Abstract

Surface plasmon resonance (SPR) sensing and an enhanced data analysis technique are used to obtain precise predictions of the dielectric constant and thickness of a nanolayer. In the proposed approach, a modified analytical method is used to obtain initial estimates of the dielectric constants and thicknesses of the metal film and a nanolayer on the sensing surface of a SPR sensor. A multiexperiment data analysis approach based on a two-solvent SPR method is then employed to improve the initial estimates by suppressing the noise in the measurement data. The proposed two-stage approach is employed to determine the dielectric constant and thickness of a molecular imprinting polymer nanolayer. It is found that the results are in good agreement with those obtained with an ellipsometer and a high-resolution scanning electron microscope.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Liedberg, C. Nylander, and I. Lundstrom, "Surface plasmon resonance for gas detection and biosensing," Sens. Actuators 4, 299-304 (1983).
    [CrossRef]
  2. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  3. J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
    [CrossRef]
  4. J. M. Phelps and D. M. Taylor, "Determining the relative permittivity and thickness of a lossless dielectric overlayer on a metal film using optically excited surface plasmon polaritons," J. Phys. D 29, 1080-1087 (1996).
    [CrossRef]
  5. H. E. de Bruijn, B. S. F. Altenburg, R. P. H. Kooyman, and J. Greve, "Determination of thickness and dielectric constant of thin transparent dielectric layers using surface plasmon resonance," Opt. Commun. 82, 425-432 (1991).
    [CrossRef]
  6. F.-C. Chien and S.-J. Chen, "A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes," Biosens. Bioelectron. 20, 633-642 (2004).
    [CrossRef]
  7. K. A. Peterlinz and R. Georgiadis, "Two-color approach for determination of thickness and dielectric constant of thin films using surface plasmon resonance spectroscopy," Opt. Commun. 130, 260-266 (1996).
    [CrossRef]
  8. K. S. Johnston, S. R. Karlsen, C. C. Jung, and S. S. Yee, "New analytical technique for characterization of thin films using surface plasmon resonance," Mat. Chem. Phys. 42, 242-246 (1995).
    [CrossRef]
  9. T. M. Chinowsky and S. S. Yee, "Quantifying the information content of surface plasmon resonance reflection spectra," Sens. Actuators B 51, 321-330 (1998).
    [CrossRef]
  10. T. M. Chinowsky, L. S. Jung, and S. S. Yee, "Optimal linear data analysis for surface plasmon resonance biosensors," Sens. Actuators B 54, 89-97 (1999).
    [CrossRef]
  11. W. P. Chen and J. M. Chen, "Use of surface plasma waves for determination of the thickness and optical constants of thin metallic films," J. Opt. Soc. Am. 71, 189-191 (1981).
  12. J.-J. Chyou, S.-J. Chen, C.-S. Chu, C.-H. Tsai, F.-C. Chien, G.-Y. Lin, K.-T. Huang, W.-C. Ku, S.-K. Chiu, and C.-M. Tzeng, "Multi-experiment linear data analysis for ATR biosensors," Proc. SPIE 4819, 175-184 (2002).
    [CrossRef]
  13. J.-J. Chyou, S.-J. Chen, C.-S. Chu, Z.-H. Shih, C.-Y. Lin, and C.-F. Shu, "Fabrication and metrology of E-O polymer light modulator based on waveguide-coupled surface plasmon resonance," Opt. Eng. 44, 034001 (2005).
    [CrossRef]
  14. U. Schroder, "The influence of thin metallic coatings on the dispersion of surface plasma-oscillations in gold-silver film systems," Surf. Sci. 102, 118-130 (1981).
    [CrossRef]
  15. J.-N. Yih, F.-C. Chien, C.-Y. Lin, H.-F. Yau, and S.-J. Chen, "An angular-interrogation attenuated-total-reflection metrology system for plasmonic sensors," Appl. Opt. 44, 6155-6162 (2005).
    [CrossRef]
  16. K. Taniwaki, A. Hyakutake, T. Aoki, M. Yoshikawa, M. D. Guiver, and G. P. Robertson, "Evaluation of the recognition ability of molecularly imprinted materials by surface plasmon resonance (SPR) spectroscopy," Anal. Chim. Acta 489, 191-198 (2003).
    [CrossRef]

