Abstract

Fingerprint recognition is one of the most widely used methods of biometrics. This method relies on the surface topography of a finger and, thus, is potentially vulnerable for spoofing by artificial dummies with embedded fingerprints. In this study, we applied the optical coherence tomography (OCT) technique to distinguish artificial materials commonly used for spoofing fingerprint scanning systems from the real skin. Several artificial fingerprint dummies made from household cement and liquid silicone rubber were prepared and tested using a commercial fingerprint reader and an OCT system. While the artificial fingerprints easily spoofed the commercial fingerprint reader, OCT images revealed the presence of them at all times. We also demonstrated that an autocorrelation analysis of the OCT images could be potentially used in automatic recognition systems.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Prabhakar, S. Pankanti, and A. K. Jain, "Biometric recognition: security and privacy concerns," IEEE Security Privacy 1, 33-42 (2003).
    [CrossRef]
  2. D. Maltoni, D. Maio, A. K. Jain, and S. Prabhakar, Handbook of Fingerprint Recognition (Springer, 2003).
  3. J. H. Chang and K. C. Fan, "Fingerprint ridge allocation in direct gray-scale domain," Pattern Recogn. 34, 1907-1925 (2001).
    [CrossRef]
  4. E. Nikodemusz-Szekely and V. Szekely, "Image recognition problems of fingerprint identification," Microprocess. Microsys. 17, 215-218 (1993).
    [CrossRef]
  5. P. R. Vizcaya and L. A. Gerhardt, "Nonlinear orientation model for global description of fingerprints," Pattern Recogn. 29, 1221-1232 (1996).
    [CrossRef]
  6. T. Matsumoto, H. Matsumoto, K. Yamada, and S. Hoshino, "Impact of artificial "gummy" fingers on fingerprint systems," in Proc. SPIE 4677, 275-289 (2002).
    [CrossRef]
  7. H. Suzuki, M. Yamaguchi, M. Yachida, N. Ohyama, H. Tashima, and T. Obi, "Experimental evaluation of fingerprint verification system based on double random phase encoding," Opt. Express 14, 1755-1766 (2006).
    [CrossRef]
  8. H. Lin, W. Yifei, and A. Jain, "Fingerprint image enhancement: algorithm and performance evaluation," IEEE Trans. Pattern Anal. Mach. Intell. 20, 777-789 (1998).
    [CrossRef]
  9. J. G. Fujimoto, S. De Silvestri, E. P. Ippen, C. A. Puliafito, R. Margolis, and A. Oseroff, "Femtosecond optical ranging in biological systems," Opt. Lett. 11, 150-153 (1986).
  10. A. F. Fercher, K. Mengedoht, and W. Werner, "Eye-length measurement by interferometry with partially coherent light," Opt. Lett. 13, 186-188 (1988).
  11. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
    [CrossRef]
  12. R. N. Bracewell, The Fourier Transform and Its Applications, 3rd ed., McGraw-Hill Series in Electrical and Computer Engineering. Circuits and Systems (McGraw-Hill, 2000), pp. xx, 616.
  13. J. M. Schmitt, S. H. Xiang, and K. M. Yung, "Speckle in optical coherence tomography," J. Biomed. Opt. 4, 95-105 (1999).
    [CrossRef]
  14. J. Rogowska and M. E. Brezinski, "Evaluation of the adaptive speckle suppression filter for coronary optical coherence tomography imaging," IEEE Trans. Med. Imaging 19, 1261-1266 (2000).
    [CrossRef]
  15. N. Iftimia, B. E. Bouma, and G. J. Tearney, "Speckle reduction in optical coherence tomography by path length encoded angular compounding," J. Biomed. Opt. 8, 260-263 (2003).
    [CrossRef]
  16. A. I. Kholodnykh, I. Y. Petrova, K. V. Larin, M. Motamedi, and R. O. Esenaliev, "Precision of measurement of tissue optical properties with optical coherence tomography," Appl. Opt. 42, 3027-3037 (2003).
  17. M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, "Speckle reduction in optical coherence tomography by frequency compounding," J. Biomed. Opt. 8, 565-569 (2003).
    [CrossRef]
  18. J. Kim, D. T. Miller, E. Kim, S. Oh, J. Oh, and T. E. Milner, "Optical coherence tomography speckle reduction by a partially spatially coherent source," J. Biomed. Opt. 10, 064034 (2005).
    [CrossRef]
  19. D. A. Zimnyakov, V. P. Ryabukho, and K. V. Larin, "Microlens effect due to the diffraction of focused beams on large-scale phase screens," JETP Lett. 20, 14-19 (1994).
  20. K. W. Gossage, T. S. Tkaczyk, J. J. Rodriguez, and J. K. Barton, "Texture, analysis of optical coherence tomography images: feasibility for tissue classification," J. Biomed. Opt. 8, 570-575 (2003).
    [CrossRef]
  21. D. A. Zimnyakov and M. A. Vilensky, "Blink speckle spectroscopy of scattering media," Opt. Lett. 31, 429-431 (2006).
    [CrossRef]
  22. D. A. Zimnyakov, D. N. Agafonov, A. P. Sviridov, A. I. Omel'chenko, L. V. Kuznetsova, and V. N. Bagratashvili, "Speckle-contrast monitoring of tissue thermal modification," Appl. Opt. 41, 5989-5996 (2002).
  23. T. van der Putte and J. Keuning, "Biometrical fingerprint recognition: don't get your fingers burned," presented at the Fourth Working Conference on Smart Card Research and Advanced Applications, Bristol, UK, 20-22 September 2000.
  24. R. K. Manapuram, M. Ghosn, and K. V. Larin, "Identification of artificial fingerprints using optical coherence tomography technique," Asian J. Phys. 15, 15-27 (2006).

