Abstract

The Extreme-Ultraviolet Imaging Spectrometer (EIS) is the first of a new generation of normal-incidence, two-optical-element spectroscopic instruments developed for space solar extreme-ultraviolet astronomy. The instrument is currently mounted on the Solar-B satellite for a planned launch in late 2006. The instrument observes in two spectral bands, 170210Å and 250290Å. The spectrograph geometry and grating prescription were optimized to obtain excellent imaging while still maintaining readily achievable physical and fabrication tolerances. A refined technique using low ruling density surrogate gratings and optical metrology was developed to align the instrument with visible light. Slit rasters of the solar surface are obtained by mechanically tilting the mirror. A slit exchange mechanism allows selection among four slits at the telescope focal plane. Each slit is precisely located at the focal plane. The spectrograph imaging performance was optically characterized in the laboratory. The resolution was measured using the Mg iii and Ne iii lines in the range of 171200Å. The He ii line at 256Å and Ne iii lines were used in the range of 251284Å. The measurements demonstrate an equivalent resolution of 2arcsec on the solar surface, in good agreement with the predicted performance. We describe the EIS optics, mechanisms, and measured performance.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Korendyke, C. M. Brown, J. Seely, and S. Meyers, "International collaboration yields a high-performance EUV spectrometer for the Solar-B spacecraft," OE Mag. 2, 23-26 (2002).
  2. J. L. Culhane, C. M. Korendyke, T. Watanabe, and G. Doschek, "Extreme-ultraviolet imaging spectrometer designed for the Japanese Solar-B satellite," in Instrumentation for UV/EUV Astronomy and Solar Missions, S. Fineschi, C. M. Korendyke, O. H. Sigmund, and B. E. Woodgate, eds., Proc. SPIE 4139, 294-312 (2000).
    [CrossRef]
  3. T. Harada, S. Moriyama, and T. Kita, "Mechanically ruled stigmatic concave grating," Jpn. J. Appl. Phys. 14, Suppl. 14-1, 175-179 (1975).
  4. T. Harada and T. Kita, "Mechanically ruled aberration-corrected concave gratings," Appl. Opt. 19, 3987-3993 (1980).
    [CrossRef] [PubMed]
  5. T. Harada, H. Sakuma, K. Takahashi, T. Watanabe, H. Hara, and T. Kita, "Design of a high-resolution extreme-ultraviolet imaging spectrometer with aberration-corrected concave gratings," Appl. Opt. 37, 6803-6810 (1998).
    [CrossRef]
  6. J. F. Seely, C. M. Brown, D. L. Windt, S. Donguy, and B. Kjonrattanawanich, "Normal-incidence efficiencies of multilayer-coated laminar gratings for the Extreme-Ultraviolet Imaging Spectrometer (EIS) on the Solar-B mission," Appl. Opt. 43, 1463-1471 (2004).
    [CrossRef] [PubMed]
  7. Tinsley Laboratories, Inc., 4040 Lakeside Dr., Richmond, Calif. 94806-1963.
  8. H. G. Beutler, "The theory of the concave grating," J. Opt. Soc. Am. 35, 311-350 (1945).
    [CrossRef]
  9. H. Haber, "The torus grating," J. Opt. Soc. Am. 40, 153-165 (1950).
    [CrossRef]
  10. Carl Zeiss Laser Optics GmbH, 22 Carl Zeiss Strasse, 73447 Oberkochen, Germany.
  11. J. Harlander, St. Cloud State University, St. Cloud, Minn. (personal communication, 2001).