2005

J.-J. Chyou, S.-J. Chen, C.-S. Chu, Z.-H. Shih, C.-Y. Lin, and C.-F. Shu, "Fabrication and metrology of E-O polymer light modulator based on waveguide-coupled surface plasmon resonance," Opt. Eng. 44, 034001 (2005).
[CrossRef]

J.-N. Yih, F.-C. Chien, C.-Y. Lin, H.-F. Yau, and S.-J. Chen, "An angular-interrogation attenuated-total-reflection metrology system for plasmonic sensors," Appl. Opt. 44, 6155-6162 (2005).
[CrossRef]

2004

F.-C. Chien and S.-J. Chen, "A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes," Biosens. Bioelectron. 20, 633-642 (2004).
[CrossRef]

2003

K. Taniwaki, A. Hyakutake, T. Aoki, M. Yoshikawa, M. D. Guiver, and G. P. Robertson, "Evaluation of the recognition ability of molecularly imprinted materials by surface plasmon resonance (SPR) spectroscopy," Anal. Chim. Acta 489, 191-198 (2003).
[CrossRef]

2002

J.-J. Chyou, S.-J. Chen, C.-S. Chu, C.-H. Tsai, F.-C. Chien, G.-Y. Lin, K.-T. Huang, W.-C. Ku, S.-K. Chiu, and C.-M. Tzeng, "Multi-experiment linear data analysis for ATR biosensors," Proc. SPIE 4819, 175-184 (2002).
[CrossRef]

1999

T. M. Chinowsky, L. S. Jung, and S. S. Yee, "Optimal linear data analysis for surface plasmon resonance biosensors," Sens. Actuators B 54, 89-97 (1999).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

1998

T. M. Chinowsky and S. S. Yee, "Quantifying the information content of surface plasmon resonance reflection spectra," Sens. Actuators B 51, 321-330 (1998).
[CrossRef]

1996

J. M. Phelps and D. M. Taylor, "Determining the relative permittivity and thickness of a lossless dielectric overlayer on a metal film using optically excited surface plasmon polaritons," J. Phys. D 29, 1080-1087 (1996).
[CrossRef]

K. A. Peterlinz and R. Georgiadis, "Two-color approach for determination of thickness and dielectric constant of thin films using surface plasmon resonance spectroscopy," Opt. Commun. 130, 260-266 (1996).
[CrossRef]

1995

K. S. Johnston, S. R. Karlsen, C. C. Jung, and S. S. Yee, "New analytical technique for characterization of thin films using surface plasmon resonance," Mat. Chem. Phys. 42, 242-246 (1995).
[CrossRef]

1991

H. E. de Bruijn, B. S. F. Altenburg, R. P. H. Kooyman, and J. Greve, "Determination of thickness and dielectric constant of thin transparent dielectric layers using surface plasmon resonance," Opt. Commun. 82, 425-432 (1991).
[CrossRef]

1983

B. Liedberg, C. Nylander, and I. Lundstrom, "Surface plasmon resonance for gas detection and biosensing," Sens. Actuators 4, 299-304 (1983).
[CrossRef]

1981

W. P. Chen and J. M. Chen, "Use of surface plasma waves for determination of the thickness and optical constants of thin metallic films," J. Opt. Soc. Am. 71, 189-191 (1981).

U. Schroder, "The influence of thin metallic coatings on the dispersion of surface plasma-oscillations in gold-silver film systems," Surf. Sci. 102, 118-130 (1981).
[CrossRef]

Altenburg, B. S. F.