2006 (3)

2005 (1)

J. Kim, D. T. Miller, E. Kim, S. Oh, J. Oh, and T. E. Milner, "Optical coherence tomography speckle reduction by a partially spatially coherent source," J. Biomed. Opt. 10, 064034 (2005).
[CrossRef]

2003 (5)

N. Iftimia, B. E. Bouma, and G. J. Tearney, "Speckle reduction in optical coherence tomography by path length encoded angular compounding," J. Biomed. Opt. 8, 260-263 (2003).
[CrossRef]

A. I. Kholodnykh, I. Y. Petrova, K. V. Larin, M. Motamedi, and R. O. Esenaliev, "Precision of measurement of tissue optical properties with optical coherence tomography," Appl. Opt. 42, 3027-3037 (2003).

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, "Speckle reduction in optical coherence tomography by frequency compounding," J. Biomed. Opt. 8, 565-569 (2003).
[CrossRef]

S. Prabhakar, S. Pankanti, and A. K. Jain, "Biometric recognition: security and privacy concerns," IEEE Security Privacy 1, 33-42 (2003).
[CrossRef]

K. W. Gossage, T. S. Tkaczyk, J. J. Rodriguez, and J. K. Barton, "Texture, analysis of optical coherence tomography images: feasibility for tissue classification," J. Biomed. Opt. 8, 570-575 (2003).
[CrossRef]

2002 (2)

T. Matsumoto, H. Matsumoto, K. Yamada, and S. Hoshino, "Impact of artificial "gummy" fingers on fingerprint systems," in Proc. SPIE 4677, 275-289 (2002).
[CrossRef]

D. A. Zimnyakov, D. N. Agafonov, A. P. Sviridov, A. I. Omel'chenko, L. V. Kuznetsova, and V. N. Bagratashvili, "Speckle-contrast monitoring of tissue thermal modification," Appl. Opt. 41, 5989-5996 (2002).