  12. M. P. Kowalski, T. W. Barbee, Jr., K. F. Heidemann, H. Gursky, J. C. Rife, W. R. Hunter, G. G. Fritz, and R. G. Cruddace, "Efficiency calibration of the first multilayer-coated holographic ion-etched flight grating for a sounding rocket high-resolution spectrometer," Appl. Opt. 38, 6487-6493 (1999).
    [CrossRef]
  13. R. J. Schumacher and W. R. Hunter, "Thin aluminum filters for use on the Apollo Telescope Mount XUV spectrographs," Appl. Opt. 16, 904-908 (1977).
    [PubMed]
  14. F. Powell, "Care and feeding of soft x-ray and extreme ultraviolet filters," in Laser-Induced Damage in Optical Materials, H. E. Bennett, L. L. Chase, A. H. Guenther, B. Newman, and M. J. Soileau, eds., Proc. SPIE 1848, 503-514 (1992).
    [CrossRef]
  15. P. Chiemets, Smithsonian Astrophysical Observatory, (personal communication, 1999).
  16. Stork Veco B. V., P.O. Box 10, 6960 AA Eerbeek, The Netherlands.
  17. D. Akin, Lockheed Martin Advanced Technology Center, Palo Alto Calif. (personal communication, 2000).
  18. Luxel Corp., P.O. Box 1879 Friday Harbor, Wash. 98250.
  19. e2v Technologies, 106 Waterhouse Lane, Chelmsford, Essex CM1 2QU, UK.
  20. D. Finley, S. Bowyer, F. Paresce, and R. Malina, "Continuous discharge Penning source with emission lines between 50 Å and 300 Å," Appl. Opt. 18, 649-654 (1979).
    [CrossRef] [PubMed]
  21. UVP, Inc., 2066 W. 11th St., Upland, Calif. 91786.
  22. National Institute of Standards and Technology, "NIST Atomic Spectral Database," http://physics.nist.gov/PhysRefData/ASD/index.html (2005).
  23. R. L. Kelly, "Atomic and ionic spectrum lines below 2000 angstroms: hydrogen through krypton. part I (H-Cr)," J. Chem. Phys. Ref. Data 16, Suppl. 1, 1-649 (1987).
  24. A. E. Kramida, C. M. Brown, U. Feldman, and J. Reader, "Extended EUV and UV spectrum of Ne II," Phys. Scr. 74, 156-167 (2006).
    [CrossRef]
  25. C. M. Brown (Space Science Division, U.S. Naval Research Laboratory, 4555 Overlook Avenue, S.W., Washington, D.C. 20375), A. E. Kramida, U. Feldman, and J. Reader, are preparing a manuscript to be called "Extended EUV spectrum of Ne III."
  26. A. E. Kramida, C. M. Brown (Space Science Division, U.S. Naval Research Laboratory, 4555 Overlook Avenue, S.W., Washington, D.C. 20375), U. Feldman, and J. Reader, are preparing a manuscript to be called "Extended EUV spectrum of Ne IV."
  27. J. Hollandt, M. Kühne, and B. Wende, "High-current hollow cathode source as a radiant intensity standard in the 40-125 nm wavelength range," Appl. Opt. 33, 68-74 (1994).
    [CrossRef] [PubMed]
  28. J. Lang, B. J. Kent, and J. F. Seely, "The proposed calibration of Solar B EIS," in Radiometric Calibration of SOHO, ISSI Scientific Rep. SR-0002, A. Pauluhn, M. C. E. Huber, and R. von Steiger, eds. (European Space Agency, 2002), pp. 337-345.
  29. J. Lang, B. J. Kent, W. Paustian, C. M. Brown, C. Keyser, M. R. Anderson, G. C. R. Case, R. A. Chaudry, A. M. James, C. M. Korendyke, C. D. Pike, B. J. Probyn, D. J. Rippington, J. F. Seely, J. A. Tandy, and M. C. R. Whillock, "Laboratory calibration of the Extreme-Ultraviolet Imaging Spectrometer for the Solar-B satellite," Appl. Opt. 45, 8689-8705 (2006).
    [CrossRef] [PubMed]