H. E. de Bruijn, B. S. F. Altenburg, R. P. H. Kooyman, and J. Greve, "Determination of thickness and dielectric constant of thin transparent dielectric layers using surface plasmon resonance," Opt. Commun. 82, 425-432 (1991).
[CrossRef]

Aoki, T.

K. Taniwaki, A. Hyakutake, T. Aoki, M. Yoshikawa, M. D. Guiver, and G. P. Robertson, "Evaluation of the recognition ability of molecularly imprinted materials by surface plasmon resonance (SPR) spectroscopy," Anal. Chim. Acta 489, 191-198 (2003).
[CrossRef]

Chen, J. M.

Chen, S.-J.

J.-J. Chyou, S.-J. Chen, C.-S. Chu, Z.-H. Shih, C.-Y. Lin, and C.-F. Shu, "Fabrication and metrology of E-O polymer light modulator based on waveguide-coupled surface plasmon resonance," Opt. Eng. 44, 034001 (2005).
[CrossRef]

J.-N. Yih, F.-C. Chien, C.-Y. Lin, H.-F. Yau, and S.-J. Chen, "An angular-interrogation attenuated-total-reflection metrology system for plasmonic sensors," Appl. Opt. 44, 6155-6162 (2005).
[CrossRef]

F.-C. Chien and S.-J. Chen, "A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes," Biosens. Bioelectron. 20, 633-642 (2004).
[CrossRef]

J.-J. Chyou, S.-J. Chen, C.-S. Chu, C.-H. Tsai, F.-C. Chien, G.-Y. Lin, K.-T. Huang, W.-C. Ku, S.-K. Chiu, and C.-M. Tzeng, "Multi-experiment linear data analysis for ATR biosensors," Proc. SPIE 4819, 175-184 (2002).
[CrossRef]

Chen, W. P.

Chien, F.-C.

J.-N. Yih, F.-C. Chien, C.-Y. Lin, H.-F. Yau, and S.-J. Chen, "An angular-interrogation attenuated-total-reflection metrology system for plasmonic sensors," Appl. Opt. 44, 6155-6162 (2005).
[CrossRef]

F.-C. Chien and S.-J. Chen, "A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes," Biosens. Bioelectron. 20, 633-642 (2004).
[CrossRef]

J.-J. Chyou, S.-J. Chen, C.-S. Chu, C.-H. Tsai, F.-C. Chien, G.-Y. Lin, K.-T. Huang, W.-C. Ku, S.-K. Chiu, and C.-M. Tzeng, "Multi-experiment linear data analysis for ATR biosensors," Proc. SPIE 4819, 175-184 (2002).
[CrossRef]

Chinowsky, T. M.

T. M. Chinowsky, L. S. Jung, and S. S. Yee, "Optimal linear data analysis for surface plasmon resonance biosensors," Sens. Actuators B 54, 89-97 (1999).
[CrossRef]

T. M. Chinowsky and S. S. Yee, "Quantifying the information content of surface plasmon resonance reflection spectra," Sens. Actuators B 51, 321-330 (1998).
[CrossRef]

Chiu, S.-K.

J.-J. Chyou, S.-J. Chen, C.-S. Chu, C.-H. Tsai, F.-C. Chien, G.-Y. Lin, K.-T. Huang, W.-C. Ku, S.-K. Chiu, and C.-M. Tzeng, "Multi-experiment linear data analysis for ATR biosensors," Proc. SPIE 4819, 175-184 (2002).
[CrossRef]

Chu, C.-S.

J.-J. Chyou, S.-J. Chen, C.-S. Chu, Z.-H. Shih, C.-Y. Lin, and C.-F. Shu, "Fabrication and metrology of E-O polymer light modulator based on waveguide-coupled surface plasmon resonance," Opt. Eng. 44, 034001 (2005).
[CrossRef]

J.-J. Chyou, S.-J. Chen, C.-S. Chu, C.-H. Tsai, F.-C. Chien, G.-Y. Lin, K.-T. Huang, W.-C. Ku, S.-K. Chiu, and C.-M. Tzeng, "Multi-experiment linear data analysis for ATR biosensors," Proc. SPIE 4819, 175-184 (2002).
[CrossRef]

Chyou, J.-J.

