Abstract

Surface relief gratings are holographically fabricated in thin polybutadiene rubber films produced by both spin coating and dip coating on glass and metal substrates. These thin-film gratings are characterized for their application as efficient transducers for detecting dynamic strain in solids. The performance of these rubber-grating transducers is compared to surface-mounted fiber Bragg gratings for a range of frequencies between 50Hz and 30kHz. Dynamic-strain sensitivity around 1/Hz is recorded for thin rubber-film grating transducers.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Nagy, C. Apanius, J. W. Siekinen, and H. V. Estranda, "A user-friendly, high-sensitivity strain gauge," Sensors 18, 20-27 (2001).
  2. J. Guo, H. Kuo, J. D. Young, and W. H. Ko, "Buckled beam linear output capacitive strain sensor," presented at the Solid-State Sensor, Actuator and Microsystems Workshop, Hilton Head Island, S. C. (6-10 June 2004).
  3. M. Schmidt and N. Fürstenau, "Fiber-optic extrinsic Fabry-Perot interferometer sensors with three-wavelength digital phase demodulation," Opt. Lett. 24, 599-601 (1999).
    [CrossRef]
  4. A. W. Domanski, T. R. Wolinski, and W. J. Bock, "Polarimetric fiber optic sensors: state-of-the-art and future," in Proc. SPIE 2341, 21-26 (1995).
  5. J. Grant, R. Kaul, S. Taylor, K. Jackson, A. Osei, and A. Sharma, "Investigation of structural properties of carbon-epoxy composites using fiber-Bragg gratings," in Proc. SPIE 4833, 191-199 (2002).
    [CrossRef]
  6. M. Schmidt, B. Werther, N. Fuerstenau, M. Matthias, and T. Melz, "Fiber-optic extrinsic Fabry-Perot interferometer strain sensor with less than 50 pm displacement resolution using three-wavelength digital phase demodulation," Opt. Express 8, 475-480 (2001).
    [CrossRef] [PubMed]
  7. A. D. Kersey, T. A. Berkoff, and W. W. Morey, "Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Perot wavelength filter," Opt. Lett. 18, 1370-1372 (1993).
    [CrossRef] [PubMed]
  8. M. Laylor, S. Calvert, T. Taylor, W. Schulz, R. Lumsden, and E. Udd, "Fiber optic grating moisture and humidity sensors," in Proc. SPIE 4694, 210-217 (2002).
    [CrossRef]
  9. B. Lissak, A. Arie, and M. Tur, "Highly sensitive dynamic strain measurements by locking lasers to fiber Bragg gratings," Opt. Lett. 23, 1930-1932 (1998).
    [CrossRef]
  10. M. Song, S. B. Lee, S. S. Choi, and B. Lee, "Dynamic-strain measurement with dual-grating fiber sensor," Appl. Opt. 37, 3484-3486 (1998).
    [CrossRef]
  11. I. Perez, H. L. Cui, and E. Udd, "Acoustic emission detection using fiber Bragg gratings," in Proc. SPIE 4328, 209-215 (2001).
    [CrossRef]
  12. W. L. Schulz, J. P. Conte, and E. Udd, "Long gauge fiber optic Bragg grating strain sensors to monitor civil structures," in Proc. SPIE 4330, 56-65 (2001).
    [CrossRef]
  13. M. Kunzler, E. Udd, S. Kreger, M. Johnson, and V. Henrie, "Damage evaluation and analysis of composite pressure vessels using fiber Bragg gratings to determine structural health," in Proc. SPIE 5758, 168-176 (2005).
    [CrossRef]
  14. A. Sharma, M. Dokhanian, A. Kassu, and A. N. Parekh, "Photoinduced grating formation in azo-dye-labeled phospholipid thin films using 244 nm light," Opt. Lett. 30, 501-503 (2005).
    [CrossRef] [PubMed]
  15. D. Y. Kim, S. K. Tripathi, L. Li, and J. Kumar, "Laser-induced holographic surface relief gratings on nonlinear optical polymer films," Appl. Phys. Lett. 66, 1166-1168 (1995).
    [CrossRef]
  16. P. S. Ramanujam, L. Nedelchev, and A. Matharu, "Polarization holographic and surface-relief gratings at 257 nm in an amorphous azobenzene polyester," Opt. Lett. 28, 1072-1074 (2003).
    [CrossRef] [PubMed]
  17. Y. Zhao, S. Bai, D. Dumont, and T. V. Galstian, "Mechanically tunable diffraction gratings recorded on an azobenzene elastomer," Adv. Mater. 14, 512-514 (2004).
    [CrossRef]
  18. Y. Zhao, S. Bai, K. Asatryan, and T. Galstian, "Holographic recording in a photoactive elastomer," Adv. Funct. Mater. 13, 781-788 (2003).
    [CrossRef]
  19. J. Kumar, L. Li, X. L. Jiang, D.-Y. Kim, T. S. Lee, and S. Tripathi, "Gradient force: the mechanism for surface relief grating formation in azobenzene functionalized polymers," Appl. Phys. Lett. 72, 2096-2098 (1998).
    [CrossRef]
  20. Th. Geue, M. G. Saphiannikova, O. Henneberg, U. Pietsch, P. L. Rochon, and A. L. Natansohn, "Formation mechanism and dynamics in polymer surface gratings," Phys. Rev. E 65, 052801 (2002).
    [CrossRef]
  21. L. M. Dai, H. J. Griesser, X. Y. Hong, A. W. Mau, T. H. Spurling, Y. Y. Yang, and J. W. White, "Photochemical generation of conducting patterns in polybutadiene films," Macromolecules 29, 282-287 (1996).
    [CrossRef]
  22. G. Natta, Nobel Lectures, Chemistry 1963-1970 (Elsevier, 1972), p. 46.
  23. A. Sharma, L. Phillips, S. Burgett, P. Ruffin, and W. Long, "Strain sensing in fiber-optic coils with buried Bragg gratings," in Proc. SPIE 4087, 1157-1162 (2000).
    [CrossRef]
  24. A. O. Okorogu, "Remote optical in-plane strain measurements for infrastructure applications," Ph.D. dissertation (Alabama A&M University, 1997).
  25. E. R. Peck, "Theory of comer-cube interferometer," J. Opt. Soc. Am. 38, 1015-1024 (1948).
    [CrossRef] [PubMed]
  26. L. E. Drain, The Laser Doppler Technique (Wiley, 1980).
  27. M. Alvarez and J. Tamayo, "Optical sequential readout of microcantilever arrays for biological detection," Sens. Actuators B 106, 687-690 (2005).
    [CrossRef]
  28. J. Ye, "Absolute measurement of a long, arbitrary distance to less than an optical fringe," Opt. Lett. 29, 1153-1155 (2004).
    [CrossRef] [PubMed]
  29. J. A. Kim, K. C. Kim, E. W. Bae, S. Kim, and Y. K. Kwak, "Six-degree-of-freedom displacement measurement system using a diffraction grating," Rev. Sci. Instrum. 71, 3214-3219 (2000).
    [CrossRef]
  30. E. W. Bae, J. A. Kim, and S. H. Kim, "Multi-degree-of-freedom displacement measurement for milli-structures," Meas. Sci. Technol. 12, 1495-1502 (2001).
    [CrossRef]
  31. P. Wileman, J. M. Coupland, C. D. Creasey, D. M. Rowley, and N. A. Halliwell, "The laser strain gauge: micromachining of diffraction gratings using an excimer laser," Strain 30, 15-18 (1994).
    [CrossRef]
  32. R. D. Alcock, C. D. Creasey, P. Wileman, N. A. Halliwell, and J. M. Coupland, "Remote detection of the pitch and orientation of a reflective diffraction grating: an optical strain gauge," Proc. R. Soc. , London Ser. A 461, 179-188 (2005).
    [CrossRef]

