Abstract

The performance of a dispersion-compensated acousto-optic deflector (AOD) for steering femtosecond laser pulses was examined with the prism located before or after the AOD, which is regarded as prism-AOD and AOD-prism, respectively. Comparisons are made over parameters including the spot spatial pattern, output pulse width, scanning linearity, the field of view, and the transmission rate. Fluorescence images of 170  nm diameter beads and cells were measured to provide an overall evaluation for these femtosecond laser beam scanning configurations. On the basis of these experiments, the prism-AOD configuration is concluded to be more advantageous for the purpose of simultaneous compensation for the spatial and temporal dispersion.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. R. Zipfel, R. W. Williams, and W. W. Webb, "Nonlinear magic: multiphoton microscopy in the biosciences," Nat. Biotechnol. 21, 1368-1376 (2003).
    [CrossRef]
  2. D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, "Water-soluble quantum dots for multiphoton fluorescence imaging in vivo," Science 300, 1434-1436 (2003).
    [CrossRef] [PubMed]
  3. W. Denk, D. W. Piston, and W. W. Webb, "Two-photon molecular excitation in laser-scanning microscopy," in Handbook of Biological Confocal Microscopy, J.B. Pawley, ed. (Plenum, 1995), pp. 445-458.
  4. S. R. Goldstein, T. Hubin, S. Rosenthal, and C. Washburn, "A confocal video-rate laser-beam scanning reflected-light microscopy with no moving parts," J. Microsc. 157, 29-38 (1990).
    [CrossRef] [PubMed]
  5. A. Bullen, S. S. Patel, and P. Saggau, "High-speed, random-access fluorescence microscopy: I. High-resolution optical recording with voltage-sensitive dyes and ion indicators," Biophys. J. 73, 477-491 (1997).
    [CrossRef] [PubMed]
  6. V. Iyer, B. E. Losavio, and P. Saggau, "Compensation of spatial and temporal dispersion for acousto-optic multiphoton laser-scanning microscopy," J. Biomed. Opt. 8, 460-471 (2003).
    [CrossRef] [PubMed]
  7. J. D. Lechleiter, D. T. Lin, and I. Sieneart, "Multi-photon laser scanning microscopy using an acoustic optical deflector," Biophys. J. 83, 2292-2299 (2002).
    [CrossRef] [PubMed]
  8. R. D. Roorda, T. M. Hohl, R. Toledo-Crow, and G. Miesenbock, "Video-rate nonlinear microscopy of neuronal membrane dynamics with genetically encoded probes," J. Neurophysiol. 92, 609-621 (2004).
    [CrossRef] [PubMed]
  9. S. Zeng, X. Lv, C. Zhan, W. R. Chen, W. Xiong, S. L. Jacques, and Q. Luo, "Simultaneous compensation of spatial and temporal dispersion of acousto-optical deflectors for two-dimensional scanning with a single prism," Opt. Lett. 31, 1091-1093 (2006).
    [CrossRef] [PubMed]
  10. M. Nakazawa, T. Nakashima, and H. Kubota, "Optical pulse compression using a TeO2 acousto-optical light deflector," Opt. Lett. 13, 120-122 (1988).
    [CrossRef] [PubMed]

2006 (1)

2004 (1)

R. D. Roorda, T. M. Hohl, R. Toledo-Crow, and G. Miesenbock, "Video-rate nonlinear microscopy of neuronal membrane dynamics with genetically encoded probes," J. Neurophysiol. 92, 609-621 (2004).
[CrossRef] [PubMed]

2003 (3)

W. R. Zipfel, R. W. Williams, and W. W. Webb, "Nonlinear magic: multiphoton microscopy in the biosciences," Nat. Biotechnol. 21, 1368-1376 (2003).
[CrossRef]

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, "Water-soluble quantum dots for multiphoton fluorescence imaging in vivo," Science 300, 1434-1436 (2003).
[CrossRef] [PubMed]

V. Iyer, B. E. Losavio, and P. Saggau, "Compensation of spatial and temporal dispersion for acousto-optic multiphoton laser-scanning microscopy," J. Biomed. Opt. 8, 460-471 (2003).
[CrossRef] [PubMed]

2002 (1)

J. D. Lechleiter, D. T. Lin, and I. Sieneart, "Multi-photon laser scanning microscopy using an acoustic optical deflector," Biophys. J. 83, 2292-2299 (2002).
[CrossRef] [PubMed]