J.-J. Chyou, S.-J. Chen, C.-S. Chu, Z.-H. Shih, C.-Y. Lin, and C.-F. Shu, "Fabrication and metrology of E-O polymer light modulator based on waveguide-coupled surface plasmon resonance," Opt. Eng. 44, 034001 (2005).
[CrossRef]

J.-J. Chyou, S.-J. Chen, C.-S. Chu, C.-H. Tsai, F.-C. Chien, G.-Y. Lin, K.-T. Huang, W.-C. Ku, S.-K. Chiu, and C.-M. Tzeng, "Multi-experiment linear data analysis for ATR biosensors," Proc. SPIE 4819, 175-184 (2002).
[CrossRef]

de Bruijn, H. E.

H. E. de Bruijn, B. S. F. Altenburg, R. P. H. Kooyman, and J. Greve, "Determination of thickness and dielectric constant of thin transparent dielectric layers using surface plasmon resonance," Opt. Commun. 82, 425-432 (1991).
[CrossRef]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

Georgiadis, R.

K. A. Peterlinz and R. Georgiadis, "Two-color approach for determination of thickness and dielectric constant of thin films using surface plasmon resonance spectroscopy," Opt. Commun. 130, 260-266 (1996).
[CrossRef]

Greve, J.

H. E. de Bruijn, B. S. F. Altenburg, R. P. H. Kooyman, and J. Greve, "Determination of thickness and dielectric constant of thin transparent dielectric layers using surface plasmon resonance," Opt. Commun. 82, 425-432 (1991).
[CrossRef]

Guiver, M. D.

K. Taniwaki, A. Hyakutake, T. Aoki, M. Yoshikawa, M. D. Guiver, and G. P. Robertson, "Evaluation of the recognition ability of molecularly imprinted materials by surface plasmon resonance (SPR) spectroscopy," Anal. Chim. Acta 489, 191-198 (2003).
[CrossRef]

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

Huang, K.-T.

J.-J. Chyou, S.-J. Chen, C.-S. Chu, C.-H. Tsai, F.-C. Chien, G.-Y. Lin, K.-T. Huang, W.-C. Ku, S.-K. Chiu, and C.-M. Tzeng, "Multi-experiment linear data analysis for ATR biosensors," Proc. SPIE 4819, 175-184 (2002).
[CrossRef]

Hyakutake, A.

K. Taniwaki, A. Hyakutake, T. Aoki, M. Yoshikawa, M. D. Guiver, and G. P. Robertson, "Evaluation of the recognition ability of molecularly imprinted materials by surface plasmon resonance (SPR) spectroscopy," Anal. Chim. Acta 489, 191-198 (2003).
[CrossRef]

Johnston, K. S.

K. S. Johnston, S. R. Karlsen, C. C. Jung, and S. S. Yee, "New analytical technique for characterization of thin films using surface plasmon resonance," Mat. Chem. Phys. 42, 242-246 (1995).
[CrossRef]

Jung, C. C.

K. S. Johnston, S. R. Karlsen, C. C. Jung, and S. S. Yee, "New analytical technique for characterization of thin films using surface plasmon resonance," Mat. Chem. Phys. 42, 242-246 (1995).
[CrossRef]

Jung, L. S.

T. M. Chinowsky, L. S. Jung, and S. S. Yee, "Optimal linear data analysis for surface plasmon resonance biosensors," Sens. Actuators B 54, 89-97 (1999).
[CrossRef]

Karlsen, S. R.