2005 (4)

M. Kunzler, E. Udd, S. Kreger, M. Johnson, and V. Henrie, "Damage evaluation and analysis of composite pressure vessels using fiber Bragg gratings to determine structural health," in Proc. SPIE 5758, 168-176 (2005).
[CrossRef]

R. D. Alcock, C. D. Creasey, P. Wileman, N. A. Halliwell, and J. M. Coupland, "Remote detection of the pitch and orientation of a reflective diffraction grating: an optical strain gauge," Proc. R. Soc. , London Ser. A 461, 179-188 (2005).
[CrossRef]

M. Alvarez and J. Tamayo, "Optical sequential readout of microcantilever arrays for biological detection," Sens. Actuators B 106, 687-690 (2005).
[CrossRef]

A. Sharma, M. Dokhanian, A. Kassu, and A. N. Parekh, "Photoinduced grating formation in azo-dye-labeled phospholipid thin films using 244 nm light," Opt. Lett. 30, 501-503 (2005).
[CrossRef] [PubMed]

2004 (2)

J. Ye, "Absolute measurement of a long, arbitrary distance to less than an optical fringe," Opt. Lett. 29, 1153-1155 (2004).
[CrossRef] [PubMed]

Y. Zhao, S. Bai, D. Dumont, and T. V. Galstian, "Mechanically tunable diffraction gratings recorded on an azobenzene elastomer," Adv. Mater. 14, 512-514 (2004).
[CrossRef]

2003 (2)

2002 (3)

M. Laylor, S. Calvert, T. Taylor, W. Schulz, R. Lumsden, and E. Udd, "Fiber optic grating moisture and humidity sensors," in Proc. SPIE 4694, 210-217 (2002).
[CrossRef]

J. Grant, R. Kaul, S. Taylor, K. Jackson, A. Osei, and A. Sharma, "Investigation of structural properties of carbon-epoxy composites using fiber-Bragg gratings," in Proc. SPIE 4833, 191-199 (2002).
[CrossRef]

Th. Geue, M. G. Saphiannikova, O. Henneberg, U. Pietsch, P. L. Rochon, and A. L. Natansohn, "Formation mechanism and dynamics in polymer surface gratings," Phys. Rev. E 65, 052801 (2002).
[CrossRef]

2001 (5)

E. W. Bae, J. A. Kim, and S. H. Kim, "Multi-degree-of-freedom displacement measurement for milli-structures," Meas. Sci. Technol. 12, 1495-1502 (2001).
[CrossRef]

I. Perez, H. L. Cui, and E. Udd, "Acoustic emission detection using fiber Bragg gratings," in Proc. SPIE 4328, 209-215 (2001).
[CrossRef]

W. L. Schulz, J. P. Conte, and E. Udd, "Long gauge fiber optic Bragg grating strain sensors to monitor civil structures," in Proc. SPIE 4330, 56-65 (2001).
[CrossRef]

M. Nagy, C. Apanius, J. W. Siekinen, and H. V. Estranda, "A user-friendly, high-sensitivity strain gauge," Sensors 18, 20-27 (2001).