2001 (1)

J. H. Chang and K. C. Fan, "Fingerprint ridge allocation in direct gray-scale domain," Pattern Recogn. 34, 1907-1925 (2001).
[CrossRef]

2000 (1)

J. Rogowska and M. E. Brezinski, "Evaluation of the adaptive speckle suppression filter for coronary optical coherence tomography imaging," IEEE Trans. Med. Imaging 19, 1261-1266 (2000).
[CrossRef]

1999 (1)

J. M. Schmitt, S. H. Xiang, and K. M. Yung, "Speckle in optical coherence tomography," J. Biomed. Opt. 4, 95-105 (1999).
[CrossRef]

1998 (1)

H. Lin, W. Yifei, and A. Jain, "Fingerprint image enhancement: algorithm and performance evaluation," IEEE Trans. Pattern Anal. Mach. Intell. 20, 777-789 (1998).
[CrossRef]

1996 (1)

P. R. Vizcaya and L. A. Gerhardt, "Nonlinear orientation model for global description of fingerprints," Pattern Recogn. 29, 1221-1232 (1996).
[CrossRef]

1994 (1)

D. A. Zimnyakov, V. P. Ryabukho, and K. V. Larin, "Microlens effect due to the diffraction of focused beams on large-scale phase screens," JETP Lett. 20, 14-19 (1994).

1993 (1)

E. Nikodemusz-Szekely and V. Szekely, "Image recognition problems of fingerprint identification," Microprocess. Microsys. 17, 215-218 (1993).
[CrossRef]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef]

1988 (1)

1986 (1)

Agafonov, D. N.

Bagratashvili, V. N.

Barton, J. K.

K. W. Gossage, T. S. Tkaczyk, J. J. Rodriguez, and J. K. Barton, "Texture, analysis of optical coherence tomography images: feasibility for tissue classification," J. Biomed. Opt. 8, 570-575 (2003).
[CrossRef]

Bouma, B. E.

N. Iftimia, B. E. Bouma, and G. J. Tearney, "Speckle reduction in optical coherence tomography by path length encoded angular compounding," J. Biomed. Opt. 8, 260-263 (2003).
[CrossRef]

Bracewell, R. N.

R. N. Bracewell, The Fourier Transform and Its Applications, 3rd ed., McGraw-Hill Series in Electrical and Computer Engineering. Circuits and Systems (McGraw-Hill, 2000), pp. xx, 616.

Brezinski, M. E.

J. Rogowska and M. E. Brezinski, "Evaluation of the adaptive speckle suppression filter for coronary optical coherence tomography imaging," IEEE Trans. Med. Imaging 19, 1261-1266 (2000).
[CrossRef]

Chang, J. H.

J. H. Chang and K. C. Fan, "Fingerprint ridge allocation in direct gray-scale domain," Pattern Recogn. 34, 1907-1925 (2001).
[CrossRef]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef]

De Silvestri, S.

Esenaliev, R. O.

Fan, K. C.

J. H. Chang and K. C. Fan, "Fingerprint ridge allocation in direct gray-scale domain," Pattern Recogn. 34, 1907-1925 (2001).
[CrossRef]

Fercher, A. F.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, "Speckle reduction in optical coherence tomography by frequency compounding," J. Biomed. Opt. 8, 565-569 (2003).
[CrossRef]

A. F. Fercher, K. Mengedoht, and W. Werner, "Eye-length measurement by interferometry with partially coherent light," Opt. Lett. 13, 186-188 (1988).

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef]

J. G. Fujimoto, S. De Silvestri, E. P. Ippen, C. A. Puliafito, R. Margolis, and A. Oseroff, "Femtosecond optical ranging in biological systems," Opt. Lett. 11, 150-153 (1986).

Gerhardt, L. A.

P. R. Vizcaya and L. A. Gerhardt, "Nonlinear orientation model for global description of fingerprints," Pattern Recogn. 29, 1221-1232 (1996).
[CrossRef]

Ghosn, M.