1997 (1)

A. Bullen, S. S. Patel, and P. Saggau, "High-speed, random-access fluorescence microscopy: I. High-resolution optical recording with voltage-sensitive dyes and ion indicators," Biophys. J. 73, 477-491 (1997).
[CrossRef] [PubMed]

1990 (1)

S. R. Goldstein, T. Hubin, S. Rosenthal, and C. Washburn, "A confocal video-rate laser-beam scanning reflected-light microscopy with no moving parts," J. Microsc. 157, 29-38 (1990).
[CrossRef] [PubMed]

1988 (1)

Bruchez, M. P.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, "Water-soluble quantum dots for multiphoton fluorescence imaging in vivo," Science 300, 1434-1436 (2003).
[CrossRef] [PubMed]

Bullen, A.

A. Bullen, S. S. Patel, and P. Saggau, "High-speed, random-access fluorescence microscopy: I. High-resolution optical recording with voltage-sensitive dyes and ion indicators," Biophys. J. 73, 477-491 (1997).
[CrossRef] [PubMed]

Chen, W. R.

Clark, S. W.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, "Water-soluble quantum dots for multiphoton fluorescence imaging in vivo," Science 300, 1434-1436 (2003).
[CrossRef] [PubMed]

Denk, W.

W. Denk, D. W. Piston, and W. W. Webb, "Two-photon molecular excitation in laser-scanning microscopy," in Handbook of Biological Confocal Microscopy, J.B. Pawley, ed. (Plenum, 1995), pp. 445-458.

Goldstein, S. R.

S. R. Goldstein, T. Hubin, S. Rosenthal, and C. Washburn, "A confocal video-rate laser-beam scanning reflected-light microscopy with no moving parts," J. Microsc. 157, 29-38 (1990).
[CrossRef] [PubMed]

Hohl, T. M.

R. D. Roorda, T. M. Hohl, R. Toledo-Crow, and G. Miesenbock, "Video-rate nonlinear microscopy of neuronal membrane dynamics with genetically encoded probes," J. Neurophysiol. 92, 609-621 (2004).
[CrossRef] [PubMed]

Hubin, T.

S. R. Goldstein, T. Hubin, S. Rosenthal, and C. Washburn, "A confocal video-rate laser-beam scanning reflected-light microscopy with no moving parts," J. Microsc. 157, 29-38 (1990).
[CrossRef] [PubMed]

Iyer, V.

V. Iyer, B. E. Losavio, and P. Saggau, "Compensation of spatial and temporal dispersion for acousto-optic multiphoton laser-scanning microscopy," J. Biomed. Opt. 8, 460-471 (2003).
[CrossRef] [PubMed]

Jacques, S. L.

Kubota, H.

Larson, D. R.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, "Water-soluble quantum dots for multiphoton fluorescence imaging in vivo," Science 300, 1434-1436 (2003).
[CrossRef] [PubMed]

Lechleiter, J. D.

J. D. Lechleiter, D. T. Lin, and I. Sieneart, "Multi-photon laser scanning microscopy using an acoustic optical deflector," Biophys. J. 83, 2292-2299 (2002).
[CrossRef] [PubMed]

Lin, D. T.

J. D. Lechleiter, D. T. Lin, and I. Sieneart, "Multi-photon laser scanning microscopy using an acoustic optical deflector," Biophys. J. 83, 2292-2299 (2002).
[CrossRef] [PubMed]

Losavio, B. E.

V. Iyer, B. E. Losavio, and P. Saggau, "Compensation of spatial and temporal dispersion for acousto-optic multiphoton laser-scanning microscopy," J. Biomed. Opt. 8, 460-471 (2003).
[CrossRef] [PubMed]

Luo, Q.

Lv, X.

Miesenbock, G.

R. D. Roorda, T. M. Hohl, R. Toledo-Crow, and G. Miesenbock, "Video-rate nonlinear microscopy of neuronal membrane dynamics with genetically encoded probes," J. Neurophysiol. 92, 609-621 (2004).
[CrossRef] [PubMed]

Nakashima, T.

Nakazawa, M.

Patel, S. S.

A. Bullen, S. S. Patel, and P. Saggau, "High-speed, random-access fluorescence microscopy: I. High-resolution optical recording with voltage-sensitive dyes and ion indicators," Biophys. J. 73, 477-491 (1997).
[CrossRef] [PubMed]

Piston, D. W.