M. Schmidt, B. Werther, N. Fuerstenau, M. Matthias, and T. Melz, "Fiber-optic extrinsic Fabry-Perot interferometer strain sensor with less than 50 pm displacement resolution using three-wavelength digital phase demodulation," Opt. Express 8, 475-480 (2001).
[CrossRef] [PubMed]

2000 (2)

A. Sharma, L. Phillips, S. Burgett, P. Ruffin, and W. Long, "Strain sensing in fiber-optic coils with buried Bragg gratings," in Proc. SPIE 4087, 1157-1162 (2000).
[CrossRef]

J. A. Kim, K. C. Kim, E. W. Bae, S. Kim, and Y. K. Kwak, "Six-degree-of-freedom displacement measurement system using a diffraction grating," Rev. Sci. Instrum. 71, 3214-3219 (2000).
[CrossRef]

1999 (1)

1998 (3)

B. Lissak, A. Arie, and M. Tur, "Highly sensitive dynamic strain measurements by locking lasers to fiber Bragg gratings," Opt. Lett. 23, 1930-1932 (1998).
[CrossRef]

M. Song, S. B. Lee, S. S. Choi, and B. Lee, "Dynamic-strain measurement with dual-grating fiber sensor," Appl. Opt. 37, 3484-3486 (1998).
[CrossRef]

J. Kumar, L. Li, X. L. Jiang, D.-Y. Kim, T. S. Lee, and S. Tripathi, "Gradient force: the mechanism for surface relief grating formation in azobenzene functionalized polymers," Appl. Phys. Lett. 72, 2096-2098 (1998).
[CrossRef]

1996 (1)

L. M. Dai, H. J. Griesser, X. Y. Hong, A. W. Mau, T. H. Spurling, Y. Y. Yang, and J. W. White, "Photochemical generation of conducting patterns in polybutadiene films," Macromolecules 29, 282-287 (1996).
[CrossRef]

1995 (2)

D. Y. Kim, S. K. Tripathi, L. Li, and J. Kumar, "Laser-induced holographic surface relief gratings on nonlinear optical polymer films," Appl. Phys. Lett. 66, 1166-1168 (1995).
[CrossRef]

A. W. Domanski, T. R. Wolinski, and W. J. Bock, "Polarimetric fiber optic sensors: state-of-the-art and future," in Proc. SPIE 2341, 21-26 (1995).

1994 (1)

P. Wileman, J. M. Coupland, C. D. Creasey, D. M. Rowley, and N. A. Halliwell, "The laser strain gauge: micromachining of diffraction gratings using an excimer laser," Strain 30, 15-18 (1994).
[CrossRef]

1993 (1)

1948 (1)

Alcock, R. D.

R. D. Alcock, C. D. Creasey, P. Wileman, N. A. Halliwell, and J. M. Coupland, "Remote detection of the pitch and orientation of a reflective diffraction grating: an optical strain gauge," Proc. R. Soc. , London Ser. A 461, 179-188 (2005).
[CrossRef]

Alvarez, M.

M. Alvarez and J. Tamayo, "Optical sequential readout of microcantilever arrays for biological detection," Sens. Actuators B 106, 687-690 (2005).
[CrossRef]

Apanius, C.

M. Nagy, C. Apanius, J. W. Siekinen, and H. V. Estranda, "A user-friendly, high-sensitivity strain gauge," Sensors 18, 20-27 (2001).

Arie, A.

Asatryan, K.

Y. Zhao, S. Bai, K. Asatryan, and T. Galstian, "Holographic recording in a photoactive elastomer," Adv. Funct. Mater. 13, 781-788 (2003).
[CrossRef]

Bae, E. W.

E. W. Bae, J. A. Kim, and S. H. Kim, "Multi-degree-of-freedom displacement measurement for milli-structures," Meas. Sci. Technol. 12, 1495-1502 (2001).
[CrossRef]

J. A. Kim, K. C. Kim, E. W. Bae, S. Kim, and Y. K. Kwak, "Six-degree-of-freedom displacement measurement system using a diffraction grating," Rev. Sci. Instrum. 71, 3214-3219 (2000).
[CrossRef]

Bai, S.

Y. Zhao, S. Bai, D. Dumont, and T. V. Galstian, "Mechanically tunable diffraction gratings recorded on an azobenzene elastomer," Adv. Mater. 14, 512-514 (2004).
[CrossRef]

Y. Zhao, S. Bai, K. Asatryan, and T. Galstian, "Holographic recording in a photoactive elastomer," Adv. Funct. Mater. 13, 781-788 (2003).
[CrossRef]

Berkoff, T. A.

Bock, W. J.

A. W. Domanski, T. R. Wolinski, and W. J. Bock, "Polarimetric fiber optic sensors: state-of-the-art and future," in Proc. SPIE 2341, 21-26 (1995).

Burgett, S.

A. Sharma, L. Phillips, S. Burgett, P. Ruffin, and W. Long, "Strain sensing in fiber-optic coils with buried Bragg gratings," in Proc. SPIE 4087, 1157-1162 (2000).
[CrossRef]

Calvert, S.

M. Laylor, S. Calvert, T. Taylor, W. Schulz, R. Lumsden, and E. Udd, "Fiber optic grating moisture and humidity sensors," in Proc. SPIE 4694, 210-217 (2002).
[CrossRef]

Choi, S. S.

Conte, J. P.

W. L. Schulz, J. P. Conte, and E. Udd, "Long gauge fiber optic Bragg grating strain sensors to monitor civil structures," in Proc. SPIE 4330, 56-65 (2001).
[CrossRef]

Coupland, J. M.

R. D. Alcock, C. D. Creasey, P. Wileman, N. A. Halliwell, and J. M. Coupland, "Remote detection of the pitch and orientation of a reflective diffraction grating: an optical strain gauge," Proc. R. Soc. , London Ser. A 461, 179-188 (2005).
[CrossRef]

P. Wileman, J. M. Coupland, C. D. Creasey, D. M. Rowley, and N. A. Halliwell, "The laser strain gauge: micromachining of diffraction gratings using an excimer laser," Strain 30, 15-18 (1994).
[CrossRef]

Creasey, C. D.

R. D. Alcock, C. D. Creasey, P. Wileman, N. A. Halliwell, and J. M. Coupland, "Remote detection of the pitch and orientation of a reflective diffraction grating: an optical strain gauge," Proc. R. Soc. , London Ser. A 461, 179-188 (2005).
[CrossRef]

P. Wileman, J. M. Coupland, C. D. Creasey, D. M. Rowley, and N. A. Halliwell, "The laser strain gauge: micromachining of diffraction gratings using an excimer laser," Strain 30, 15-18 (1994).
[CrossRef]

Cui, H. L.

