Abstract

The evolution of in-fiber Bragg gratings' contrast and resonance wavelengths caused by molecular hydrogen loading and subsequent heat treatment in a hydrogen atmosphere at a pressure of 8  MPa is experimentally studied. Changes in the gratings’ transmission spectra brought about by room-temperature hydrogen loading followed by isochronal annealing cycles at temperatures up to 700  °C and at invariable hydrogen pressure are recorded in situ. The gratings’ thermal decay dynamics in hydrogen ambience and in air are found to be different and dependent on the gratings’ type and on the type of glass in the fiber core. In light of the data obtained, the origin of type IIa gratings is anew under discussion.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. H. Ky, H. G. Limberger, R. P. Salathé, F. Cochet, and L. Dong, "Hydrogen-induced reduction of axial stress in optical fiber cores," Appl. Phys. Lett. 74, 516-518 (1999).
    [CrossRef]
  2. P. Karlitschek, G. Hillrichs, and K. F. Klein, "Influence of hydrogen on the colour center formation in optical fibers induced by pulsed UV-laser radiation. Part 1: All silica fibers with high-OH undoped core," Opt. Commun. 155, 376-385 (1998).
    [CrossRef]
  3. A. L. Tomashuk, E. M. Dianov, K. M. Golant, and A. O. Rybaltovskii, "Gamma-radiation-induced absorption in pure-silica-core fibers in the visible spectral region: the effect of H2-loading," IEEE Trans. Nucl. Sci. 45, 1576-1579 (1998).
    [CrossRef]
  4. P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, "High-pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibers," Electron. Lett. 29, 1191-1193 (1993).
    [CrossRef]
  5. V. A. Radtsig, "Nitrogen-containing paramagnetic centers in vitreous silica," Kinet. Katal. 46, 578-596 (2005).
    [CrossRef]
  6. A. V. Lanin, K. M. Golant, and I. V. Nikolin, "Interaction of molecular hydrogen with the doped silica core of an optical fiber at elevated temperatures," Tech. Phys. 49, 1600-1604 (2004).
    [CrossRef]
  7. C. M. Hartwig, "Raman scattering from hydrogen and deuterium dissolved in silica as a function of pressure," J. Appl. Phys. 47, 956-959 (1976).
    [CrossRef]
  8. C. L. Liou, L. A. Wang, M. C. Shih, and T. J. Chuang, "Characteristics of hydrogenated fiber Bragg gratings," Appl. Phys. A 64, 191-197 (1997).
    [CrossRef]
  9. V. B. Neustruev, "Color centres in germanosilicate glass and optical fibres," J. Phys.: Condens. Matter 6, 6901-6936 (1994).
    [CrossRef]
  10. N. H. Ky, H. G. Limberger, R. P. Salathe, F. Cochet, and L. Dong, "UV-irradiation induced stress and index changes during the growth of type-I and type-IIA fiber gratings," Opt. Commun. 225, 313-318 (2003).
    [CrossRef]
  11. A. V. Lanin, O. V. Butov, E. M. Dianov, and K. M. Golant, "Behavior of in-fibre Bragg gratings in hydrogen atmosphere at elevated temperature," in Proceedings of 31st European Conference on Optical Communications (The Institution of Engineering and Technology, 2005), pp. 665-666.
  12. O. V. Butov, K. M. Golant, and I. V. Nikolin, "Ultra-thermo-resistant Bragg gratings written in nitrogen-doped silica fibres," Electron. Lett. 38, 523-525 (2002).
    [CrossRef]
  13. B. Leconte, "Contribution à l'étude de la photosensibilité des fibres en silice sous l'effet d'une insolation par un laser ArF," Ph.D. thesis No. 2379, (University of Lille, France, 1998). Available upon request.
  14. W. X. Xie, P. Niay, P. Bernage, M. Douay, J. F. Bayon, T. Georges, M. Monerie, and B. Poumellec, "Experimental evidence of two types of photorefractive effects occurring during photoinscription of Bragg gratings within germano-silicate fibers," Opt. Commun. 104, 185-195 (1993).
    [CrossRef]
  15. J. Canning and M. Aslund, "Correlation of ultraviolet-induced stress changes and negative index growth in type IIa germanosilicate waveguide gratings," Opt. Lett. 24, 463-465 (1999).
    [CrossRef]
  16. O. V. Butov and K. M. Golant, "Core-cladding structure transformation in silica optical fibers caused by UV-induced Bragg grating inscription," in Proceedings of the XX International Congress on Glass, O-14-047 (Kyoto, Japan, 2004).
  17. B. Poumellec and P. Niay, "Direct measurement of 248- and 193-nm excimer-induced densification in silica-germania waveguide blanks: comment," J. Opt. Soc. Am. B 19, 2039-2041 (2002).
    [CrossRef]
  18. N. F. Borrelli and D. C. Allan, "Direct measurement of 248- and 193-nm excimer-induced densification in silica-germania waveguide blanks: reply to comment," J. Opt. Soc. Am. B 19, 2042-2045 (2002).
    [CrossRef]
  19. T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, "Decay of ultraviolet-induced fiber Bragg gratings," J. Appl. Phys. 76, 73-80 (1994).
    [CrossRef]
  20. A. Hidayat, Q. Wang, P. Niay, M. Douay, B. Poumellec, F. Kherbouche, and I. Riant, "Temperature-induced reversible changes in the spectral characteristics of fiber Bragg gratings," Appl. Opt. 40, 2632-2642 (2001).
    [CrossRef]
  21. E. M. Dianov, K. M. Golant, R. R. Khrapko, A. S. Kurkov, and A. L. Tomashuk, "Low-hydrogen silicon oxynitride optical fibers prepared by SPCVD," J. Lightwave Technol. 13, 1471-1474 (1995).
    [CrossRef]
  22. C. L. Liou, L. A. Wang, M. C. Shih, and T. J. Chuang, "Characteristics of hydrogenated fiber Bragg gratings," Appl. Phys. A 64, 191-197 (1997).
    [CrossRef]
  23. F. Piao, W. G. Oldham, and E. E. Haller, "Ultraviolet-induced densification of fused silica," J. Appl. Phys. 87, 3287-3293 (2000).
    [CrossRef]
  24. V. G. Plotnichenko, S. A. Vasiliev, A. O. Rybaltovskii, V. V. Koltashev, V. O. Sokolov, S. N. Klyamkin, O. I. Medvedkov, A. A. Rybaltovskii, A. R. Malosiev, and E. M. Dianov, "Hydrogen diffusion and ortho-para conversion in absorption and Raman spectra of germanosilicate optical fibers hydrogen-loaded at 150-170 MPa," J. Non-Cryst. Solids 351, 3677-3684 (2005).
    [CrossRef]
  25. S. A. Vasiliev, O. I. Medvedkov, V. G. Plotnichenko, E. M. Dianov, and A. O. Rybaltovsky, "Increased solubility of molecular hydrogen in UV-exposed germanosilicate fibers," Opt. Lett. 31, 11-13 (2006).
    [CrossRef] [PubMed]
  26. V. V. Tugushev and K. M. Golant, "Excited oxygen-deficient center in silicon dioxide as a structurally non-rigid, mixed-valence complex," J. Non-Cryst. Solids 241, 166-173 (1998).
    [CrossRef]
  27. K. M. Golant and V. V. Tugushev, "A mechanism for photoinduced electronic reconstruction of the oxygen vacancy in doped quartz glass and its characteristics," Phys. Solid State 41, 928-933 (1999).
    [CrossRef]
  28. I. Riant and F. Haller, "Study of the photosensitivity at 193 nm and comparison with photosensitivity at 240 nm influence of fiber tension: type IIa aging," J. Lightwave Technol. 15, 1464-1468 (1997).
    [CrossRef]