W. Denk, D. W. Piston, and W. W. Webb, "Two-photon molecular excitation in laser-scanning microscopy," in Handbook of Biological Confocal Microscopy, J.B. Pawley, ed. (Plenum, 1995), pp. 445-458.

Roorda, R. D.

R. D. Roorda, T. M. Hohl, R. Toledo-Crow, and G. Miesenbock, "Video-rate nonlinear microscopy of neuronal membrane dynamics with genetically encoded probes," J. Neurophysiol. 92, 609-621 (2004).
[CrossRef] [PubMed]

Rosenthal, S.

S. R. Goldstein, T. Hubin, S. Rosenthal, and C. Washburn, "A confocal video-rate laser-beam scanning reflected-light microscopy with no moving parts," J. Microsc. 157, 29-38 (1990).
[CrossRef] [PubMed]

Saggau, P.

V. Iyer, B. E. Losavio, and P. Saggau, "Compensation of spatial and temporal dispersion for acousto-optic multiphoton laser-scanning microscopy," J. Biomed. Opt. 8, 460-471 (2003).
[CrossRef] [PubMed]

A. Bullen, S. S. Patel, and P. Saggau, "High-speed, random-access fluorescence microscopy: I. High-resolution optical recording with voltage-sensitive dyes and ion indicators," Biophys. J. 73, 477-491 (1997).
[CrossRef] [PubMed]

Sieneart, I.

J. D. Lechleiter, D. T. Lin, and I. Sieneart, "Multi-photon laser scanning microscopy using an acoustic optical deflector," Biophys. J. 83, 2292-2299 (2002).
[CrossRef] [PubMed]

Toledo-Crow, R.

R. D. Roorda, T. M. Hohl, R. Toledo-Crow, and G. Miesenbock, "Video-rate nonlinear microscopy of neuronal membrane dynamics with genetically encoded probes," J. Neurophysiol. 92, 609-621 (2004).
[CrossRef] [PubMed]

Washburn, C.

S. R. Goldstein, T. Hubin, S. Rosenthal, and C. Washburn, "A confocal video-rate laser-beam scanning reflected-light microscopy with no moving parts," J. Microsc. 157, 29-38 (1990).
[CrossRef] [PubMed]

Webb, W. W.

W. R. Zipfel, R. W. Williams, and W. W. Webb, "Nonlinear magic: multiphoton microscopy in the biosciences," Nat. Biotechnol. 21, 1368-1376 (2003).
[CrossRef]

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, "Water-soluble quantum dots for multiphoton fluorescence imaging in vivo," Science 300, 1434-1436 (2003).
[CrossRef] [PubMed]

W. Denk, D. W. Piston, and W. W. Webb, "Two-photon molecular excitation in laser-scanning microscopy," in Handbook of Biological Confocal Microscopy, J.B. Pawley, ed. (Plenum, 1995), pp. 445-458.

Williams, R. M.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, "Water-soluble quantum dots for multiphoton fluorescence imaging in vivo," Science 300, 1434-1436 (2003).
[CrossRef] [PubMed]

Williams, R. W.

W. R. Zipfel, R. W. Williams, and W. W. Webb, "Nonlinear magic: multiphoton microscopy in the biosciences," Nat. Biotechnol. 21, 1368-1376 (2003).
[CrossRef]

Wise, F. W.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, "Water-soluble quantum dots for multiphoton fluorescence imaging in vivo," Science 300, 1434-1436 (2003).
[CrossRef] [PubMed]

Xiong, W.

Zeng, S.

Zhan, C.

Zipfel, W. R.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, "Water-soluble quantum dots for multiphoton fluorescence imaging in vivo," Science 300, 1434-1436 (2003).
[CrossRef] [PubMed]

W. R. Zipfel, R. W. Williams, and W. W. Webb, "Nonlinear magic: multiphoton microscopy in the biosciences," Nat. Biotechnol. 21, 1368-1376 (2003).
[CrossRef]

Biophys. J. (2)

A. Bullen, S. S. Patel, and P. Saggau, "High-speed, random-access fluorescence microscopy: I. High-resolution optical recording with voltage-sensitive dyes and ion indicators," Biophys. J. 73, 477-491 (1997).
[CrossRef] [PubMed]

J. D. Lechleiter, D. T. Lin, and I. Sieneart, "Multi-photon laser scanning microscopy using an acoustic optical deflector," Biophys. J. 83, 2292-2299 (2002).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