I. Perez, H. L. Cui, and E. Udd, "Acoustic emission detection using fiber Bragg gratings," in Proc. SPIE 4328, 209-215 (2001).
[CrossRef]

Dai, L. M.

L. M. Dai, H. J. Griesser, X. Y. Hong, A. W. Mau, T. H. Spurling, Y. Y. Yang, and J. W. White, "Photochemical generation of conducting patterns in polybutadiene films," Macromolecules 29, 282-287 (1996).
[CrossRef]

Dokhanian, M.

Domanski, A. W.

A. W. Domanski, T. R. Wolinski, and W. J. Bock, "Polarimetric fiber optic sensors: state-of-the-art and future," in Proc. SPIE 2341, 21-26 (1995).

Drain, L. E.

L. E. Drain, The Laser Doppler Technique (Wiley, 1980).

Dumont, D.

Y. Zhao, S. Bai, D. Dumont, and T. V. Galstian, "Mechanically tunable diffraction gratings recorded on an azobenzene elastomer," Adv. Mater. 14, 512-514 (2004).
[CrossRef]

Estranda, H. V.

M. Nagy, C. Apanius, J. W. Siekinen, and H. V. Estranda, "A user-friendly, high-sensitivity strain gauge," Sensors 18, 20-27 (2001).

Fuerstenau, N.

Fürstenau, N.

Galstian, T.

Y. Zhao, S. Bai, K. Asatryan, and T. Galstian, "Holographic recording in a photoactive elastomer," Adv. Funct. Mater. 13, 781-788 (2003).
[CrossRef]

Galstian, T. V.

Y. Zhao, S. Bai, D. Dumont, and T. V. Galstian, "Mechanically tunable diffraction gratings recorded on an azobenzene elastomer," Adv. Mater. 14, 512-514 (2004).
[CrossRef]

Geue, Th.

Th. Geue, M. G. Saphiannikova, O. Henneberg, U. Pietsch, P. L. Rochon, and A. L. Natansohn, "Formation mechanism and dynamics in polymer surface gratings," Phys. Rev. E 65, 052801 (2002).
[CrossRef]

Grant, J.

J. Grant, R. Kaul, S. Taylor, K. Jackson, A. Osei, and A. Sharma, "Investigation of structural properties of carbon-epoxy composites using fiber-Bragg gratings," in Proc. SPIE 4833, 191-199 (2002).
[CrossRef]

Griesser, H. J.

L. M. Dai, H. J. Griesser, X. Y. Hong, A. W. Mau, T. H. Spurling, Y. Y. Yang, and J. W. White, "Photochemical generation of conducting patterns in polybutadiene films," Macromolecules 29, 282-287 (1996).
[CrossRef]

Halliwell, N. A.

R. D. Alcock, C. D. Creasey, P. Wileman, N. A. Halliwell, and J. M. Coupland, "Remote detection of the pitch and orientation of a reflective diffraction grating: an optical strain gauge," Proc. R. Soc. , London Ser. A 461, 179-188 (2005).
[CrossRef]

P. Wileman, J. M. Coupland, C. D. Creasey, D. M. Rowley, and N. A. Halliwell, "The laser strain gauge: micromachining of diffraction gratings using an excimer laser," Strain 30, 15-18 (1994).
[CrossRef]

Henneberg, O.

Th. Geue, M. G. Saphiannikova, O. Henneberg, U. Pietsch, P. L. Rochon, and A. L. Natansohn, "Formation mechanism and dynamics in polymer surface gratings," Phys. Rev. E 65, 052801 (2002).
[CrossRef]

Henrie, V.

M. Kunzler, E. Udd, S. Kreger, M. Johnson, and V. Henrie, "Damage evaluation and analysis of composite pressure vessels using fiber Bragg gratings to determine structural health," in Proc. SPIE 5758, 168-176 (2005).
[CrossRef]

Hong, X. Y.

L. M. Dai, H. J. Griesser, X. Y. Hong, A. W. Mau, T. H. Spurling, Y. Y. Yang, and J. W. White, "Photochemical generation of conducting patterns in polybutadiene films," Macromolecules 29, 282-287 (1996).
[CrossRef]

Jackson, K.

J. Grant, R. Kaul, S. Taylor, K. Jackson, A. Osei, and A. Sharma, "Investigation of structural properties of carbon-epoxy composites using fiber-Bragg gratings," in Proc. SPIE 4833, 191-199 (2002).
[CrossRef]

Jiang, X. L.

J. Kumar, L. Li, X. L. Jiang, D.-Y. Kim, T. S. Lee, and S. Tripathi, "Gradient force: the mechanism for surface relief grating formation in azobenzene functionalized polymers," Appl. Phys. Lett. 72, 2096-2098 (1998).
[CrossRef]

Johnson, M.

M. Kunzler, E. Udd, S. Kreger, M. Johnson, and V. Henrie, "Damage evaluation and analysis of composite pressure vessels using fiber Bragg gratings to determine structural health," in Proc. SPIE 5758, 168-176 (2005).
[CrossRef]

Kassu, A.

Kaul, R.

J. Grant, R. Kaul, S. Taylor, K. Jackson, A. Osei, and A. Sharma, "Investigation of structural properties of carbon-epoxy composites using fiber-Bragg gratings," in Proc. SPIE 4833, 191-199 (2002).
[CrossRef]

Kersey, A. D.

Kim, D. Y.

D. Y. Kim, S. K. Tripathi, L. Li, and J. Kumar, "Laser-induced holographic surface relief gratings on nonlinear optical polymer films," Appl. Phys. Lett. 66, 1166-1168 (1995).
[CrossRef]

Kim, D.-Y.

