Abstract

The effect of surface roughness onto the mirror scattering has been studied. Five kinds of substrates with different surface roughness were fabricated. On those substrates, dielectric multilayer coating for high reflectivity was deposited by ion-beam sputtering (IBS) and by electron-beam (EB) evaporation. Total integrated scattering (TIS) measurement setup was built for the evaluation of deposited samples. Most of the IBS mirrors showed lower scattering than the EB mirrors, which were deposited on the similar substrates in surface roughness. The ratio of substrate TIS to mirror TIS was defined for evaluation. It increased abruptly at approximately 2Å in surface roughness, which indicated that to make low-loss mirrors, the substrate roughness should be less than 2Å in rms.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Mackowski, L. Pinard, L. Dognin, P. Ganau, B. Lagrange, C. Michel, and M. Morgue, 'Different approaches to improve the wavefront of low-loss mirrors used in the Virgo gravitational wave antenna,' Appl. Surf. Sci. 151, 86-90 (1999).
    [CrossRef]
  2. J. W. Han, Y. S. Yoo, J. Y. Lee, J. W. Kim, and H.-W. Lee, 'Cavity ringdown spectroscopy with a continuous-wave laser: calculation of coupling efficiency and new spectrometer design,' Appl. Opt. 38, 1859-1866 (1999).
    [CrossRef]
  3. A. Kalb, M. Mildebrath, and V. Sanders, 'Summary Abstract: Neutral ion beam deposition of high reflectance coatings for use in ring laser gyroscope,' J. Vac. Sci. Technol. A 4, 436-437 (1986).
    [CrossRef]
  4. D. C. Lee, J. C. Lee, S. H. Son, and H. J. Cho, 'Effects of mirror misalignments on optical ray path in a ring resonator,' J. Opt. Soc. Korea 6, 121-127 (2002).
    [CrossRef]
  5. M. Otani, R. Biro, C. Ouchi, M. Hasegawa, Y. Suzuki, K. Sone, S. Niisaka, T. Saito, J. Saito, A. Tanaka, and A. Matsumoto, 'Development of optical coatings for 157-nm lithography. II: Reflectance, absorption, and scatter measurement,' Appl. Opt. 41, 3248-3255 (2002).
    [CrossRef] [PubMed]
  6. J. Ferré-Borrull, A. Duparré, and E. Quesnel, 'Procedure to characterize microroughness of optical thin films:application to ion-beam-sputtered vacuum-ultraviolet coatings,' Appl. Opt. 40, 2190-2199 (2001).
    [CrossRef]
  7. P. Torchio, A. Gatto, M. Alvisi, G. Albrand, N. Kaiser, and C. Amra, 'High-reflectivity HfO2/SiO2 ultraviolet mirrirs,' Appl. Opt. 41, 3256-3261 (2002).
    [CrossRef] [PubMed]
  8. C. Amra, P. Roche, and E. Pelletier, 'Interface roughness cross-correlation laws deduced from scattering diagram measurements on optical multilayers:effect of the material grain size,' J. Opt. Soc. Am. B 4, 1087-1093 (1987).
    [CrossRef]
  9. D. T. Wei, 'Ion beam interference coating for ultralow optical loss,' Appl. Opt. 28, 2813-2816 (1989).
  10. G. Rempe, T. J. Thompson, H. J. Kimble, and R. Lalezari, 'Measurement of ultralow losses in an optical interferometer,' Opt. Lett. 17, 363-365 (1992).
    [CrossRef] [PubMed]
  11. R. Messier, A. P. Giri, and R. A. Roy, 'Revised structure zone model for thin films physical structure,' J. Vac. Sci. Technol. A 2, 500-503 (1984).
    [CrossRef]
  12. J. M. Bennett and L. Mattson, Introduction to Surface Roughness and Scattering (Optical Society of America, Washington DC, 1989), Chap. 3.
  13. S. E. Watkins, J. P. Black, and B. J. Pond, 'Optical scatter characteristics of high-reflectance dielectric coatings and fused-silica substrate,' Appl. Opt. 32, 5511-5518 (1993).
    [CrossRef] [PubMed]
  14. M. J. Shin, H. J. Cho, K. A. Lim, Y. K. Moon, K. Moon, and J. C. Lee, 'Measurement of losses in mirror using cavity ring-down method'Hankoon Kwanghak Hoeji 11, 123-129 (2000).
  15. J. C. Stover, Optical Scattering: Measurement and Analysis (The Society of Photo-Optical Instrumentation Engineers, Washington, 1995), chapter 1.
    [CrossRef]

2002 (3)

2001 (1)

2000 (1)

M. J. Shin, H. J. Cho, K. A. Lim, Y. K. Moon, K. Moon, and J. C. Lee, 'Measurement of losses in mirror using cavity ring-down method'Hankoon Kwanghak Hoeji 11, 123-129 (2000).