2006 (2)

2004 (1)

2002 (1)

C. Korendyke, C. M. Brown, J. Seely, and S. Meyers, "International collaboration yields a high-performance EUV spectrometer for the Solar-B spacecraft," OE Mag. 2, 23-26 (2002).

2000 (1)

J. L. Culhane, C. M. Korendyke, T. Watanabe, and G. Doschek, "Extreme-ultraviolet imaging spectrometer designed for the Japanese Solar-B satellite," in Instrumentation for UV/EUV Astronomy and Solar Missions, S. Fineschi, C. M. Korendyke, O. H. Sigmund, and B. E. Woodgate, eds., Proc. SPIE 4139, 294-312 (2000).
[CrossRef]

1999 (1)

1998 (1)

1994 (1)

1992 (1)

F. Powell, "Care and feeding of soft x-ray and extreme ultraviolet filters," in Laser-Induced Damage in Optical Materials, H. E. Bennett, L. L. Chase, A. H. Guenther, B. Newman, and M. J. Soileau, eds., Proc. SPIE 1848, 503-514 (1992).
[CrossRef]

1980 (1)

1979 (1)

1977 (1)

1975 (1)

T. Harada, S. Moriyama, and T. Kita, "Mechanically ruled stigmatic concave grating," Jpn. J. Appl. Phys. 14, Suppl. 14-1, 175-179 (1975).

1950 (1)

1945 (1)

Akin, D.

D. Akin, Lockheed Martin Advanced Technology Center, Palo Alto Calif. (personal communication, 2000).

Anderson, M. R.

Barbee, T. W.

Beutler, H. G.

Bowyer, S.

Brown, C. M.

A. E. Kramida, C. M. Brown, U. Feldman, and J. Reader, "Extended EUV and UV spectrum of Ne II," Phys. Scr. 74, 156-167 (2006).
[CrossRef]

J. Lang, B. J. Kent, W. Paustian, C. M. Brown, C. Keyser, M. R. Anderson, G. C. R. Case, R. A. Chaudry, A. M. James, C. M. Korendyke, C. D. Pike, B. J. Probyn, D. J. Rippington, J. F. Seely, J. A. Tandy, and M. C. R. Whillock, "Laboratory calibration of the Extreme-Ultraviolet Imaging Spectrometer for the Solar-B satellite," Appl. Opt. 45, 8689-8705 (2006).
[CrossRef] [PubMed]

J. F. Seely, C. M. Brown, D. L. Windt, S. Donguy, and B. Kjonrattanawanich, "Normal-incidence efficiencies of multilayer-coated laminar gratings for the Extreme-Ultraviolet Imaging Spectrometer (EIS) on the Solar-B mission," Appl. Opt. 43, 1463-1471 (2004).
[CrossRef] [PubMed]

C. Korendyke, C. M. Brown, J. Seely, and S. Meyers, "International collaboration yields a high-performance EUV spectrometer for the Solar-B spacecraft," OE Mag. 2, 23-26 (2002).

A. E. Kramida, C. M. Brown (Space Science Division, U.S. Naval Research Laboratory, 4555 Overlook Avenue, S.W., Washington, D.C. 20375), U. Feldman, and J. Reader, are preparing a manuscript to be called "Extended EUV spectrum of Ne IV."

C. M. Brown (Space Science Division, U.S. Naval Research Laboratory, 4555 Overlook Avenue, S.W., Washington, D.C. 20375), A. E. Kramida, U. Feldman, and J. Reader, are preparing a manuscript to be called "Extended EUV spectrum of Ne III."

Case, G. C. R.

Chaudry, R. A.

Chiemets, P.

P. Chiemets, Smithsonian Astrophysical Observatory, (personal communication, 1999).

Cruddace, R. G.

Culhane, J. L.

J. L. Culhane, C. M. Korendyke, T. Watanabe, and G. Doschek, "Extreme-ultraviolet imaging spectrometer designed for the Japanese Solar-B satellite," in Instrumentation for UV/EUV Astronomy and Solar Missions, S. Fineschi, C. M. Korendyke, O. H. Sigmund, and B. E. Woodgate, eds., Proc. SPIE 4139, 294-312 (2000).
[CrossRef]

Donguy, S.