R. K. Manapuram, M. Ghosn, and K. V. Larin, "Identification of artificial fingerprints using optical coherence tomography technique," Asian J. Phys. 15, 15-27 (2006).

Gossage, K. W.

K. W. Gossage, T. S. Tkaczyk, J. J. Rodriguez, and J. K. Barton, "Texture, analysis of optical coherence tomography images: feasibility for tissue classification," J. Biomed. Opt. 8, 570-575 (2003).
[CrossRef]

Gotzinger, E.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, "Speckle reduction in optical coherence tomography by frequency compounding," J. Biomed. Opt. 8, 565-569 (2003).
[CrossRef]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef]

Hitzenberger, C. K.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, "Speckle reduction in optical coherence tomography by frequency compounding," J. Biomed. Opt. 8, 565-569 (2003).
[CrossRef]

Hoshino, S.

T. Matsumoto, H. Matsumoto, K. Yamada, and S. Hoshino, "Impact of artificial "gummy" fingers on fingerprint systems," in Proc. SPIE 4677, 275-289 (2002).
[CrossRef]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef]

Iftimia, N.

N. Iftimia, B. E. Bouma, and G. J. Tearney, "Speckle reduction in optical coherence tomography by path length encoded angular compounding," J. Biomed. Opt. 8, 260-263 (2003).
[CrossRef]

Ippen, E. P.

Jain, A.

H. Lin, W. Yifei, and A. Jain, "Fingerprint image enhancement: algorithm and performance evaluation," IEEE Trans. Pattern Anal. Mach. Intell. 20, 777-789 (1998).
[CrossRef]

Jain, A. K.

S. Prabhakar, S. Pankanti, and A. K. Jain, "Biometric recognition: security and privacy concerns," IEEE Security Privacy 1, 33-42 (2003).
[CrossRef]

D. Maltoni, D. Maio, A. K. Jain, and S. Prabhakar, Handbook of Fingerprint Recognition (Springer, 2003).

Keuning, J.

T. van der Putte and J. Keuning, "Biometrical fingerprint recognition: don't get your fingers burned," presented at the Fourth Working Conference on Smart Card Research and Advanced Applications, Bristol, UK, 20-22 September 2000.

Kholodnykh, A. I.

Kim, E.

J. Kim, D. T. Miller, E. Kim, S. Oh, J. Oh, and T. E. Milner, "Optical coherence tomography speckle reduction by a partially spatially coherent source," J. Biomed. Opt. 10, 064034 (2005).
[CrossRef]

Kim, J.

J. Kim, D. T. Miller, E. Kim, S. Oh, J. Oh, and T. E. Milner, "Optical coherence tomography speckle reduction by a partially spatially coherent source," J. Biomed. Opt. 10, 064034 (2005).
[CrossRef]

Kuznetsova, L. V.

Larin, K. V.

R. K. Manapuram, M. Ghosn, and K. V. Larin, "Identification of artificial fingerprints using optical coherence tomography technique," Asian J. Phys. 15, 15-27 (2006).

A. I. Kholodnykh, I. Y. Petrova, K. V. Larin, M. Motamedi, and R. O. Esenaliev, "Precision of measurement of tissue optical properties with optical coherence tomography," Appl. Opt. 42, 3027-3037 (2003).

D. A. Zimnyakov, V. P. Ryabukho, and K. V. Larin, "Microlens effect due to the diffraction of focused beams on large-scale phase screens," JETP Lett. 20, 14-19 (1994).

Leitgeb, R.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, "Speckle reduction in optical coherence tomography by frequency compounding," J. Biomed. Opt. 8, 565-569 (2003).
[CrossRef]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef]

Lin, H.

H. Lin, W. Yifei, and A. Jain, "Fingerprint image enhancement: algorithm and performance evaluation," IEEE Trans. Pattern Anal. Mach. Intell. 20, 777-789 (1998).
[CrossRef]

Maio, D.