J. Kumar, L. Li, X. L. Jiang, D.-Y. Kim, T. S. Lee, and S. Tripathi, "Gradient force: the mechanism for surface relief grating formation in azobenzene functionalized polymers," Appl. Phys. Lett. 72, 2096-2098 (1998).
[CrossRef]

Kim, J. A.

E. W. Bae, J. A. Kim, and S. H. Kim, "Multi-degree-of-freedom displacement measurement for milli-structures," Meas. Sci. Technol. 12, 1495-1502 (2001).
[CrossRef]

J. A. Kim, K. C. Kim, E. W. Bae, S. Kim, and Y. K. Kwak, "Six-degree-of-freedom displacement measurement system using a diffraction grating," Rev. Sci. Instrum. 71, 3214-3219 (2000).
[CrossRef]

Kim, K. C.

J. A. Kim, K. C. Kim, E. W. Bae, S. Kim, and Y. K. Kwak, "Six-degree-of-freedom displacement measurement system using a diffraction grating," Rev. Sci. Instrum. 71, 3214-3219 (2000).
[CrossRef]

Kim, S.

J. A. Kim, K. C. Kim, E. W. Bae, S. Kim, and Y. K. Kwak, "Six-degree-of-freedom displacement measurement system using a diffraction grating," Rev. Sci. Instrum. 71, 3214-3219 (2000).
[CrossRef]

Kim, S. H.

E. W. Bae, J. A. Kim, and S. H. Kim, "Multi-degree-of-freedom displacement measurement for milli-structures," Meas. Sci. Technol. 12, 1495-1502 (2001).
[CrossRef]

Kreger, S.

M. Kunzler, E. Udd, S. Kreger, M. Johnson, and V. Henrie, "Damage evaluation and analysis of composite pressure vessels using fiber Bragg gratings to determine structural health," in Proc. SPIE 5758, 168-176 (2005).
[CrossRef]

Kumar, J.

J. Kumar, L. Li, X. L. Jiang, D.-Y. Kim, T. S. Lee, and S. Tripathi, "Gradient force: the mechanism for surface relief grating formation in azobenzene functionalized polymers," Appl. Phys. Lett. 72, 2096-2098 (1998).
[CrossRef]

D. Y. Kim, S. K. Tripathi, L. Li, and J. Kumar, "Laser-induced holographic surface relief gratings on nonlinear optical polymer films," Appl. Phys. Lett. 66, 1166-1168 (1995).
[CrossRef]

Kunzler, M.

M. Kunzler, E. Udd, S. Kreger, M. Johnson, and V. Henrie, "Damage evaluation and analysis of composite pressure vessels using fiber Bragg gratings to determine structural health," in Proc. SPIE 5758, 168-176 (2005).
[CrossRef]

Kwak, Y. K.

J. A. Kim, K. C. Kim, E. W. Bae, S. Kim, and Y. K. Kwak, "Six-degree-of-freedom displacement measurement system using a diffraction grating," Rev. Sci. Instrum. 71, 3214-3219 (2000).
[CrossRef]

Laylor, M.

M. Laylor, S. Calvert, T. Taylor, W. Schulz, R. Lumsden, and E. Udd, "Fiber optic grating moisture and humidity sensors," in Proc. SPIE 4694, 210-217 (2002).
[CrossRef]

Lee, B.

Lee, S. B.

Lee, T. S.

J. Kumar, L. Li, X. L. Jiang, D.-Y. Kim, T. S. Lee, and S. Tripathi, "Gradient force: the mechanism for surface relief grating formation in azobenzene functionalized polymers," Appl. Phys. Lett. 72, 2096-2098 (1998).
[CrossRef]

Li, L.

J. Kumar, L. Li, X. L. Jiang, D.-Y. Kim, T. S. Lee, and S. Tripathi, "Gradient force: the mechanism for surface relief grating formation in azobenzene functionalized polymers," Appl. Phys. Lett. 72, 2096-2098 (1998).
[CrossRef]

D. Y. Kim, S. K. Tripathi, L. Li, and J. Kumar, "Laser-induced holographic surface relief gratings on nonlinear optical polymer films," Appl. Phys. Lett. 66, 1166-1168 (1995).
[CrossRef]

Lissak, B.

Long, W.

A. Sharma, L. Phillips, S. Burgett, P. Ruffin, and W. Long, "Strain sensing in fiber-optic coils with buried Bragg gratings," in Proc. SPIE 4087, 1157-1162 (2000).
[CrossRef]

Lumsden, R.

M. Laylor, S. Calvert, T. Taylor, W. Schulz, R. Lumsden, and E. Udd, "Fiber optic grating moisture and humidity sensors," in Proc. SPIE 4694, 210-217 (2002).
[CrossRef]

Matharu, A.

Matthias, M.

Mau, A. W.

L. M. Dai, H. J. Griesser, X. Y. Hong, A. W. Mau, T. H. Spurling, Y. Y. Yang, and J. W. White, "Photochemical generation of conducting patterns in polybutadiene films," Macromolecules 29, 282-287 (1996).
[CrossRef]

Melz, T.

Morey, W. W.

Nagy, M.

M. Nagy, C. Apanius, J. W. Siekinen, and H. V. Estranda, "A user-friendly, high-sensitivity strain gauge," Sensors 18, 20-27 (2001).

Natansohn, A. L.

Th. Geue, M. G. Saphiannikova, O. Henneberg, U. Pietsch, P. L. Rochon, and A. L. Natansohn, "Formation mechanism and dynamics in polymer surface gratings," Phys. Rev. E 65, 052801 (2002).
[CrossRef]

Natta, G.

G. Natta, Nobel Lectures, Chemistry 1963-1970 (Elsevier, 1972), p. 46.

Nedelchev, L.

Okorogu, A. O.