K. S. Johnston, S. R. Karlsen, C. C. Jung, and S. S. Yee, "New analytical technique for characterization of thin films using surface plasmon resonance," Mat. Chem. Phys. 42, 242-246 (1995).
[CrossRef]

Kooyman, R. P. H.

H. E. de Bruijn, B. S. F. Altenburg, R. P. H. Kooyman, and J. Greve, "Determination of thickness and dielectric constant of thin transparent dielectric layers using surface plasmon resonance," Opt. Commun. 82, 425-432 (1991).
[CrossRef]

Ku, W.-C.

J.-J. Chyou, S.-J. Chen, C.-S. Chu, C.-H. Tsai, F.-C. Chien, G.-Y. Lin, K.-T. Huang, W.-C. Ku, S.-K. Chiu, and C.-M. Tzeng, "Multi-experiment linear data analysis for ATR biosensors," Proc. SPIE 4819, 175-184 (2002).
[CrossRef]

Liedberg, B.

B. Liedberg, C. Nylander, and I. Lundstrom, "Surface plasmon resonance for gas detection and biosensing," Sens. Actuators 4, 299-304 (1983).
[CrossRef]

Lin, C.-Y.

J.-J. Chyou, S.-J. Chen, C.-S. Chu, Z.-H. Shih, C.-Y. Lin, and C.-F. Shu, "Fabrication and metrology of E-O polymer light modulator based on waveguide-coupled surface plasmon resonance," Opt. Eng. 44, 034001 (2005).
[CrossRef]

J.-N. Yih, F.-C. Chien, C.-Y. Lin, H.-F. Yau, and S.-J. Chen, "An angular-interrogation attenuated-total-reflection metrology system for plasmonic sensors," Appl. Opt. 44, 6155-6162 (2005).
[CrossRef]

Lin, G.-Y.

J.-J. Chyou, S.-J. Chen, C.-S. Chu, C.-H. Tsai, F.-C. Chien, G.-Y. Lin, K.-T. Huang, W.-C. Ku, S.-K. Chiu, and C.-M. Tzeng, "Multi-experiment linear data analysis for ATR biosensors," Proc. SPIE 4819, 175-184 (2002).
[CrossRef]

Lundstrom, I.

B. Liedberg, C. Nylander, and I. Lundstrom, "Surface plasmon resonance for gas detection and biosensing," Sens. Actuators 4, 299-304 (1983).
[CrossRef]

Nylander, C.

B. Liedberg, C. Nylander, and I. Lundstrom, "Surface plasmon resonance for gas detection and biosensing," Sens. Actuators 4, 299-304 (1983).
[CrossRef]

Peterlinz, K. A.

K. A. Peterlinz and R. Georgiadis, "Two-color approach for determination of thickness and dielectric constant of thin films using surface plasmon resonance spectroscopy," Opt. Commun. 130, 260-266 (1996).
[CrossRef]

Phelps, J. M.

J. M. Phelps and D. M. Taylor, "Determining the relative permittivity and thickness of a lossless dielectric overlayer on a metal film using optically excited surface plasmon polaritons," J. Phys. D 29, 1080-1087 (1996).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Robertson, G. P.

K. Taniwaki, A. Hyakutake, T. Aoki, M. Yoshikawa, M. D. Guiver, and G. P. Robertson, "Evaluation of the recognition ability of molecularly imprinted materials by surface plasmon resonance (SPR) spectroscopy," Anal. Chim. Acta 489, 191-198 (2003).
[CrossRef]

Schroder, U.

U. Schroder, "The influence of thin metallic coatings on the dispersion of surface plasma-oscillations in gold-silver film systems," Surf. Sci. 102, 118-130 (1981).
[CrossRef]

Shih, Z.-H.

J.-J. Chyou, S.-J. Chen, C.-S. Chu, Z.-H. Shih, C.-Y. Lin, and C.-F. Shu, "Fabrication and metrology of E-O polymer light modulator based on waveguide-coupled surface plasmon resonance," Opt. Eng. 44, 034001 (2005).
[CrossRef]

Shu, C.-F.