D. Maltoni, D. Maio, A. K. Jain, and S. Prabhakar, Handbook of Fingerprint Recognition (Springer, 2003).

Maltoni, D.

D. Maltoni, D. Maio, A. K. Jain, and S. Prabhakar, Handbook of Fingerprint Recognition (Springer, 2003).

Manapuram, R. K.

R. K. Manapuram, M. Ghosn, and K. V. Larin, "Identification of artificial fingerprints using optical coherence tomography technique," Asian J. Phys. 15, 15-27 (2006).

Margolis, R.

Matsumoto, H.

T. Matsumoto, H. Matsumoto, K. Yamada, and S. Hoshino, "Impact of artificial "gummy" fingers on fingerprint systems," in Proc. SPIE 4677, 275-289 (2002).
[CrossRef]

Matsumoto, T.

T. Matsumoto, H. Matsumoto, K. Yamada, and S. Hoshino, "Impact of artificial "gummy" fingers on fingerprint systems," in Proc. SPIE 4677, 275-289 (2002).
[CrossRef]

Mengedoht, K.

Miller, D. T.

J. Kim, D. T. Miller, E. Kim, S. Oh, J. Oh, and T. E. Milner, "Optical coherence tomography speckle reduction by a partially spatially coherent source," J. Biomed. Opt. 10, 064034 (2005).
[CrossRef]

Milner, T. E.

J. Kim, D. T. Miller, E. Kim, S. Oh, J. Oh, and T. E. Milner, "Optical coherence tomography speckle reduction by a partially spatially coherent source," J. Biomed. Opt. 10, 064034 (2005).
[CrossRef]

Motamedi, M.

Nikodemusz-Szekely, E.

E. Nikodemusz-Szekely and V. Szekely, "Image recognition problems of fingerprint identification," Microprocess. Microsys. 17, 215-218 (1993).
[CrossRef]

Obi, T.

Oh, J.

J. Kim, D. T. Miller, E. Kim, S. Oh, J. Oh, and T. E. Milner, "Optical coherence tomography speckle reduction by a partially spatially coherent source," J. Biomed. Opt. 10, 064034 (2005).
[CrossRef]

Oh, S.

J. Kim, D. T. Miller, E. Kim, S. Oh, J. Oh, and T. E. Milner, "Optical coherence tomography speckle reduction by a partially spatially coherent source," J. Biomed. Opt. 10, 064034 (2005).
[CrossRef]

Ohyama, N.

Omel'chenko, A. I.

Oseroff, A.

Pankanti, S.

S. Prabhakar, S. Pankanti, and A. K. Jain, "Biometric recognition: security and privacy concerns," IEEE Security Privacy 1, 33-42 (2003).
[CrossRef]

Petrova, I. Y.

Pircher, M.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, "Speckle reduction in optical coherence tomography by frequency compounding," J. Biomed. Opt. 8, 565-569 (2003).
[CrossRef]

Prabhakar, S.

S. Prabhakar, S. Pankanti, and A. K. Jain, "Biometric recognition: security and privacy concerns," IEEE Security Privacy 1, 33-42 (2003).
[CrossRef]

D. Maltoni, D. Maio, A. K. Jain, and S. Prabhakar, Handbook of Fingerprint Recognition (Springer, 2003).

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef]

J. G. Fujimoto, S. De Silvestri, E. P. Ippen, C. A. Puliafito, R. Margolis, and A. Oseroff, "Femtosecond optical ranging in biological systems," Opt. Lett. 11, 150-153 (1986).

Rodriguez, J. J.

K. W. Gossage, T. S. Tkaczyk, J. J. Rodriguez, and J. K. Barton, "Texture, analysis of optical coherence tomography images: feasibility for tissue classification," J. Biomed. Opt. 8, 570-575 (2003).
[CrossRef]

Rogowska, J.

J. Rogowska and M. E. Brezinski, "Evaluation of the adaptive speckle suppression filter for coronary optical coherence tomography imaging," IEEE Trans. Med. Imaging 19, 1261-1266 (2000).
[CrossRef]

Ryabukho, V. P.