V. Iyer, B. E. Losavio, and P. Saggau, "Compensation of spatial and temporal dispersion for acousto-optic multiphoton laser-scanning microscopy," J. Biomed. Opt. 8, 460-471 (2003).
[CrossRef] [PubMed]

J. Microsc. (1)

S. R. Goldstein, T. Hubin, S. Rosenthal, and C. Washburn, "A confocal video-rate laser-beam scanning reflected-light microscopy with no moving parts," J. Microsc. 157, 29-38 (1990).
[CrossRef] [PubMed]

J. Neurophysiol. (1)

R. D. Roorda, T. M. Hohl, R. Toledo-Crow, and G. Miesenbock, "Video-rate nonlinear microscopy of neuronal membrane dynamics with genetically encoded probes," J. Neurophysiol. 92, 609-621 (2004).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

W. R. Zipfel, R. W. Williams, and W. W. Webb, "Nonlinear magic: multiphoton microscopy in the biosciences," Nat. Biotechnol. 21, 1368-1376 (2003).
[CrossRef]

Opt. Lett. (2)

Science (1)

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, "Water-soluble quantum dots for multiphoton fluorescence imaging in vivo," Science 300, 1434-1436 (2003).
[CrossRef] [PubMed]

Other (1)

W. Denk, D. W. Piston, and W. W. Webb, "Two-photon molecular excitation in laser-scanning microscopy," in Handbook of Biological Confocal Microscopy, J.B. Pawley, ed. (Plenum, 1995), pp. 445-458.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Prism-AOD configuration and (b) AOD-prism configuration.

Fig. 2
Fig. 2

(Color online) Modification factor of scanning angle versus angle of incidence at the prism for the AOD-prism scanner configuration.

Fig. 3
Fig. 3

Performance comparison between the prism-AOD scanner and the AOD-prism scanner for a femtosecond laser. (a) Spot shape across the FOV recorded by a CCD camera (Fig. 2) 130   cm from the AOD scanner (top and middle row, 4   MHz spacing; bottom row, 8   MHz spacing). Top row, emitted from an uncompensated AOD; middle row, emitted from the prism-AOD scanner; bottom row, emitted from the AOD-prism scanner. (b) Elliptical ratio of these spots. (c) The deflection angle between neighboring spots with a frequency step of 4   MHz . (d) Overall transmission rate of the compensated scanner. (b)–(d) share a common figure legend.

Fig. 4
Fig. 4

Comparison of the temporal dispersion compensation results. (a) Normalized autocorrelation waveform showing the pulse width of the laser beam emitted from the scanner at the central frequency ( 96   MHz ) . From inside to outside: prism-AOD ( 135   fs ) , original from the EOM (135 fs), AOD-prism ( 135   fs ) , uncompensated AOD ( 412   fs ) . (b) Pulse width of the laser beam across the FOV. For the AOD-prism configuration, the active frequency range limited by the prism size is 90 102 MHz in contrast to the whole frequency range of 78 114   MHz of the AOD.

Fig. 5
Fig. 5

(a) Optical path and (b) layout of the custom-built two-photon microscope with the compensated AOD as the scanner for one dimension and a galvanometric mirror for another dimension. DM, dichronic mirror; PMT, photomultiplier tube; BS, beam splitter. A switch (not shown here) directs the laser beam incidence at the AOD-prism or prism-AOD.

Fig. 6
Fig. 6

Fluorescence image of microscophere beads (diameter 170   nm ) obtained with (a) prism-AOD and (b) AOD-prism as the scanner in a custom-built two-photon microscope and the transverse profile of the beads along the xy direction; (c) prism-AOD, (d) AOD-prism. The insets in (a) and (b) show amplified images of a single fluorescent bead in the yx (top) and yz (bottom) planes. The FWHM is 392   nm for the prism-AOD, 396   nm for the AOD-prism, and around 390   nm for the galvonometer. Objective is 60× 1.42 N.A. oil immersion.

Fig. 7
Fig. 7

Fluorescence images of epithelium cells obtained with (a) FV1000 commercial two-photon microscope, (b) prism-AOD scanner, (c) AOD-prism scanner. Objective is 60× 1.42 N.A. oil immersion.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d θ in = ( sin α sin θ in cos θ in n 2 sin 2 θ in + cos α cos θ in ) / cos β .

Metrics