1999 (2)

J. M. Mackowski, L. Pinard, L. Dognin, P. Ganau, B. Lagrange, C. Michel, and M. Morgue, 'Different approaches to improve the wavefront of low-loss mirrors used in the Virgo gravitational wave antenna,' Appl. Surf. Sci. 151, 86-90 (1999).
[CrossRef]

J. W. Han, Y. S. Yoo, J. Y. Lee, J. W. Kim, and H.-W. Lee, 'Cavity ringdown spectroscopy with a continuous-wave laser: calculation of coupling efficiency and new spectrometer design,' Appl. Opt. 38, 1859-1866 (1999).
[CrossRef]

1993 (1)

1992 (1)

1989 (1)

D. T. Wei, 'Ion beam interference coating for ultralow optical loss,' Appl. Opt. 28, 2813-2816 (1989).

1987 (1)

1986 (1)

A. Kalb, M. Mildebrath, and V. Sanders, 'Summary Abstract: Neutral ion beam deposition of high reflectance coatings for use in ring laser gyroscope,' J. Vac. Sci. Technol. A 4, 436-437 (1986).
[CrossRef]

1984 (1)

R. Messier, A. P. Giri, and R. A. Roy, 'Revised structure zone model for thin films physical structure,' J. Vac. Sci. Technol. A 2, 500-503 (1984).
[CrossRef]

Albrand, G.

Alvisi, M.

Amra, C.

Bennett, J. M.

J. M. Bennett and L. Mattson, Introduction to Surface Roughness and Scattering (Optical Society of America, Washington DC, 1989), Chap. 3.

Biro, R.

Black, J. P.

Cho, H. J.

D. C. Lee, J. C. Lee, S. H. Son, and H. J. Cho, 'Effects of mirror misalignments on optical ray path in a ring resonator,' J. Opt. Soc. Korea 6, 121-127 (2002).
[CrossRef]

M. J. Shin, H. J. Cho, K. A. Lim, Y. K. Moon, K. Moon, and J. C. Lee, 'Measurement of losses in mirror using cavity ring-down method'Hankoon Kwanghak Hoeji 11, 123-129 (2000).

Dognin, L.

J. M. Mackowski, L. Pinard, L. Dognin, P. Ganau, B. Lagrange, C. Michel, and M. Morgue, 'Different approaches to improve the wavefront of low-loss mirrors used in the Virgo gravitational wave antenna,' Appl. Surf. Sci. 151, 86-90 (1999).
[CrossRef]

Duparré, A.

Ferré-Borrull, J.

Ganau, P.

J. M. Mackowski, L. Pinard, L. Dognin, P. Ganau, B. Lagrange, C. Michel, and M. Morgue, 'Different approaches to improve the wavefront of low-loss mirrors used in the Virgo gravitational wave antenna,' Appl. Surf. Sci. 151, 86-90 (1999).
[CrossRef]

Gatto, A.

Giri, A. P.

R. Messier, A. P. Giri, and R. A. Roy, 'Revised structure zone model for thin films physical structure,' J. Vac. Sci. Technol. A 2, 500-503 (1984).
[CrossRef]

Han, J. W.

Hasegawa, M.

Kaiser, N.

Kalb, A.

A. Kalb, M. Mildebrath, and V. Sanders, 'Summary Abstract: Neutral ion beam deposition of high reflectance coatings for use in ring laser gyroscope,' J. Vac. Sci. Technol. A 4, 436-437 (1986).
[CrossRef]

Kim, J. W.

Kimble, H. J.

Lagrange, B.

J. M. Mackowski, L. Pinard, L. Dognin, P. Ganau, B. Lagrange, C. Michel, and M. Morgue, 'Different approaches to improve the wavefront of low-loss mirrors used in the Virgo gravitational wave antenna,' Appl. Surf. Sci. 151, 86-90 (1999).
[CrossRef]

Lalezari, R.

Lee, D. C.

Lee, H.-W.

Lee, J. C.

D. C. Lee, J. C. Lee, S. H. Son, and H. J. Cho, 'Effects of mirror misalignments on optical ray path in a ring resonator,' J. Opt. Soc. Korea 6, 121-127 (2002).
[CrossRef]

M. J. Shin, H. J. Cho, K. A. Lim, Y. K. Moon, K. Moon, and J. C. Lee, 'Measurement of losses in mirror using cavity ring-down method'Hankoon Kwanghak Hoeji 11, 123-129 (2000).

Lee, J. Y.

Lim, K. A.

M. J. Shin, H. J. Cho, K. A. Lim, Y. K. Moon, K. Moon, and J. C. Lee, 'Measurement of losses in mirror using cavity ring-down method'Hankoon Kwanghak Hoeji 11, 123-129 (2000).

Mackowski, J. M.

J. M. Mackowski, L. Pinard, L. Dognin, P. Ganau, B. Lagrange, C. Michel, and M. Morgue, 'Different approaches to improve the wavefront of low-loss mirrors used in the Virgo gravitational wave antenna,' Appl. Surf. Sci. 151, 86-90 (1999).
[CrossRef]

Matsumoto, A.

Mattson, L.

J. M. Bennett and L. Mattson, Introduction to Surface Roughness and Scattering (Optical Society of America, Washington DC, 1989), Chap. 3.

Messier, R.

R. Messier, A. P. Giri, and R. A. Roy, 'Revised structure zone model for thin films physical structure,' J. Vac. Sci. Technol. A 2, 500-503 (1984).
[CrossRef]

Michel, C.

J. M. Mackowski, L. Pinard, L. Dognin, P. Ganau, B. Lagrange, C. Michel, and M. Morgue, 'Different approaches to improve the wavefront of low-loss mirrors used in the Virgo gravitational wave antenna,' Appl. Surf. Sci. 151, 86-90 (1999).
[CrossRef]

Mildebrath, M.

A. Kalb, M. Mildebrath, and V. Sanders, 'Summary Abstract: Neutral ion beam deposition of high reflectance coatings for use in ring laser gyroscope,' J. Vac. Sci. Technol. A 4, 436-437 (1986).
[CrossRef]

Moon, K.

M. J. Shin, H. J. Cho, K. A. Lim, Y. K. Moon, K. Moon, and J. C. Lee, 'Measurement of losses in mirror using cavity ring-down method'Hankoon Kwanghak Hoeji 11, 123-129 (2000).

Moon, Y. K.

M. J. Shin, H. J. Cho, K. A. Lim, Y. K. Moon, K. Moon, and J. C. Lee, 'Measurement of losses in mirror using cavity ring-down method'Hankoon Kwanghak Hoeji 11, 123-129 (2000).

Morgue, M.

J. M. Mackowski, L. Pinard, L. Dognin, P. Ganau, B. Lagrange, C. Michel, and M. Morgue, 'Different approaches to improve the wavefront of low-loss mirrors used in the Virgo gravitational wave antenna,' Appl. Surf. Sci. 151, 86-90 (1999).
[CrossRef]

Niisaka, S.

Otani, M.

Ouchi, C.

Pelletier, E.

Pinard, L.

J. M. Mackowski, L. Pinard, L. Dognin, P. Ganau, B. Lagrange, C. Michel, and M. Morgue, 'Different approaches to improve the wavefront of low-loss mirrors used in the Virgo gravitational wave antenna,' Appl. Surf. Sci. 151, 86-90 (1999).
[CrossRef]

Pond, B. J.

Quesnel, E.

Rempe, G.

Roche, P.

Roy, R. A.

R. Messier, A. P. Giri, and R. A. Roy, 'Revised structure zone model for thin films physical structure,' J. Vac. Sci. Technol. A 2, 500-503 (1984).
[CrossRef]

Saito, J.

Saito, T.

Sanders, V.

A. Kalb, M. Mildebrath, and V. Sanders, 'Summary Abstract: Neutral ion beam deposition of high reflectance coatings for use in ring laser gyroscope,' J. Vac. Sci. Technol. A 4, 436-437 (1986).
[CrossRef]

Shin, M. J.

M. J. Shin, H. J. Cho, K. A. Lim, Y. K. Moon, K. Moon, and J. C. Lee, 'Measurement of losses in mirror using cavity ring-down method'Hankoon Kwanghak Hoeji 11, 123-129 (2000).

Son, S. H.

Sone, K.

Stover, J. C.

J. C. Stover, Optical Scattering: Measurement and Analysis (The Society of Photo-Optical Instrumentation Engineers, Washington, 1995), chapter 1.
[CrossRef]

Suzuki, Y.

Tanaka, A.

Thompson, T. J.

Torchio, P.

Watkins, S. E.

Wei, D. T.

D. T. Wei, 'Ion beam interference coating for ultralow optical loss,' Appl. Opt. 28, 2813-2816 (1989).

Yoo, Y. S.