Doschek, G.

J. L. Culhane, C. M. Korendyke, T. Watanabe, and G. Doschek, "Extreme-ultraviolet imaging spectrometer designed for the Japanese Solar-B satellite," in Instrumentation for UV/EUV Astronomy and Solar Missions, S. Fineschi, C. M. Korendyke, O. H. Sigmund, and B. E. Woodgate, eds., Proc. SPIE 4139, 294-312 (2000).
[CrossRef]

Feldman, U.

A. E. Kramida, C. M. Brown, U. Feldman, and J. Reader, "Extended EUV and UV spectrum of Ne II," Phys. Scr. 74, 156-167 (2006).
[CrossRef]

A. E. Kramida, C. M. Brown (Space Science Division, U.S. Naval Research Laboratory, 4555 Overlook Avenue, S.W., Washington, D.C. 20375), U. Feldman, and J. Reader, are preparing a manuscript to be called "Extended EUV spectrum of Ne IV."

C. M. Brown (Space Science Division, U.S. Naval Research Laboratory, 4555 Overlook Avenue, S.W., Washington, D.C. 20375), A. E. Kramida, U. Feldman, and J. Reader, are preparing a manuscript to be called "Extended EUV spectrum of Ne III."

Finley, D.

Fritz, G. G.

Gursky, H.

Haber, H.

Hara, H.

Harada, T.

Harlander, J.

J. Harlander, St. Cloud State University, St. Cloud, Minn. (personal communication, 2001).

Heidemann, K. F.

Hollandt, J.

Hunter, W. R.

James, A. M.

Kelly, R. L.

R. L. Kelly, "Atomic and ionic spectrum lines below 2000 angstroms: hydrogen through krypton. part I (H-Cr)," J. Chem. Phys. Ref. Data 16, Suppl. 1, 1-649 (1987).

Kent, B. J.

Keyser, C.

Kita, T.

Kjonrattanawanich, B.

Korendyke, C.

C. Korendyke, C. M. Brown, J. Seely, and S. Meyers, "International collaboration yields a high-performance EUV spectrometer for the Solar-B spacecraft," OE Mag. 2, 23-26 (2002).

Korendyke, C. M.

J. Lang, B. J. Kent, W. Paustian, C. M. Brown, C. Keyser, M. R. Anderson, G. C. R. Case, R. A. Chaudry, A. M. James, C. M. Korendyke, C. D. Pike, B. J. Probyn, D. J. Rippington, J. F. Seely, J. A. Tandy, and M. C. R. Whillock, "Laboratory calibration of the Extreme-Ultraviolet Imaging Spectrometer for the Solar-B satellite," Appl. Opt. 45, 8689-8705 (2006).
[CrossRef] [PubMed]

J. L. Culhane, C. M. Korendyke, T. Watanabe, and G. Doschek, "Extreme-ultraviolet imaging spectrometer designed for the Japanese Solar-B satellite," in Instrumentation for UV/EUV Astronomy and Solar Missions, S. Fineschi, C. M. Korendyke, O. H. Sigmund, and B. E. Woodgate, eds., Proc. SPIE 4139, 294-312 (2000).
[CrossRef]

Kowalski, M. P.

Kramida, A. E.

A. E. Kramida, C. M. Brown, U. Feldman, and J. Reader, "Extended EUV and UV spectrum of Ne II," Phys. Scr. 74, 156-167 (2006).
[CrossRef]

A. E. Kramida, C. M. Brown (Space Science Division, U.S. Naval Research Laboratory, 4555 Overlook Avenue, S.W., Washington, D.C. 20375), U. Feldman, and J. Reader, are preparing a manuscript to be called "Extended EUV spectrum of Ne IV."

C. M. Brown (Space Science Division, U.S. Naval Research Laboratory, 4555 Overlook Avenue, S.W., Washington, D.C. 20375), A. E. Kramida, U. Feldman, and J. Reader, are preparing a manuscript to be called "Extended EUV spectrum of Ne III."