D. A. Zimnyakov, V. P. Ryabukho, and K. V. Larin, "Microlens effect due to the diffraction of focused beams on large-scale phase screens," JETP Lett. 20, 14-19 (1994).

Schmitt, J. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, "Speckle in optical coherence tomography," J. Biomed. Opt. 4, 95-105 (1999).
[CrossRef]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef]

Suzuki, H.

Sviridov, A. P.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef]

Szekely, V.

E. Nikodemusz-Szekely and V. Szekely, "Image recognition problems of fingerprint identification," Microprocess. Microsys. 17, 215-218 (1993).
[CrossRef]

Tashima, H.

Tearney, G. J.

N. Iftimia, B. E. Bouma, and G. J. Tearney, "Speckle reduction in optical coherence tomography by path length encoded angular compounding," J. Biomed. Opt. 8, 260-263 (2003).
[CrossRef]

Tkaczyk, T. S.

K. W. Gossage, T. S. Tkaczyk, J. J. Rodriguez, and J. K. Barton, "Texture, analysis of optical coherence tomography images: feasibility for tissue classification," J. Biomed. Opt. 8, 570-575 (2003).
[CrossRef]

van der Putte, T.

T. van der Putte and J. Keuning, "Biometrical fingerprint recognition: don't get your fingers burned," presented at the Fourth Working Conference on Smart Card Research and Advanced Applications, Bristol, UK, 20-22 September 2000.

Vilensky, M. A.

Vizcaya, P. R.

P. R. Vizcaya and L. A. Gerhardt, "Nonlinear orientation model for global description of fingerprints," Pattern Recogn. 29, 1221-1232 (1996).
[CrossRef]

Werner, W.

Xiang, S. H.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, "Speckle in optical coherence tomography," J. Biomed. Opt. 4, 95-105 (1999).
[CrossRef]

Yachida, M.

Yamada, K.

T. Matsumoto, H. Matsumoto, K. Yamada, and S. Hoshino, "Impact of artificial "gummy" fingers on fingerprint systems," in Proc. SPIE 4677, 275-289 (2002).
[CrossRef]

Yamaguchi, M.

Yifei, W.

H. Lin, W. Yifei, and A. Jain, "Fingerprint image enhancement: algorithm and performance evaluation," IEEE Trans. Pattern Anal. Mach. Intell. 20, 777-789 (1998).
[CrossRef]

Yung, K. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, "Speckle in optical coherence tomography," J. Biomed. Opt. 4, 95-105 (1999).
[CrossRef]

Zimnyakov, D. A.

Appl. Opt. (2)

Asian J. Phys. (1)

R. K. Manapuram, M. Ghosn, and K. V. Larin, "Identification of artificial fingerprints using optical coherence tomography technique," Asian J. Phys. 15, 15-27 (2006).

IEEE Security Privacy (1)

S. Prabhakar, S. Pankanti, and A. K. Jain, "Biometric recognition: security and privacy concerns," IEEE Security Privacy 1, 33-42 (2003).
[CrossRef]

IEEE Trans. Med. Imaging (1)

J. Rogowska and M. E. Brezinski, "Evaluation of the adaptive speckle suppression filter for coronary optical coherence tomography imaging," IEEE Trans. Med. Imaging 19, 1261-1266 (2000).
[CrossRef]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

H. Lin, W. Yifei, and A. Jain, "Fingerprint image enhancement: algorithm and performance evaluation," IEEE Trans. Pattern Anal. Mach. Intell. 20, 777-789 (1998).
[CrossRef]

J. Biomed. Opt. (5)

N. Iftimia, B. E. Bouma, and G. J. Tearney, "Speckle reduction in optical coherence tomography by path length encoded angular compounding," J. Biomed. Opt. 8, 260-263 (2003).
[CrossRef]

