Abstract

Surface plasmon resonance (SPR) sensing and an enhanced data analysis technique are used to obtain precise predictions of the dielectric constant and thickness of a nanolayer. In the proposed approach, a modified analytical method is used to obtain initial estimates of the dielectric constants and thicknesses of the metal film and a nanolayer on the sensing surface of a SPR sensor. A multiexperiment data analysis approach based on a two-solvent SPR method is then employed to improve the initial estimates by suppressing the noise in the measurement data. The proposed two-stage approach is employed to determine the dielectric constant and thickness of a molecular imprinting polymer nanolayer. It is found that the results are in good agreement with those obtained with an ellipsometer and a high-resolution scanning electron microscope.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription