Z. Chen, R. Ning, Y. Yu, and D. Conover, "3D PSF characterization of circle-plus-arc cone-beam tomography," in Proc. SPIE 5745, 664-675 (2005).

[CrossRef]

Z. Chen and R. Ning, "Three-dimensional PSF measurement of cone-beam CT system by iterative edge-blurring algorithm," Phys. Med. Biol. 49, 1865-1880 (2004).

[CrossRef]

R. Ning, B. Chen, R. Yu, D. Conover, X. Tang, and Y. Ning, "Flat panel detector-based cone-beam volume CT angiography imaging: system evaluation," IEEE Trans. Med. Imaging 19, 949-963 (2000).

[CrossRef]

X. Wang and R. Ning, "A cone-beam reconstruction algorithm for circle-plus-arc data-acquisition geometry," IEEE Trans. Med. Imaging 18, 815-824 (1999).

[CrossRef]

F. Noo, R. Clack, T. A. White, and T. J. Roney, "The dual-ellipse cross vertex path for exact reconstruction of long objects in cone-beam tomography," Phys. Med. Biol. 43, 797-810 (1998).

[CrossRef]

S. Schaller, T. Flohr, and P. Steffen, "An efficient Fourier method for 3D Radon inversion in exact cone-beam CT reconstruction," IEEE Trans. Med. Imaging 17, 244-250 (1998).

[CrossRef]

N. J. Dusaussoy, "VOIR: a volumetric image reconstruction algorithm based on Fourier techniques for inversion for the 3-D Radon transform," IEEE Trans. Image Process. 5, 121-131 (1996).

[CrossRef]

B. D. Smith and C. C. Peck, "Implementations, comparisons, and an investigation of heuristic techniques for cone-beam tomography," IEEE Trans. Med. Imaging 15, 519-531 (1996).

[CrossRef]

M. Defrise and R. Clack, "A cone-beam reconstruction algorithm using shift-variant filtering and cone-beam backprojection," IEEE Trans. Med. Imaging 13, 186-195 (1994).

[CrossRef]

G. L. Zeng, R. Clack, and G. T. Gullberg, "Implementation of Tuy's cone-beam inversion formula," Phys. Med. Biol. 39, 493-507 (1994).

[CrossRef]

C. Axelsson and P. Danielsson, "Three-dimensional reconstruction from cone-beam data in O(N3 log N) time," Phys. Med. Biol. 39, 477-491 (1994).

[CrossRef]

G. L. Zeng and G. T. Gullberg, "A cone-beam tomography algorithm for orthogonal circle-and-line orbit," Phys. Med. Biol. 37, 563-577 (1992).

[CrossRef]

X. Yan and R. M. Leahy, "Derivation and analysis of a filtered backprojection algorithm for cone-beam projection data," IEEE Trans. Med. Imaging 10, 462-472 (1991).

[CrossRef]

D. Finch, "Cone-beam reconstruction with sources on a curve," SIAM J. Appl. Math. 665-673 (1985).

H. K. Tuy, "An inversion formula for cone-beam reconstruction," SIAM J. Appl. Math. 43, 546-552 (1983).

[CrossRef]

C. Axelsson and P. Danielsson, "Three-dimensional reconstruction from cone-beam data in O(N3 log N) time," Phys. Med. Biol. 39, 477-491 (1994).

[CrossRef]

R. Ning, B. Chen, R. Yu, D. Conover, X. Tang, and Y. Ning, "Flat panel detector-based cone-beam volume CT angiography imaging: system evaluation," IEEE Trans. Med. Imaging 19, 949-963 (2000).

[CrossRef]

Z. Chen, R. Ning, Y. Yu, and D. Conover, "3D PSF characterization of circle-plus-arc cone-beam tomography," in Proc. SPIE 5745, 664-675 (2005).

[CrossRef]

Z. Chen and R. Ning, "Three-dimensional PSF measurement of cone-beam CT system by iterative edge-blurring algorithm," Phys. Med. Biol. 49, 1865-1880 (2004).

[CrossRef]

Z. Chen and R. Ning, "Filling the radon domain of computed tomography by local convex combination," Appl. Opt. 42, 7043-7051 (2003).