Kühne, M.

Lang, J.

Malina, R.

Meyers, S.

C. Korendyke, C. M. Brown, J. Seely, and S. Meyers, "International collaboration yields a high-performance EUV spectrometer for the Solar-B spacecraft," OE Mag. 2, 23-26 (2002).

Moriyama, S.

T. Harada, S. Moriyama, and T. Kita, "Mechanically ruled stigmatic concave grating," Jpn. J. Appl. Phys. 14, Suppl. 14-1, 175-179 (1975).

Paresce, F.

Paustian, W.

Pike, C. D.

Powell, F.

F. Powell, "Care and feeding of soft x-ray and extreme ultraviolet filters," in Laser-Induced Damage in Optical Materials, H. E. Bennett, L. L. Chase, A. H. Guenther, B. Newman, and M. J. Soileau, eds., Proc. SPIE 1848, 503-514 (1992).
[CrossRef]

Probyn, B. J.

Reader, J.

A. E. Kramida, C. M. Brown, U. Feldman, and J. Reader, "Extended EUV and UV spectrum of Ne II," Phys. Scr. 74, 156-167 (2006).
[CrossRef]

A. E. Kramida, C. M. Brown (Space Science Division, U.S. Naval Research Laboratory, 4555 Overlook Avenue, S.W., Washington, D.C. 20375), U. Feldman, and J. Reader, are preparing a manuscript to be called "Extended EUV spectrum of Ne IV."

C. M. Brown (Space Science Division, U.S. Naval Research Laboratory, 4555 Overlook Avenue, S.W., Washington, D.C. 20375), A. E. Kramida, U. Feldman, and J. Reader, are preparing a manuscript to be called "Extended EUV spectrum of Ne III."

Rife, J. C.

Rippington, D. J.

Sakuma, H.

Schumacher, R. J.

Seely, J.

C. Korendyke, C. M. Brown, J. Seely, and S. Meyers, "International collaboration yields a high-performance EUV spectrometer for the Solar-B spacecraft," OE Mag. 2, 23-26 (2002).

Seely, J. F.

Takahashi, K.

Tandy, J. A.

Watanabe, T.

J. L. Culhane, C. M. Korendyke, T. Watanabe, and G. Doschek, "Extreme-ultraviolet imaging spectrometer designed for the Japanese Solar-B satellite," in Instrumentation for UV/EUV Astronomy and Solar Missions, S. Fineschi, C. M. Korendyke, O. H. Sigmund, and B. E. Woodgate, eds., Proc. SPIE 4139, 294-312 (2000).
[CrossRef]

T. Harada, H. Sakuma, K. Takahashi, T. Watanabe, H. Hara, and T. Kita, "Design of a high-resolution extreme-ultraviolet imaging spectrometer with aberration-corrected concave gratings," Appl. Opt. 37, 6803-6810 (1998).
[CrossRef]

Wende, B.

Whillock, M. C. R.

Windt, D. L.

Appl. Opt. (8)

R. J. Schumacher and W. R. Hunter, "Thin aluminum filters for use on the Apollo Telescope Mount XUV spectrographs," Appl. Opt. 16, 904-908 (1977).
[PubMed]

D. Finley, S. Bowyer, F. Paresce, and R. Malina, "Continuous discharge Penning source with emission lines between 50 Å and 300 Å," Appl. Opt. 18, 649-654 (1979).
[CrossRef] [PubMed]

T. Harada and T. Kita, "Mechanically ruled aberration-corrected concave gratings," Appl. Opt. 19, 3987-3993 (1980).
[CrossRef] [PubMed]

J. Hollandt, M. Kühne, and B. Wende, "High-current hollow cathode source as a radiant intensity standard in the 40-125 nm wavelength range," Appl. Opt. 33, 68-74 (1994).
[CrossRef] [PubMed]