2006 (1)

2005 (2)

V. G. Plotnichenko, S. A. Vasiliev, A. O. Rybaltovskii, V. V. Koltashev, V. O. Sokolov, S. N. Klyamkin, O. I. Medvedkov, A. A. Rybaltovskii, A. R. Malosiev, and E. M. Dianov, "Hydrogen diffusion and ortho-para conversion in absorption and Raman spectra of germanosilicate optical fibers hydrogen-loaded at 150-170 MPa," J. Non-Cryst. Solids 351, 3677-3684 (2005).
[CrossRef]

V. A. Radtsig, "Nitrogen-containing paramagnetic centers in vitreous silica," Kinet. Katal. 46, 578-596 (2005).
[CrossRef]

2004 (1)

A. V. Lanin, K. M. Golant, and I. V. Nikolin, "Interaction of molecular hydrogen with the doped silica core of an optical fiber at elevated temperatures," Tech. Phys. 49, 1600-1604 (2004).
[CrossRef]

2003 (1)

N. H. Ky, H. G. Limberger, R. P. Salathe, F. Cochet, and L. Dong, "UV-irradiation induced stress and index changes during the growth of type-I and type-IIA fiber gratings," Opt. Commun. 225, 313-318 (2003).
[CrossRef]

2002 (3)

2001 (1)

2000 (1)

F. Piao, W. G. Oldham, and E. E. Haller, "Ultraviolet-induced densification of fused silica," J. Appl. Phys. 87, 3287-3293 (2000).
[CrossRef]

1999 (3)

K. M. Golant and V. V. Tugushev, "A mechanism for photoinduced electronic reconstruction of the oxygen vacancy in doped quartz glass and its characteristics," Phys. Solid State 41, 928-933 (1999).
[CrossRef]

J. Canning and M. Aslund, "Correlation of ultraviolet-induced stress changes and negative index growth in type IIa germanosilicate waveguide gratings," Opt. Lett. 24, 463-465 (1999).
[CrossRef]

N. H. Ky, H. G. Limberger, R. P. Salathé, F. Cochet, and L. Dong, "Hydrogen-induced reduction of axial stress in optical fiber cores," Appl. Phys. Lett. 74, 516-518 (1999).
[CrossRef]

1998 (3)

P. Karlitschek, G. Hillrichs, and K. F. Klein, "Influence of hydrogen on the colour center formation in optical fibers induced by pulsed UV-laser radiation. Part 1: All silica fibers with high-OH undoped core," Opt. Commun. 155, 376-385 (1998).
[CrossRef]

A. L. Tomashuk, E. M. Dianov, K. M. Golant, and A. O. Rybaltovskii, "Gamma-radiation-induced absorption in pure-silica-core fibers in the visible spectral region: the effect of H2-loading," IEEE Trans. Nucl. Sci. 45, 1576-1579 (1998).
[CrossRef]

V. V. Tugushev and K. M. Golant, "Excited oxygen-deficient center in silicon dioxide as a structurally non-rigid, mixed-valence complex," J. Non-Cryst. Solids 241, 166-173 (1998).
[CrossRef]

1997 (3)

I. Riant and F. Haller, "Study of the photosensitivity at 193 nm and comparison with photosensitivity at 240 nm influence of fiber tension: type IIa aging," J. Lightwave Technol. 15, 1464-1468 (1997).
[CrossRef]

C. L. Liou, L. A. Wang, M. C. Shih, and T. J. Chuang, "Characteristics of hydrogenated fiber Bragg gratings," Appl. Phys. A 64, 191-197 (1997).
[CrossRef]

C. L. Liou, L. A. Wang, M. C. Shih, and T. J. Chuang, "Characteristics of hydrogenated fiber Bragg gratings," Appl. Phys. A 64, 191-197 (1997).
[CrossRef]

1995 (1)

E. M. Dianov, K. M. Golant, R. R. Khrapko, A. S. Kurkov, and A. L. Tomashuk, "Low-hydrogen silicon oxynitride optical fibers prepared by SPCVD," J. Lightwave Technol. 13, 1471-1474 (1995).
[CrossRef]

1994 (2)

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, "Decay of ultraviolet-induced fiber Bragg gratings," J. Appl. Phys. 76, 73-80 (1994).
[CrossRef]

V. B. Neustruev, "Color centres in germanosilicate glass and optical fibres," J. Phys.: Condens. Matter 6, 6901-6936 (1994).
[CrossRef]

1993 (2)