F. Noo, R. Clack, T. A. White, and T. J. Roney, "The dual-ellipse cross vertex path for exact reconstruction of long objects in cone-beam tomography," Phys. Med. Biol. 43, 797-810 (1998).

[CrossRef]

G. L. Zeng, R. Clack, and G. T. Gullberg, "Implementation of Tuy's cone-beam inversion formula," Phys. Med. Biol. 39, 493-507 (1994).

[CrossRef]

M. Defrise and R. Clack, "A cone-beam reconstruction algorithm using shift-variant filtering and cone-beam backprojection," IEEE Trans. Med. Imaging 13, 186-195 (1994).

[CrossRef]

Z. Chen, R. Ning, Y. Yu, and D. Conover, "3D PSF characterization of circle-plus-arc cone-beam tomography," in Proc. SPIE 5745, 664-675 (2005).

[CrossRef]

R. Ning, X. Tang, D. Conover, and R. Yu, "Flat panel detector-based cone beam computed tomography with a circle-plus-two arcs data acquisition orbit: preliminary phantom study," Med. Phys. 30, 1694-1705 (2003).

[CrossRef]

R. Ning, B. Chen, R. Yu, D. Conover, X. Tang, and Y. Ning, "Flat panel detector-based cone-beam volume CT angiography imaging: system evaluation," IEEE Trans. Med. Imaging 19, 949-963 (2000).

[CrossRef]

C. Axelsson and P. Danielsson, "Three-dimensional reconstruction from cone-beam data in O(N3 log N) time," Phys. Med. Biol. 39, 477-491 (1994).

[CrossRef]

S. R. Deans, The Radon Transform and Some of Its Applications (Wiley, 1983).

M. Defrise and R. Clack, "A cone-beam reconstruction algorithm using shift-variant filtering and cone-beam backprojection," IEEE Trans. Med. Imaging 13, 186-195 (1994).

[CrossRef]

N. J. Dusaussoy, "VOIR: a volumetric image reconstruction algorithm based on Fourier techniques for inversion for the 3-D Radon transform," IEEE Trans. Image Process. 5, 121-131 (1996).

[CrossRef]

D. Finch, "Cone-beam reconstruction with sources on a curve," SIAM J. Appl. Math. 665-673 (1985).

S. Schaller, T. Flohr, and P. Steffen, "An efficient Fourier method for 3D Radon inversion in exact cone-beam CT reconstruction," IEEE Trans. Med. Imaging 17, 244-250 (1998).

[CrossRef]

P. Grangeat, "Mathematical framework of cone beam 3D reconstruction via the first derivative of the Radon transform," in Mathematical Methods in Tomography, Vol. 1497 of Lecture Notes in Mathematics, G.T.Herman, A.K.Louis, and F.Natterer, eds. (Springer-Verlag, 1991), pp. 66-97.

G. L. Zeng, R. Clack, and G. T. Gullberg, "Implementation of Tuy's cone-beam inversion formula," Phys. Med. Biol. 39, 493-507 (1994).

[CrossRef]

G. L. Zeng and G. T. Gullberg, "A cone-beam tomography algorithm for orthogonal circle-and-line orbit," Phys. Med. Biol. 37, 563-577 (1992).

[CrossRef]

X. Yan and R. M. Leahy, "Derivation and analysis of a filtered backprojection algorithm for cone-beam projection data," IEEE Trans. Med. Imaging 10, 462-472 (1991).

[CrossRef]

Z. Chen, R. Ning, Y. Yu, and D. Conover, "3D PSF characterization of circle-plus-arc cone-beam tomography," in Proc. SPIE 5745, 664-675 (2005).

[CrossRef]

Z. Chen and R. Ning, "Three-dimensional PSF measurement of cone-beam CT system by iterative edge-blurring algorithm," Phys. Med. Biol. 49, 1865-1880 (2004).

[CrossRef]

R. Ning, X. Tang, D. Conover, and R. Yu, "Flat panel detector-based cone beam computed tomography with a circle-plus-two arcs data acquisition orbit: preliminary phantom study," Med. Phys. 30, 1694-1705 (2003).

[CrossRef]

Z. Chen and R. Ning, "Filling the radon domain of computed tomography by local convex combination," Appl. Opt. 42, 7043-7051 (2003).