T. Harada, H. Sakuma, K. Takahashi, T. Watanabe, H. Hara, and T. Kita, "Design of a high-resolution extreme-ultraviolet imaging spectrometer with aberration-corrected concave gratings," Appl. Opt. 37, 6803-6810 (1998).
[CrossRef]

M. P. Kowalski, T. W. Barbee, Jr., K. F. Heidemann, H. Gursky, J. C. Rife, W. R. Hunter, G. G. Fritz, and R. G. Cruddace, "Efficiency calibration of the first multilayer-coated holographic ion-etched flight grating for a sounding rocket high-resolution spectrometer," Appl. Opt. 38, 6487-6493 (1999).
[CrossRef]

J. F. Seely, C. M. Brown, D. L. Windt, S. Donguy, and B. Kjonrattanawanich, "Normal-incidence efficiencies of multilayer-coated laminar gratings for the Extreme-Ultraviolet Imaging Spectrometer (EIS) on the Solar-B mission," Appl. Opt. 43, 1463-1471 (2004).
[CrossRef] [PubMed]

J. Lang, B. J. Kent, W. Paustian, C. M. Brown, C. Keyser, M. R. Anderson, G. C. R. Case, R. A. Chaudry, A. M. James, C. M. Korendyke, C. D. Pike, B. J. Probyn, D. J. Rippington, J. F. Seely, J. A. Tandy, and M. C. R. Whillock, "Laboratory calibration of the Extreme-Ultraviolet Imaging Spectrometer for the Solar-B satellite," Appl. Opt. 45, 8689-8705 (2006).
[CrossRef] [PubMed]

J. Chem. Phys. Ref. Data (1)

R. L. Kelly, "Atomic and ionic spectrum lines below 2000 angstroms: hydrogen through krypton. part I (H-Cr)," J. Chem. Phys. Ref. Data 16, Suppl. 1, 1-649 (1987).

J. Opt. Soc. Am. (2)

Jpn. J. Appl. Phys. (1)

T. Harada, S. Moriyama, and T. Kita, "Mechanically ruled stigmatic concave grating," Jpn. J. Appl. Phys. 14, Suppl. 14-1, 175-179 (1975).

OE Mag. (1)

C. Korendyke, C. M. Brown, J. Seely, and S. Meyers, "International collaboration yields a high-performance EUV spectrometer for the Solar-B spacecraft," OE Mag. 2, 23-26 (2002).

Phys. Scr. (1)

A. E. Kramida, C. M. Brown, U. Feldman, and J. Reader, "Extended EUV and UV spectrum of Ne II," Phys. Scr. 74, 156-167 (2006).
[CrossRef]

Proc. SPIE (2)

F. Powell, "Care and feeding of soft x-ray and extreme ultraviolet filters," in Laser-Induced Damage in Optical Materials, H. E. Bennett, L. L. Chase, A. H. Guenther, B. Newman, and M. J. Soileau, eds., Proc. SPIE 1848, 503-514 (1992).
[CrossRef]

J. L. Culhane, C. M. Korendyke, T. Watanabe, and G. Doschek, "Extreme-ultraviolet imaging spectrometer designed for the Japanese Solar-B satellite," in Instrumentation for UV/EUV Astronomy and Solar Missions, S. Fineschi, C. M. Korendyke, O. H. Sigmund, and B. E. Woodgate, eds., Proc. SPIE 4139, 294-312 (2000).
[CrossRef]

Other (13)

P. Chiemets, Smithsonian Astrophysical Observatory, (personal communication, 1999).

Stork Veco B. V., P.O. Box 10, 6960 AA Eerbeek, The Netherlands.

D. Akin, Lockheed Martin Advanced Technology Center, Palo Alto Calif. (personal communication, 2000).

Luxel Corp., P.O. Box 1879 Friday Harbor, Wash. 98250.

e2v Technologies, 106 Waterhouse Lane, Chelmsford, Essex CM1 2QU, UK.

UVP, Inc., 2066 W. 11th St., Upland, Calif. 91786.

National Institute of Standards and Technology, "NIST Atomic Spectral Database," http://physics.nist.gov/PhysRefData/ASD/index.html (2005).

