Opt. Lett. 22, 1009-1011 (1997).
[CrossRef] [PubMed]

U. Morgner, F. X. Kärtner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, 'Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser,' Opt. Lett. 24, 411-413 (1999).
[CrossRef]

D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, and T. Tschudi, 'SESAM-assisted Kerr-lens mode-locked Ti:sapphire laser producing pulses in the two-cycle regime,' Opt. Lett. 24, 631-633 (1999).
[CrossRef]

Science (1)

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, 'Frontiers in ultrashort pulse generation: pushing the limits in linear and nonlinear optics,' Science 286, 1507-1512 (1999).
[CrossRef] [PubMed]

Other (2)

J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale (Academic, 1996).

V. Laude and P. Tournois, 'Chirped mirror pairs for ultrabroadband dispersion control,' in Digest of Conference on Lasers and Electro-Optics (CLEO/US) (Optical Society of America, 1999) pp. 187-188.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Basic concept of a chirped mirror. The mirror consists of alternating layers of low- and high-index dielectrica, with a monotonic variation of optical layer thickness along the stack. Consequently, the classical turning point of the reflected light varies with wavelength. Schematically shown are the paths of two different Fourier components, ω 1 and ω 2 , upon reflection, cumulating a group-delay difference of ΔGD . This results in a net group-delay dispersion of the mirror of GDD = ΔGD / ( ω 2 - ω 1 ) .

Fig. 2
Fig. 2

Spurious interferometric effects in a chirped multilayer structure (schematic). For the example shown, interference arises between the partial reflection at the interface between the air and the high reflectivity of the mirror stack itself. At each passage through the partial reflector, a satellite pulse is stripped off. Shown only are the leading and the first trailing satellites. As the pulses experience different amounts of dispersion compensation, the satellites carry a chirp with the opposite sign when the main pulse is ideally compensated. This is indicated by the shading of the pulses.

Fig. 3
Fig. 3

Concept of a double-chirped mirror. Disturbing satellites are suppressed by impedance matching within the stack and at the interface with air. The latter suppression is accomplished by depositing an additional AR section on top of the mirror stack. Within the first few layer pairs of the stack, an adiabatic transition of the duty cycle from a 100 % low-index layer to symmetric quarter-wave layers is used for impedance matching.

Fig. 4
Fig. 4

Advanced concepts for chirped mirrors. (a) Standard double-chirped mirror (DCM). Impedance matching to the ambient medium is accomplished by an AR coating, the bandwidth of which, however, is limited. (b) Back-side-coated chirped mirror (BASIC). The ambient medium has an index of refraction identical to that of one of the layer materials. (c) Brewster-angled coating. Effective indices are matched for p polarization, orienting the mirror structure at Brewster's angle. Inside the mirror stack, all concepts employ double chirping for an adiabatic evolution of the impedance inside the stack.

Fig. 5
Fig. 5

Example design of a BASIC mirror.[5] (a) Physical layer sequence of the design. Layer number indicates the layer first entered by the pulse. Note the chirp in the average thickness as well as the double-chirp section in the first three layer pairs. (b) GDD of the design. Note the small amplitude of 10 fs 2 of the dispersion ripple. The smoothed curve (dotted) indicates the target curve, with a third-order dispersion similar to light glasses.

Fig. 6
Fig. 6

Standing-wave field pattern for the design example[5] shown in Fig. 5. One can clearly see how longer wavelengths penetrate deeper into the structure. The inset shows a short pulse that was compressed with the aid of these mirrors. FWHM, full width at half-maximum.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

D 2 = Δ L c Δω .
Φ ( ω ) = arctan [ ( 1 - R ) sin ψ 2 R - ( R + 1 ) cos ψ ] ,
ψ ( ω ) = - ω L / c ,
Φ ( ω ) = - ψ - 2 R sinψ + O ( R ) .
D 2 ( ω ) = - 2 R ( L / c ) 2 sin ψ .

Metrics