J.-J. Chyou, S.-J. Chen, C.-S. Chu, Z.-H. Shih, C.-Y. Lin, and C.-F. Shu, "Fabrication and metrology of E-O polymer light modulator based on waveguide-coupled surface plasmon resonance," Opt. Eng. 44, 034001 (2005).
[CrossRef]

Taniwaki, K.

K. Taniwaki, A. Hyakutake, T. Aoki, M. Yoshikawa, M. D. Guiver, and G. P. Robertson, "Evaluation of the recognition ability of molecularly imprinted materials by surface plasmon resonance (SPR) spectroscopy," Anal. Chim. Acta 489, 191-198 (2003).
[CrossRef]

Taylor, D. M.

J. M. Phelps and D. M. Taylor, "Determining the relative permittivity and thickness of a lossless dielectric overlayer on a metal film using optically excited surface plasmon polaritons," J. Phys. D 29, 1080-1087 (1996).
[CrossRef]

Tsai, C.-H.

J.-J. Chyou, S.-J. Chen, C.-S. Chu, C.-H. Tsai, F.-C. Chien, G.-Y. Lin, K.-T. Huang, W.-C. Ku, S.-K. Chiu, and C.-M. Tzeng, "Multi-experiment linear data analysis for ATR biosensors," Proc. SPIE 4819, 175-184 (2002).
[CrossRef]

Tzeng, C.-M.

J.-J. Chyou, S.-J. Chen, C.-S. Chu, C.-H. Tsai, F.-C. Chien, G.-Y. Lin, K.-T. Huang, W.-C. Ku, S.-K. Chiu, and C.-M. Tzeng, "Multi-experiment linear data analysis for ATR biosensors," Proc. SPIE 4819, 175-184 (2002).
[CrossRef]

Yau, H.-F.

Yee, S. S.

T. M. Chinowsky, L. S. Jung, and S. S. Yee, "Optimal linear data analysis for surface plasmon resonance biosensors," Sens. Actuators B 54, 89-97 (1999).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

T. M. Chinowsky and S. S. Yee, "Quantifying the information content of surface plasmon resonance reflection spectra," Sens. Actuators B 51, 321-330 (1998).
[CrossRef]

K. S. Johnston, S. R. Karlsen, C. C. Jung, and S. S. Yee, "New analytical technique for characterization of thin films using surface plasmon resonance," Mat. Chem. Phys. 42, 242-246 (1995).
[CrossRef]

Yih, J.-N.

Yoshikawa, M.

K. Taniwaki, A. Hyakutake, T. Aoki, M. Yoshikawa, M. D. Guiver, and G. P. Robertson, "Evaluation of the recognition ability of molecularly imprinted materials by surface plasmon resonance (SPR) spectroscopy," Anal. Chim. Acta 489, 191-198 (2003).
[CrossRef]

Anal. Chim. Acta

K. Taniwaki, A. Hyakutake, T. Aoki, M. Yoshikawa, M. D. Guiver, and G. P. Robertson, "Evaluation of the recognition ability of molecularly imprinted materials by surface plasmon resonance (SPR) spectroscopy," Anal. Chim. Acta 489, 191-198 (2003).
[CrossRef]

Appl. Opt.

Biosens. Bioelectron.

F.-C. Chien and S.-J. Chen, "A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes," Biosens. Bioelectron. 20, 633-642 (2004).
[CrossRef]

J. Opt. Soc. Am.

J. Phys. D

J. M. Phelps and D. M. Taylor, "Determining the relative permittivity and thickness of a lossless dielectric overlayer on a metal film using optically excited surface plasmon polaritons," J. Phys. D 29, 1080-1087 (1996).
[CrossRef]

Mat. Chem. Phys.