C. M. Brown (Space Science Division, U.S. Naval Research Laboratory, 4555 Overlook Avenue, S.W., Washington, D.C. 20375), A. E. Kramida, U. Feldman, and J. Reader, are preparing a manuscript to be called "Extended EUV spectrum of Ne III."

A. E. Kramida, C. M. Brown (Space Science Division, U.S. Naval Research Laboratory, 4555 Overlook Avenue, S.W., Washington, D.C. 20375), U. Feldman, and J. Reader, are preparing a manuscript to be called "Extended EUV spectrum of Ne IV."

J. Lang, B. J. Kent, and J. F. Seely, "The proposed calibration of Solar B EIS," in Radiometric Calibration of SOHO, ISSI Scientific Rep. SR-0002, A. Pauluhn, M. C. E. Huber, and R. von Steiger, eds. (European Space Agency, 2002), pp. 337-345.

Tinsley Laboratories, Inc., 4040 Lakeside Dr., Richmond, Calif. 94806-1963.

Carl Zeiss Laser Optics GmbH, 22 Carl Zeiss Strasse, 73447 Oberkochen, Germany.

J. Harlander, St. Cloud State University, St. Cloud, Minn. (personal communication, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (28)

Fig. 1
Fig. 1

Schematic layout of the EIS telescope and spectrograph. SW, short wavelength; LW, long wavelength.

Fig. 2
Fig. 2

Residual figure error in micrometers for toroidal grating 3.

Fig. 3
Fig. 3

Toroid test fixture. The fused-silica plates are 25 mm × 38 mm × 8.54 ± 0.1 mm thick, with surfaces parallel to < 30 arc sec .

Fig. 4
Fig. 4

AFM profile of grating grooves in a 1 μm × 1 μm region near grating center on an EIS laminar grating. The mean groove depth is 6.4 nm and the land width is 108 nm in this case.

Fig. 5
Fig. 5

Multilayer-coated grating efficiency in the short- and long-wavelength EIS bands.

Fig. 6
Fig. 6

Optimized configuration of the toroidal grating spectrometer. The center of the grating is at (−1000,0). The Y scale is greatly expanded in this figure relative to the X scale. The dashed vee converging at the slit represents the volume occupied by the light path from the telescope mirror.

Fig. 7
Fig. 7

Grating spot size diameter for a point at the center of the slit as a function of wavelength (a) for the short-wavelength band and (b) for the long-wavelength band. These spot dimensions are for the grating only and should be added in quadrature to the spot sizes of the off-axis parabola telescope mirror to estimate the spot sizes for the full EIS instrument. The spatial dimension is north–south on the solar disk and the spectral dimension is east–west.

Fig. 8
Fig. 8

Grating spot size diameter along the slit at the central wavelength of each detector (a) for the short-wavelength band (193 Å) and (b) for the long-wavelength band (267 Å). Position 0 is the slit center and the off-axis angle is measured north or south along the slit. See caption to Fig. 7.

Fig. 9
Fig. 9

Assembled flight MIR assembly: (a) front view and (b) rear view.

Fig. 10
Fig. 10

Performance of the PZT actuator during (a) open loop (voltage control) and (b) during closed loop (digital number control) with feedback. The solid symbols are for increasing actuator voltage and the open symbols are for decreasing voltage. The working setpoint range is between 600 and 3200.

Fig. 11
Fig. 11

Measured reproducibility of the PZT actuated mirror in a laboratory environment. In this test, the mirror was repeatedly commanded between two positions 85 arc sec apart. The error bars correspond to the ± 1.5 arc sec measurement accuracy.

Fig. 12
Fig. 12

Measured deviation of the MIR linear displacement as a function of motor step number. The error bars correspond to the limits of the measurement micrometer accuracy.

Fig. 13
Fig. 13

EIS Clamshell assembly mounted on the instrument. The evacuation port is at the top and a thin thermally coated polished metal disk on the front reflects incoming solar heat. The instrument itself is covered with black thermal blanketing material.