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, "Speckle reduction in optical coherence tomography by frequency compounding," J. Biomed. Opt. 8, 565-569 (2003).
[CrossRef]

J. Kim, D. T. Miller, E. Kim, S. Oh, J. Oh, and T. E. Milner, "Optical coherence tomography speckle reduction by a partially spatially coherent source," J. Biomed. Opt. 10, 064034 (2005).
[CrossRef]

J. M. Schmitt, S. H. Xiang, and K. M. Yung, "Speckle in optical coherence tomography," J. Biomed. Opt. 4, 95-105 (1999).
[CrossRef]

K. W. Gossage, T. S. Tkaczyk, J. J. Rodriguez, and J. K. Barton, "Texture, analysis of optical coherence tomography images: feasibility for tissue classification," J. Biomed. Opt. 8, 570-575 (2003).
[CrossRef]

JETP Lett. (1)

D. A. Zimnyakov, V. P. Ryabukho, and K. V. Larin, "Microlens effect due to the diffraction of focused beams on large-scale phase screens," JETP Lett. 20, 14-19 (1994).

Microprocess. Microsys. (1)

E. Nikodemusz-Szekely and V. Szekely, "Image recognition problems of fingerprint identification," Microprocess. Microsys. 17, 215-218 (1993).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Pattern Recogn. (2)

P. R. Vizcaya and L. A. Gerhardt, "Nonlinear orientation model for global description of fingerprints," Pattern Recogn. 29, 1221-1232 (1996).
[CrossRef]

J. H. Chang and K. C. Fan, "Fingerprint ridge allocation in direct gray-scale domain," Pattern Recogn. 34, 1907-1925 (2001).
[CrossRef]

Proc. SPIE (1)

T. Matsumoto, H. Matsumoto, K. Yamada, and S. Hoshino, "Impact of artificial "gummy" fingers on fingerprint systems," in Proc. SPIE 4677, 275-289 (2002).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef]

Other (3)

R. N. Bracewell, The Fourier Transform and Its Applications, 3rd ed., McGraw-Hill Series in Electrical and Computer Engineering. Circuits and Systems (McGraw-Hill, 2000), pp. xx, 616.

D. Maltoni, D. Maio, A. K. Jain, and S. Prabhakar, Handbook of Fingerprint Recognition (Springer, 2003).

T. van der Putte and J. Keuning, "Biometrical fingerprint recognition: don't get your fingers burned," presented at the Fourth Working Conference on Smart Card Research and Advanced Applications, Bristol, UK, 20-22 September 2000.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(Color online) Schematic of the OCT system used in these studies. PD, photodetector; ADC, analog-to-digital converter.

Fig. 2
Fig. 2

(Color online) Gross pictures of (a) plasticene female mold and (b) artificial fingerprint dummy (male mold).

Fig. 3
Fig. 3

(Color online) (a) Two-dimensional OCT images and (b) corresponding 1D OCT signal of a finger skin.

Fig. 4
Fig. 4

(Color online) (a) OCT images of 25% gelatin with an average thickness of 0.2 mm , (b) corresponding OCT signal.

Fig. 5
Fig. 5

(Color online) Autocorrelation curves for artificial materials of (a) gelatin and (b) agar and (c), (d) human finger, respectively.

Fig. 6
Fig. 6

(Color online) OCT images (a) obtained from the artificial fingerprint dummy over a real finger used to bypass the fingerprint reader device and (b) corresponding OCT signal curve. Autocorrelation curves were generated from the OCT image at the regions of (c) the artificial material and (d) human skin, respectively.

Fig. 7
Fig. 7

(Color online) (a) Flow chart for an OCT-enhanced surface fingerprint scanner; (b) sketch for the reconstruction of the OCT 3D image from a false fingerprint.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R x x ( r Δ d ) = 1 N r n = 1 N r x n x n + 1 = 1 N r n = 1 N r x ( d ) x ( d + r Δ d ) ,

Metrics