R. Ning, B. Chen, R. Yu, D. Conover, X. Tang, and Y. Ning, "Flat panel detector-based cone-beam volume CT angiography imaging: system evaluation," IEEE Trans. Med. Imaging 19, 949-963 (2000).

[CrossRef]

X. Wang and R. Ning, "A cone-beam reconstruction algorithm for circle-plus-arc data-acquisition geometry," IEEE Trans. Med. Imaging 18, 815-824 (1999).

[CrossRef]

R. Ning, B. Chen, R. Yu, D. Conover, X. Tang, and Y. Ning, "Flat panel detector-based cone-beam volume CT angiography imaging: system evaluation," IEEE Trans. Med. Imaging 19, 949-963 (2000).

[CrossRef]

F. Noo, R. Clack, T. A. White, and T. J. Roney, "The dual-ellipse cross vertex path for exact reconstruction of long objects in cone-beam tomography," Phys. Med. Biol. 43, 797-810 (1998).

[CrossRef]

B. D. Smith and C. C. Peck, "Implementations, comparisons, and an investigation of heuristic techniques for cone-beam tomography," IEEE Trans. Med. Imaging 15, 519-531 (1996).

[CrossRef]

F. Noo, R. Clack, T. A. White, and T. J. Roney, "The dual-ellipse cross vertex path for exact reconstruction of long objects in cone-beam tomography," Phys. Med. Biol. 43, 797-810 (1998).

[CrossRef]

S. Schaller, T. Flohr, and P. Steffen, "An efficient Fourier method for 3D Radon inversion in exact cone-beam CT reconstruction," IEEE Trans. Med. Imaging 17, 244-250 (1998).

[CrossRef]

B. D. Smith and C. C. Peck, "Implementations, comparisons, and an investigation of heuristic techniques for cone-beam tomography," IEEE Trans. Med. Imaging 15, 519-531 (1996).

[CrossRef]

S. Schaller, T. Flohr, and P. Steffen, "An efficient Fourier method for 3D Radon inversion in exact cone-beam CT reconstruction," IEEE Trans. Med. Imaging 17, 244-250 (1998).

[CrossRef]

R. Ning, X. Tang, D. Conover, and R. Yu, "Flat panel detector-based cone beam computed tomography with a circle-plus-two arcs data acquisition orbit: preliminary phantom study," Med. Phys. 30, 1694-1705 (2003).

[CrossRef]

R. Ning, B. Chen, R. Yu, D. Conover, X. Tang, and Y. Ning, "Flat panel detector-based cone-beam volume CT angiography imaging: system evaluation," IEEE Trans. Med. Imaging 19, 949-963 (2000).

[CrossRef]

H. K. Tuy, "An inversion formula for cone-beam reconstruction," SIAM J. Appl. Math. 43, 546-552 (1983).

[CrossRef]

X. Wang and R. Ning, "A cone-beam reconstruction algorithm for circle-plus-arc data-acquisition geometry," IEEE Trans. Med. Imaging 18, 815-824 (1999).

[CrossRef]

F. Noo, R. Clack, T. A. White, and T. J. Roney, "The dual-ellipse cross vertex path for exact reconstruction of long objects in cone-beam tomography," Phys. Med. Biol. 43, 797-810 (1998).

[CrossRef]

X. Yan and R. M. Leahy, "Derivation and analysis of a filtered backprojection algorithm for cone-beam projection data," IEEE Trans. Med. Imaging 10, 462-472 (1991).

[CrossRef]

R. Ning, X. Tang, D. Conover, and R. Yu, "Flat panel detector-based cone beam computed tomography with a circle-plus-two arcs data acquisition orbit: preliminary phantom study," Med. Phys. 30, 1694-1705 (2003).

[CrossRef]

R. Ning, B. Chen, R. Yu, D. Conover, X. Tang, and Y. Ning, "Flat panel detector-based cone-beam volume CT angiography imaging: system evaluation," IEEE Trans. Med. Imaging 19, 949-963 (2000).

[CrossRef]

Z. Chen, R. Ning, Y. Yu, and D. Conover, "3D PSF characterization of circle-plus-arc cone-beam tomography," in Proc. SPIE 5745, 664-675 (2005).