A. O. Okorogu, "Remote optical in-plane strain measurements for infrastructure applications," Ph.D. dissertation (Alabama A&M University, 1997).

Osei, A.

J. Grant, R. Kaul, S. Taylor, K. Jackson, A. Osei, and A. Sharma, "Investigation of structural properties of carbon-epoxy composites using fiber-Bragg gratings," in Proc. SPIE 4833, 191-199 (2002).
[CrossRef]

Parekh, A. N.

Peck, E. R.

Perez, I.

I. Perez, H. L. Cui, and E. Udd, "Acoustic emission detection using fiber Bragg gratings," in Proc. SPIE 4328, 209-215 (2001).
[CrossRef]

Phillips, L.

A. Sharma, L. Phillips, S. Burgett, P. Ruffin, and W. Long, "Strain sensing in fiber-optic coils with buried Bragg gratings," in Proc. SPIE 4087, 1157-1162 (2000).
[CrossRef]

Pietsch, U.

Th. Geue, M. G. Saphiannikova, O. Henneberg, U. Pietsch, P. L. Rochon, and A. L. Natansohn, "Formation mechanism and dynamics in polymer surface gratings," Phys. Rev. E 65, 052801 (2002).
[CrossRef]

Ramanujam, P. S.

Rochon, P. L.

Th. Geue, M. G. Saphiannikova, O. Henneberg, U. Pietsch, P. L. Rochon, and A. L. Natansohn, "Formation mechanism and dynamics in polymer surface gratings," Phys. Rev. E 65, 052801 (2002).
[CrossRef]

Rowley, D. M.

P. Wileman, J. M. Coupland, C. D. Creasey, D. M. Rowley, and N. A. Halliwell, "The laser strain gauge: micromachining of diffraction gratings using an excimer laser," Strain 30, 15-18 (1994).
[CrossRef]

Ruffin, P.

A. Sharma, L. Phillips, S. Burgett, P. Ruffin, and W. Long, "Strain sensing in fiber-optic coils with buried Bragg gratings," in Proc. SPIE 4087, 1157-1162 (2000).
[CrossRef]

Saphiannikova, M. G.

Th. Geue, M. G. Saphiannikova, O. Henneberg, U. Pietsch, P. L. Rochon, and A. L. Natansohn, "Formation mechanism and dynamics in polymer surface gratings," Phys. Rev. E 65, 052801 (2002).
[CrossRef]

Schmidt, M.

Schulz, W.

M. Laylor, S. Calvert, T. Taylor, W. Schulz, R. Lumsden, and E. Udd, "Fiber optic grating moisture and humidity sensors," in Proc. SPIE 4694, 210-217 (2002).
[CrossRef]

Schulz, W. L.

W. L. Schulz, J. P. Conte, and E. Udd, "Long gauge fiber optic Bragg grating strain sensors to monitor civil structures," in Proc. SPIE 4330, 56-65 (2001).
[CrossRef]

Sharma, A.

A. Sharma, M. Dokhanian, A. Kassu, and A. N. Parekh, "Photoinduced grating formation in azo-dye-labeled phospholipid thin films using 244 nm light," Opt. Lett. 30, 501-503 (2005).
[CrossRef] [PubMed]

J. Grant, R. Kaul, S. Taylor, K. Jackson, A. Osei, and A. Sharma, "Investigation of structural properties of carbon-epoxy composites using fiber-Bragg gratings," in Proc. SPIE 4833, 191-199 (2002).
[CrossRef]

A. Sharma, L. Phillips, S. Burgett, P. Ruffin, and W. Long, "Strain sensing in fiber-optic coils with buried Bragg gratings," in Proc. SPIE 4087, 1157-1162 (2000).
[CrossRef]

Siekinen, J. W.

M. Nagy, C. Apanius, J. W. Siekinen, and H. V. Estranda, "A user-friendly, high-sensitivity strain gauge," Sensors 18, 20-27 (2001).

Song, M.

Spurling, T. H.

L. M. Dai, H. J. Griesser, X. Y. Hong, A. W. Mau, T. H. Spurling, Y. Y. Yang, and J. W. White, "Photochemical generation of conducting patterns in polybutadiene films," Macromolecules 29, 282-287 (1996).
[CrossRef]

Tamayo, J.

M. Alvarez and J. Tamayo, "Optical sequential readout of microcantilever arrays for biological detection," Sens. Actuators B 106, 687-690 (2005).
[CrossRef]

Taylor, S.

J. Grant, R. Kaul, S. Taylor, K. Jackson, A. Osei, and A. Sharma, "Investigation of structural properties of carbon-epoxy composites using fiber-Bragg gratings," in Proc. SPIE 4833, 191-199 (2002).
[CrossRef]

Taylor, T.

M. Laylor, S. Calvert, T. Taylor, W. Schulz, R. Lumsden, and E. Udd, "Fiber optic grating moisture and humidity sensors," in Proc. SPIE 4694, 210-217 (2002).
[CrossRef]

Tripathi, S.

J. Kumar, L. Li, X. L. Jiang, D.-Y. Kim, T. S. Lee, and S. Tripathi, "Gradient force: the mechanism for surface relief grating formation in azobenzene functionalized polymers," Appl. Phys. Lett. 72, 2096-2098 (1998).
[CrossRef]

Tripathi, S. K.

D. Y. Kim, S. K. Tripathi, L. Li, and J. Kumar, "Laser-induced holographic surface relief gratings on nonlinear optical polymer films," Appl. Phys. Lett. 66, 1166-1168 (1995).
[CrossRef]

Tur, M.

Udd, E.