K. S. Johnston, S. R. Karlsen, C. C. Jung, and S. S. Yee, "New analytical technique for characterization of thin films using surface plasmon resonance," Mat. Chem. Phys. 42, 242-246 (1995).
[CrossRef]

Opt. Commun.

K. A. Peterlinz and R. Georgiadis, "Two-color approach for determination of thickness and dielectric constant of thin films using surface plasmon resonance spectroscopy," Opt. Commun. 130, 260-266 (1996).
[CrossRef]

H. E. de Bruijn, B. S. F. Altenburg, R. P. H. Kooyman, and J. Greve, "Determination of thickness and dielectric constant of thin transparent dielectric layers using surface plasmon resonance," Opt. Commun. 82, 425-432 (1991).
[CrossRef]

Opt. Eng.

J.-J. Chyou, S.-J. Chen, C.-S. Chu, Z.-H. Shih, C.-Y. Lin, and C.-F. Shu, "Fabrication and metrology of E-O polymer light modulator based on waveguide-coupled surface plasmon resonance," Opt. Eng. 44, 034001 (2005).
[CrossRef]

Proc. SPIE

J.-J. Chyou, S.-J. Chen, C.-S. Chu, C.-H. Tsai, F.-C. Chien, G.-Y. Lin, K.-T. Huang, W.-C. Ku, S.-K. Chiu, and C.-M. Tzeng, "Multi-experiment linear data analysis for ATR biosensors," Proc. SPIE 4819, 175-184 (2002).
[CrossRef]

Sens. Actuators

B. Liedberg, C. Nylander, and I. Lundstrom, "Surface plasmon resonance for gas detection and biosensing," Sens. Actuators 4, 299-304 (1983).
[CrossRef]

Sens. Actuators B

T. M. Chinowsky and S. S. Yee, "Quantifying the information content of surface plasmon resonance reflection spectra," Sens. Actuators B 51, 321-330 (1998).
[CrossRef]

T. M. Chinowsky, L. S. Jung, and S. S. Yee, "Optimal linear data analysis for surface plasmon resonance biosensors," Sens. Actuators B 54, 89-97 (1999).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

Surf. Sci.

U. Schroder, "The influence of thin metallic coatings on the dispersion of surface plasma-oscillations in gold-silver film systems," Surf. Sci. 102, 118-130 (1981).
[CrossRef]

Other

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Typical prism-coupler-based system for the ATR method, containing a prism, a thin metal film, an analyte layer, and a buffer setup.

Fig. 2
Fig. 2

Typical SPR angular spectrum showing minimum reflectivity R min , angular position of minimum reflectivity θ spr , and full width at half-maximum W 1 / 2 .

Fig. 3
Fig. 3

Calculated solution curves and simulated SPR curve around the neighborhood of the critical angle. Solid curve, simulated data around the critical angle generated with a gold film of 50   nm thickness; dashed and dashed–dotted curves, possible solution curves obtained by the modified analytic approach.

Fig. 4
Fig. 4

Schematic of an optical sensing system for an ATR biosensor.

Fig. 5
Fig. 5

Resulting SPR spectra for a configuration comprising an SF11 prism ( n 1 = 1.778 ) , a gold film ( ε 1 = 10.8 + 1.47 j , d 1 = 45.0   nm ), and air or de-ionized water. Solid curve, air buffer; dashed curve, de-ionized water buffer. (SPR angle: 37.5° for air buffer, 56.2° for de-ionized water buffer.)

Fig. 6
Fig. 6

Initial solutions for optical properties of a MIP nanolayer obtained by identifying the intersection of possible solution curves. RIU, refractive index units.