Appl. Opt. (5)

Appl. Surf. Sci. (1)

J. M. Mackowski, L. Pinard, L. Dognin, P. Ganau, B. Lagrange, C. Michel, and M. Morgue, 'Different approaches to improve the wavefront of low-loss mirrors used in the Virgo gravitational wave antenna,' Appl. Surf. Sci. 151, 86-90 (1999).
[CrossRef]

Hankoon Kwanghak Hoeji (1)

M. J. Shin, H. J. Cho, K. A. Lim, Y. K. Moon, K. Moon, and J. C. Lee, 'Measurement of losses in mirror using cavity ring-down method'Hankoon Kwanghak Hoeji 11, 123-129 (2000).

J. Opt. Soc. Am. B (1)

J. Opt. Soc. Korea (1)

J. Vac. Sci. Technol. A (2)

A. Kalb, M. Mildebrath, and V. Sanders, 'Summary Abstract: Neutral ion beam deposition of high reflectance coatings for use in ring laser gyroscope,' J. Vac. Sci. Technol. A 4, 436-437 (1986).
[CrossRef]

R. Messier, A. P. Giri, and R. A. Roy, 'Revised structure zone model for thin films physical structure,' J. Vac. Sci. Technol. A 2, 500-503 (1984).
[CrossRef]

Opt. Lett. (1)

Other (3)

J. C. Stover, Optical Scattering: Measurement and Analysis (The Society of Photo-Optical Instrumentation Engineers, Washington, 1995), chapter 1.
[CrossRef]

J. M. Bennett and L. Mattson, Introduction to Surface Roughness and Scattering (Optical Society of America, Washington DC, 1989), Chap. 3.

D. T. Wei, 'Ion beam interference coating for ultralow optical loss,' Appl. Opt. 28, 2813-2816 (1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

TIS measurement setup. A stabilized He–Ne laser was used as a light source, and the light source was modulated approximately 1000 Hz for noise reduction. An 8-in integrated hemisphere was used for 45° angle of incidence measurements, and a PMT was used as a photodetector. For TIS mapping function, the mirror was attached to the hemisphere by use of a computer-controlled autotranslator.

Fig. 2
Fig. 2

Repeatability of the TIS measurement system was checked. TIS of the same mirror had been measured several times, and its difference was compared. (a) Mirror TIS measured at first time. (b) Same mirror TIS measured 2 h later after measurement shown in part (a) was done. (c) TIS difference for each mapping points; the mean difference was 0.3 ppm.

Fig. 3
Fig. 3

Surface roughness of substrates measured by PSI versus the surface roughness calculated from substrate TIS measurements. Except for two extreme cases, the data is linearly well fitted, and the roughness calculated from TIS measurement was approximately 3 times larger than as that of PSI measurements.

Fig. 4
Fig. 4

Schematic of rear surface effect during TIS measurements:(a) smooth front surface, (b) general front surface, and (c) rough front surface. The rear surface roughness is the same for all cases. For part (a), the rear surface scattering has a strong affect on the front surface scattering measurements. For part (b), the scattering portion of both the front and the rear surface is similar. For part (c), the rear surface scattering is relatively small compared with the front surface.

Fig. 5
Fig. 5

Measured TIS of deposited mirrors as a function of substrate roughness. As the substrate roughness increases, both the mirror TIS and its spatial variation increases. The TIS of IBS mirror is lower than that of an EB evaporation one at similar substrate roughness.

Fig. 6
Fig. 6

Mirror TIS ratio as a function of substrate roughness. The TIS ratio abruptly increases between substrate roughnesses of 2Å and 3Å. No additional increase occurs after the substrate roughness is higher than 3Å. It means that if one tries to make a low-scattered mirror, one should use a substrate roughness of less than 2Å.

Fig. 7
Fig. 7

To separate the volume scatter and the surface scattering, we deposited a thin Al layer after the dielectric mirror TIS measurements. The Al overcoated mirror TIS is compared with that without Al coating. Except for the mirrors that were deposited on the lowest substrate roughness, the TIS of the Al overcoated TIS is lower than that without the Al-coated TIS.

Fig. 8
Fig. 8

TIS difference between that with and that without Al thin layer deposition. Ideally the difference indicates the volume scattering of the mirror, and it should be similar value. Because of the high spatial variation, it is difficult to exactly determine the volume scattering.

Tables (1)

Tables Icon

Table 1 Results of Substrate Roughness and TIS Measurements

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Substrate∕ ( HL ) 17 L∕Air,
Substrate∕ ( HL ) 13 L∕Air,
TIS = ( 4 π δ   cos   θ λ ) 2 ,
TIS   Ratio  =   Mirror   TIS Substrate   TIS .

Metrics