M. Kunzler, E. Udd, S. Kreger, M. Johnson, and V. Henrie, "Damage evaluation and analysis of composite pressure vessels using fiber Bragg gratings to determine structural health," in Proc. SPIE 5758, 168-176 (2005).
[CrossRef]

M. Laylor, S. Calvert, T. Taylor, W. Schulz, R. Lumsden, and E. Udd, "Fiber optic grating moisture and humidity sensors," in Proc. SPIE 4694, 210-217 (2002).
[CrossRef]

W. L. Schulz, J. P. Conte, and E. Udd, "Long gauge fiber optic Bragg grating strain sensors to monitor civil structures," in Proc. SPIE 4330, 56-65 (2001).
[CrossRef]

I. Perez, H. L. Cui, and E. Udd, "Acoustic emission detection using fiber Bragg gratings," in Proc. SPIE 4328, 209-215 (2001).
[CrossRef]

Werther, B.

White, J. W.

L. M. Dai, H. J. Griesser, X. Y. Hong, A. W. Mau, T. H. Spurling, Y. Y. Yang, and J. W. White, "Photochemical generation of conducting patterns in polybutadiene films," Macromolecules 29, 282-287 (1996).
[CrossRef]

Wileman, P.

R. D. Alcock, C. D. Creasey, P. Wileman, N. A. Halliwell, and J. M. Coupland, "Remote detection of the pitch and orientation of a reflective diffraction grating: an optical strain gauge," Proc. R. Soc. , London Ser. A 461, 179-188 (2005).
[CrossRef]

P. Wileman, J. M. Coupland, C. D. Creasey, D. M. Rowley, and N. A. Halliwell, "The laser strain gauge: micromachining of diffraction gratings using an excimer laser," Strain 30, 15-18 (1994).
[CrossRef]

Wolinski, T. R.

A. W. Domanski, T. R. Wolinski, and W. J. Bock, "Polarimetric fiber optic sensors: state-of-the-art and future," in Proc. SPIE 2341, 21-26 (1995).

Yang, Y. Y.

L. M. Dai, H. J. Griesser, X. Y. Hong, A. W. Mau, T. H. Spurling, Y. Y. Yang, and J. W. White, "Photochemical generation of conducting patterns in polybutadiene films," Macromolecules 29, 282-287 (1996).
[CrossRef]

Ye, J.

Zhao, Y.

Y. Zhao, S. Bai, D. Dumont, and T. V. Galstian, "Mechanically tunable diffraction gratings recorded on an azobenzene elastomer," Adv. Mater. 14, 512-514 (2004).
[CrossRef]

Y. Zhao, S. Bai, K. Asatryan, and T. Galstian, "Holographic recording in a photoactive elastomer," Adv. Funct. Mater. 13, 781-788 (2003).
[CrossRef]

Adv. Funct. Mater. (1)

Y. Zhao, S. Bai, K. Asatryan, and T. Galstian, "Holographic recording in a photoactive elastomer," Adv. Funct. Mater. 13, 781-788 (2003).
[CrossRef]

Adv. Mater. (1)

Y. Zhao, S. Bai, D. Dumont, and T. V. Galstian, "Mechanically tunable diffraction gratings recorded on an azobenzene elastomer," Adv. Mater. 14, 512-514 (2004).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

D. Y. Kim, S. K. Tripathi, L. Li, and J. Kumar, "Laser-induced holographic surface relief gratings on nonlinear optical polymer films," Appl. Phys. Lett. 66, 1166-1168 (1995).
[CrossRef]

J. Kumar, L. Li, X. L. Jiang, D.-Y. Kim, T. S. Lee, and S. Tripathi, "Gradient force: the mechanism for surface relief grating formation in azobenzene functionalized polymers," Appl. Phys. Lett. 72, 2096-2098 (1998).
[CrossRef]

J. Opt. Soc. Am. (1)

Macromolecules (1)

L. M. Dai, H. J. Griesser, X. Y. Hong, A. W. Mau, T. H. Spurling, Y. Y. Yang, and J. W. White, "Photochemical generation of conducting patterns in polybutadiene films," Macromolecules 29, 282-287 (1996).
[CrossRef]

Meas. Sci. Technol. (1)

E. W. Bae, J. A. Kim, and S. H. Kim, "Multi-degree-of-freedom displacement measurement for milli-structures," Meas. Sci. Technol. 12, 1495-1502 (2001).
[CrossRef]

Opt. Express (1)

Opt. Lett. (6)

Phys. Rev. E (1)

Th. Geue, M. G. Saphiannikova, O. Henneberg, U. Pietsch, P. L. Rochon, and A. L. Natansohn, "Formation mechanism and dynamics in polymer surface gratings," Phys. Rev. E 65, 052801 (2002).
[CrossRef]

Proc. R. Soc. (1)

R. D. Alcock, C. D. Creasey, P. Wileman, N. A. Halliwell, and J. M. Coupland, "Remote detection of the pitch and orientation of a reflective diffraction grating: an optical strain gauge," Proc. R. Soc. , London Ser. A 461, 179-188 (2005).
[CrossRef]

Proc. SPIE (6)

A. Sharma, L. Phillips, S. Burgett, P. Ruffin, and W. Long, "Strain sensing in fiber-optic coils with buried Bragg gratings," in Proc. SPIE 4087, 1157-1162 (2000).
[CrossRef]

I. Perez, H. L. Cui, and E. Udd, "Acoustic emission detection using fiber Bragg gratings," in Proc. SPIE 4328, 209-215 (2001).
[CrossRef]

W. L. Schulz, J. P. Conte, and E. Udd, "Long gauge fiber optic Bragg grating strain sensors to monitor civil structures," in Proc. SPIE 4330, 56-65 (2001).
[CrossRef]

M. Kunzler, E. Udd, S. Kreger, M. Johnson, and V. Henrie, "Damage evaluation and analysis of composite pressure vessels using fiber Bragg gratings to determine structural health," in Proc. SPIE 5758, 168-176 (2005).
[CrossRef]