Tables (2)

Tables Icon

Table 1 Deviation Ratio of Estimated Solutions from Exact Parameter Values for Simulated Data with White Noise

Tables Icon

Table 2 Deviation Ratio for Estimated Solutions from Exact Parameter Values for Simulated Data with Colored Noise

Equations (92)

Equations on this page are rendered with MathJax. Learn more.

k x
k sp         0
k x = ω c ε 0 sin θ = k sp 0 = ω c ε 2 ε 1 ε 2 + ε 1 ,
ε 0
ε 1
ε 2
ε i = ε i + j ε i = ( n i + j κ i ) 2
κ i
θ spr
R 012
R 012 = | r 01 + r 12 exp ( 2 j k z 1 d 1 ) 1 + r 01 r 12 exp ( 2 j k z 1 d 1 ) | 2 ,   with r i j = ( k z i ε i k z j ε j ) / ( k z i ε i + k z j ε j ) for   i , j = 0 , 1 , 2 ,
ε i
k z i = [ ε i ( ω / c ) 2 k x     2 ] 1 / 2
d 1
ε 1 = ε 1 + j ε 1
ε 1
ε 1
| ε 1 | 1
| ε 1 | | ε 1 |
R = 1 4 Γ int Γ rad [ k x Re ( k sp ) ] 2 + ( Γ int + Γ rad ) 2 ,
k sp = k sp 0 + Δ k sp
Δ k sp
Δ k sp = 2 r 01 exp ( 2 j k z 1 d 1 ) ω c ( ε 1 ε 2 ε 1 + ε 2 ) 3 / 2 ( 1 ε 2 ε 1 ) .
Γ int = Im ( k sp 0 )
Γ rad = Im ( Δ k sp )
R min
θ spr
W 1 / 2
2 ( Γ int + Γ rad )
R min
Γ int = Γ rad
R min = 1 4 Γ int Γ rad ( Γ int + Γ rad ) 2 .
x 0 = ( ε 1 , ε 1 , d 1 )
( θ spr , R min , W 1 / 2 )
W 1 / 2 = θ x 1 θ x 2 ,
θ x 1
θ x 2
R max
R min
Γ 1
Γ 2
{ W 1 / 2 = 2 ( Γ 1 + Γ 2 ) R min = 1 4 Γ 1 Γ 2 ( Γ 1 + Γ 2 ) 2 ,
Γ 1 = W 1 / 2 ( 1 + R min ) 4 ,
Γ 2 = W 1 / 2 ( 1 R min ) 4 .
Re ( Δ k sp ) = 0
k x = Re ( k sp ) = Re ( k sp 0 + Δ k sp )
ε 1
Γ int = Im ( k sp 0 )
ε 1
d 1
Γ rad = Im ( Δ k sp )
( ε 1 , ε 1 , d 1 )
F = | Re ( Δ k sp ) old Re ( Δ k sp ) new |
50.0   nm
x 0
y = ( y 1 i , y 2 i , , y N i ) T
( i = 1   to   M )
L ( L < N )
x = ( x 1 , x 2 , , x L ) T
y = y ( x )
x 0
x 0
y = y 0 + D ( x x 0 ) + w ,
M × N
x 0
D = [ y 1 1 x 1 y 1 1 x L y N 1 x 1 y N 1 x L y 1 2 x 1 y 1 2 x L y N 2 x 1 y N 2 x L y 1 M x 1 y 1 M x L y N M x 1 y N M x L ] x 0 ,
M × N
V = [ σ 2 0 0 σ 2 ] = σ 2 I ,
M = 1
x ^
x ^ = x 0 + ( D T V 1 D ) - 1 D T V 1 ( y y 0 ) .
x 0
x ^
x 0
( ε 1 , ε 1 , d 1 )
y i x j | x 0 = y i ( x 0 + Δ x ) y 0 Δ x ,
Δ x
x 0
ε 1 = 10.8 + j 1.47
d 1 = 50.0 nm
2%
( n 0 = 1.778 )
( ε 1 = 10.8 + j 1.47 , d 1 = 45.0   nm )
9.58   nm
11 .15   nm
R min
θ spr
W 1 / 2
50   nm
( n 1 = 1.778 )
ε 1 = 10.8 + 1.47 j
d 1 = 45.0   nm

Metrics