Fig. 14
Fig. 14

EIS front filter CLM assembly with doors open. The support spider for four filter quadrants is shown without the Al filters.

Fig. 15
Fig. 15

Schematic (not to scale) showing detail of the filter margining method for the EIS. The wires are 40 μm wide on 390 μm centers. The gap between the support frame and the open filter area is 1 mm. Where possible, the mesh wires join the frame at a 45° angle.

Fig. 16
Fig. 16

Average transmission for an EIS Al filter 1500 Å thick. The data are from 24 scans at points on a 15 mm grid arranged over the filter surface. The error bars are 1 standard deviation. These data are for the mounted filters and include the ∼20% loss due to the mesh. The step at 170 Å is the Al L-edge. Additional Si and Al filters were used in the beamline to eliminate the small amount of second-order light from the monochromator in the 170 300 Å range of interest.

Fig. 17
Fig. 17

Grating FL 7 in its flight mounting. Two of the four polished facets on the margin of the grating blank are visible. The motor, gearhead, and ball screw compose the focus mechanism. Two small circuit boards hold LEDs and photodiodes for the limit sensors.

Fig. 18
Fig. 18

a) Slit–slot mechanism assembly. The four slits are on a paddle wheel and are exchanged by 90° rotations of the wheel. The shutter blade and motor are also attached to this assembly. b). Paddle wheel and slit frame before blackening.

Fig. 19
Fig. 19

Histogram of recorded exposure time for 49,936 exposures taken on 9 June 2002 with the development model shutter. These test exposures were taken as part of mechanism life testing. The exposure times are within 1 ms of the nominal value. The trimodal distribution is an artifact of the 1 ms granularity of the software timing used to control shutter exposure times.

Fig. 20
Fig. 20

EIS grating optical test facility.

Fig. 21
Fig. 21

Magnified AFRT image recorded using He ii 256 Å line radiation. The arrows indicate the direction of the scans in Fig. 23.

Fig. 22
Fig. 22

Column plot through the horizontal bars of groups 4-5 and 4-6 in Fig. 21. DN, corresponding data number.

Fig. 23
Fig. 23

Row plot through the vertical bars of groups 4-5 and 4-6 in Fig. 21. DN, corresponding data number.

Fig. 24
Fig. 24

Ne and Mg Penning discharge spectrum in the long-wavelength band recorded with the EIS spectrograph. DN, corresponding data number.

Fig. 25
Fig. 25

Detail of the 2 s 2 2 p 4 - 2 s 2 2 p 3 3 s Ne iii lines at 267.051, 267.070, 267.498, 267.510, 267.529, and 267.709 Å as observed in the long-wavelength detector of EIS. The source was the collimated beam from the Ne and Mg Penning discharge. The FWHM of the fitted line profile is 0.0577 Å (2.59 pixels). DN, corresponding data number.

Fig. 26
Fig. 26

Representative short-wavelength Ne and Mg spectra recorded with the EIS instrument. DN, corresponding data number.

Fig. 27
Fig. 27

Mg iii lines at 186.5149 and 187.1977 Å in the short-wavelength band. The fitted FWHM of both lines is 0.047 Å (2.12 pixels). DN, corresponding data number.

Fig. 28
Fig. 28

He ii 256 Å line from a Penning discharge as observed by EIS. The solid curve is a Gaussian function fitted to the CCD data number (DN).

Tables (6)

Tables Icon

Table 1 EIS Toroidal Grating Figure Summary

Tables Icon

Table 2 Predicted EIS Grating Imaging Performance

Tables Icon

Table 3 Predicted EIS Mirror Imaging Performance

Tables Icon

Table 4 Foil Thickness and Transmission Properties of EIS EUV Filters

Tables Icon

Table 5 Measured Thermal Radiative Properties EIS Filter Material a

Tables Icon

Table 6 EIS Slit Width Summary a

Metrics