J. Grant, R. Kaul, S. Taylor, K. Jackson, A. Osei, and A. Sharma, "Investigation of structural properties of carbon-epoxy composites using fiber-Bragg gratings," in Proc. SPIE 4833, 191-199 (2002).
[CrossRef]

M. Laylor, S. Calvert, T. Taylor, W. Schulz, R. Lumsden, and E. Udd, "Fiber optic grating moisture and humidity sensors," in Proc. SPIE 4694, 210-217 (2002).
[CrossRef]

Rev. Sci. Instrum. (1)

J. A. Kim, K. C. Kim, E. W. Bae, S. Kim, and Y. K. Kwak, "Six-degree-of-freedom displacement measurement system using a diffraction grating," Rev. Sci. Instrum. 71, 3214-3219 (2000).
[CrossRef]

Sens. Actuators B (1)

M. Alvarez and J. Tamayo, "Optical sequential readout of microcantilever arrays for biological detection," Sens. Actuators B 106, 687-690 (2005).
[CrossRef]

Sensors (1)

M. Nagy, C. Apanius, J. W. Siekinen, and H. V. Estranda, "A user-friendly, high-sensitivity strain gauge," Sensors 18, 20-27 (2001).

Strain (1)

P. Wileman, J. M. Coupland, C. D. Creasey, D. M. Rowley, and N. A. Halliwell, "The laser strain gauge: micromachining of diffraction gratings using an excimer laser," Strain 30, 15-18 (1994).
[CrossRef]

Other (5)

A. O. Okorogu, "Remote optical in-plane strain measurements for infrastructure applications," Ph.D. dissertation (Alabama A&M University, 1997).

L. E. Drain, The Laser Doppler Technique (Wiley, 1980).

G. Natta, Nobel Lectures, Chemistry 1963-1970 (Elsevier, 1972), p. 46.

J. Guo, H. Kuo, J. D. Young, and W. H. Ko, "Buckled beam linear output capacitive strain sensor," presented at the Solid-State Sensor, Actuator and Microsystems Workshop, Hilton Head Island, S. C. (6-10 June 2004).

A. W. Domanski, T. R. Wolinski, and W. J. Bock, "Polarimetric fiber optic sensors: state-of-the-art and future," in Proc. SPIE 2341, 21-26 (1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of the holographic setup with 244 nm UV laser to fabricate surface relief gratings in thin films of polybutadiene on a glass–aluminum substrate. UV light from a frequency-doubled Ar-ion laser is split into two coherent beams ( 2 mW per beam) with a phase mask (PM). The two UV beams are folded with mirrors (M1 and M2) to interfere at incident angles of 8° on the polybutadiene rubber film. Grating becomes visible by diffraction of a 5 mW He–Ne laser. One of the first-order diffracted beams at a 45° angle is detected with a photodiode and a lock-in amplifier. The grating period for this geometry is approximately 900 nm.

Fig. 2
Fig. 2

Growth of the grating following a 35 s exposure of polybutadiene film to UV. The point where UV is blocked is seen as a discontinuity in the slope.

Fig. 3
Fig. 3

(a) Scanning electron micrograph of grating in a spin-coated rubber film on a glass substrate shows a period of approximately 900 nm . (b) Optical micrograph of grating in dip-coated rubber film on an aluminum substrate. Surface nonuniformities on unpolished aluminum are visible.

Fig. 4
Fig. 4

Grating in thin rubber film on (a) glass substrate and (b) aluminum substrate attached to the piezotransducer. Grating is visible as a bright spot due to diffracted white light.

Fig. 5
Fig. 5

Schematic setup to investigate the characteristics of thin rubber-film grating transducer for measuring dynamic strain. The source of dynamic strain is a piezotransducer attached at the left edge of the substrate, while the rubber-film grating is close to the right edge. The He–Ne laser is incident normally to the grating. This is diffracted at an angle θ ∼ 45°. The diffracted beam with an angular spread (Ω) is obstructed 50 % with a knife-edge. Angular modulation of diffracted light is detected with a fast photodiode in conjunction with a lock-in amplifier.

Fig. 6
Fig. 6

(a) Signal due to angular modulation of diffracted light by dynamic strain in a glass substrate as measured by the lock-in amplifier. Strain is applied for a range of frequencies between 50 Hz and 30 kHz . (b) Signal due to the angular modulation of diffracted light by the dynamic strain in the aluminum substrate as measured by the lock-in amplifier. Strain is applied for a range of frequencies between 50 Hz and 30 kHz .

Fig. 7
Fig. 7

Dynamic strain signal recorded by the lock-in amplifier over several minutes to measure the associated SNR ratio for a very small driving voltage ( 0.01 V ) applied to the piezotransducer at 1000 Hz . Diffracted light is intermittently blocked to measure the dark noise.

Fig. 8
Fig. 8

Measured noise equivalent sensitivity in n ε / Hz for the transducer frequency between 50 Hz and 30 kHz .

Fig. 9
Fig. 9

Theoretical reflectivity curve for a FBG centered at 1300 nm (solid curve) and a bandwidth of 0.6 nm . The dashed shifted curve is due to a strain of 100 με . For a dynamic strain of this amplitude, the wavelength-dependent signal measured by the lock-in amplifier is given by the dotted difference curve.

Fig. 10
Fig. 10

Amplitude of strain on the FBG is computed from Fig. 9 by comparing the reflection signal at the center wavelength of FBG and the maximum difference signal. The computed signal ratio (strain–no strain) is plotted versus the amplitude of the dynamic strain.

Fig. 11
Fig. 11

Experimentally measured wavelength-dependent reflection (solid curve) and dynamic strain (dashed curve) signal for 20 kHz transducer frequency.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Λ Sin ( θ ) = λ ,
δΛ = Λδθ .
δ S S = δθ Ω .
A δΛ Λ = δθ = δ S S Ω .

Metrics