[CrossRef]

G. L. Zeng, R. Clack, and G. T. Gullberg, "Implementation of Tuy's cone-beam inversion formula," Phys. Med. Biol. 39, 493-507 (1994).

[CrossRef]

G. L. Zeng and G. T. Gullberg, "A cone-beam tomography algorithm for orthogonal circle-and-line orbit," Phys. Med. Biol. 37, 563-577 (1992).

[CrossRef]

N. J. Dusaussoy, "VOIR: a volumetric image reconstruction algorithm based on Fourier techniques for inversion for the 3-D Radon transform," IEEE Trans. Image Process. 5, 121-131 (1996).

[CrossRef]

X. Yan and R. M. Leahy, "Derivation and analysis of a filtered backprojection algorithm for cone-beam projection data," IEEE Trans. Med. Imaging 10, 462-472 (1991).

[CrossRef]

X. Wang and R. Ning, "A cone-beam reconstruction algorithm for circle-plus-arc data-acquisition geometry," IEEE Trans. Med. Imaging 18, 815-824 (1999).

[CrossRef]

M. Defrise and R. Clack, "A cone-beam reconstruction algorithm using shift-variant filtering and cone-beam backprojection," IEEE Trans. Med. Imaging 13, 186-195 (1994).

[CrossRef]

B. D. Smith and C. C. Peck, "Implementations, comparisons, and an investigation of heuristic techniques for cone-beam tomography," IEEE Trans. Med. Imaging 15, 519-531 (1996).

[CrossRef]

R. Ning, B. Chen, R. Yu, D. Conover, X. Tang, and Y. Ning, "Flat panel detector-based cone-beam volume CT angiography imaging: system evaluation," IEEE Trans. Med. Imaging 19, 949-963 (2000).

[CrossRef]

S. Schaller, T. Flohr, and P. Steffen, "An efficient Fourier method for 3D Radon inversion in exact cone-beam CT reconstruction," IEEE Trans. Med. Imaging 17, 244-250 (1998).

[CrossRef]

R. Ning, X. Tang, D. Conover, and R. Yu, "Flat panel detector-based cone beam computed tomography with a circle-plus-two arcs data acquisition orbit: preliminary phantom study," Med. Phys. 30, 1694-1705 (2003).

[CrossRef]

C. Axelsson and P. Danielsson, "Three-dimensional reconstruction from cone-beam data in O(N3 log N) time," Phys. Med. Biol. 39, 477-491 (1994).

[CrossRef]

F. Noo, R. Clack, T. A. White, and T. J. Roney, "The dual-ellipse cross vertex path for exact reconstruction of long objects in cone-beam tomography," Phys. Med. Biol. 43, 797-810 (1998).

[CrossRef]

Z. Chen and R. Ning, "Three-dimensional PSF measurement of cone-beam CT system by iterative edge-blurring algorithm," Phys. Med. Biol. 49, 1865-1880 (2004).

[CrossRef]

G. L. Zeng and G. T. Gullberg, "A cone-beam tomography algorithm for orthogonal circle-and-line orbit," Phys. Med. Biol. 37, 563-577 (1992).

[CrossRef]

G. L. Zeng, R. Clack, and G. T. Gullberg, "Implementation of Tuy's cone-beam inversion formula," Phys. Med. Biol. 39, 493-507 (1994).

[CrossRef]

Z. Chen, R. Ning, Y. Yu, and D. Conover, "3D PSF characterization of circle-plus-arc cone-beam tomography," in Proc. SPIE 5745, 664-675 (2005).

[CrossRef]

D. Finch, "Cone-beam reconstruction with sources on a curve," SIAM J. Appl. Math. 665-673 (1985).

H. K. Tuy, "An inversion formula for cone-beam reconstruction," SIAM J. Appl. Math. 43, 546-552 (1983).

[CrossRef]

P. Grangeat, "Mathematical framework of cone beam 3D reconstruction via the first derivative of the Radon transform," in Mathematical Methods in Tomography, Vol. 1497 of Lecture Notes in Mathematics, G.T.Herman, A.K.Louis, and F.Natterer, eds. (Springer-Verlag, 1991), pp. 66-97.

S. R. Deans, The Radon Transform and Some of Its Applications (Wiley, 1983).