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, "High-pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibers," Electron. Lett. 29, 1191-1193 (1993).
[CrossRef]

W. X. Xie, P. Niay, P. Bernage, M. Douay, J. F. Bayon, T. Georges, M. Monerie, and B. Poumellec, "Experimental evidence of two types of photorefractive effects occurring during photoinscription of Bragg gratings within germano-silicate fibers," Opt. Commun. 104, 185-195 (1993).
[CrossRef]

1976 (1)

C. M. Hartwig, "Raman scattering from hydrogen and deuterium dissolved in silica as a function of pressure," J. Appl. Phys. 47, 956-959 (1976).
[CrossRef]

Allan, D. C.

Aslund, M.

Atkins, R. M.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, "High-pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibers," Electron. Lett. 29, 1191-1193 (1993).
[CrossRef]

Bayon, J. F.

W. X. Xie, P. Niay, P. Bernage, M. Douay, J. F. Bayon, T. Georges, M. Monerie, and B. Poumellec, "Experimental evidence of two types of photorefractive effects occurring during photoinscription of Bragg gratings within germano-silicate fibers," Opt. Commun. 104, 185-195 (1993).
[CrossRef]

Bernage, P.

W. X. Xie, P. Niay, P. Bernage, M. Douay, J. F. Bayon, T. Georges, M. Monerie, and B. Poumellec, "Experimental evidence of two types of photorefractive effects occurring during photoinscription of Bragg gratings within germano-silicate fibers," Opt. Commun. 104, 185-195 (1993).
[CrossRef]

Borrelli, N. F.

Butov, O. V.

O. V. Butov, K. M. Golant, and I. V. Nikolin, "Ultra-thermo-resistant Bragg gratings written in nitrogen-doped silica fibres," Electron. Lett. 38, 523-525 (2002).
[CrossRef]

O. V. Butov and K. M. Golant, "Core-cladding structure transformation in silica optical fibers caused by UV-induced Bragg grating inscription," in Proceedings of the XX International Congress on Glass, O-14-047 (Kyoto, Japan, 2004).

A. V. Lanin, O. V. Butov, E. M. Dianov, and K. M. Golant, "Behavior of in-fibre Bragg gratings in hydrogen atmosphere at elevated temperature," in Proceedings of 31st European Conference on Optical Communications (The Institution of Engineering and Technology, 2005), pp. 665-666.

Canning, J.

Chuang, T. J.

C. L. Liou, L. A. Wang, M. C. Shih, and T. J. Chuang, "Characteristics of hydrogenated fiber Bragg gratings," Appl. Phys. A 64, 191-197 (1997).
[CrossRef]

C. L. Liou, L. A. Wang, M. C. Shih, and T. J. Chuang, "Characteristics of hydrogenated fiber Bragg gratings," Appl. Phys. A 64, 191-197 (1997).
[CrossRef]

Cochet, F.

N. H. Ky, H. G. Limberger, R. P. Salathe, F. Cochet, and L. Dong, "UV-irradiation induced stress and index changes during the growth of type-I and type-IIA fiber gratings," Opt. Commun. 225, 313-318 (2003).
[CrossRef]

N. H. Ky, H. G. Limberger, R. P. Salathé, F. Cochet, and L. Dong, "Hydrogen-induced reduction of axial stress in optical fiber cores," Appl. Phys. Lett. 74, 516-518 (1999).
[CrossRef]

Dianov, E. M.

S. A. Vasiliev, O. I. Medvedkov, V. G. Plotnichenko, E. M. Dianov, and A. O. Rybaltovsky, "Increased solubility of molecular hydrogen in UV-exposed germanosilicate fibers," Opt. Lett. 31, 11-13 (2006).
[CrossRef] [PubMed]

V. G. Plotnichenko, S. A. Vasiliev, A. O. Rybaltovskii, V. V. Koltashev, V. O. Sokolov, S. N. Klyamkin, O. I. Medvedkov, A. A. Rybaltovskii, A. R. Malosiev, and E. M. Dianov, "Hydrogen diffusion and ortho-para conversion in absorption and Raman spectra of germanosilicate optical fibers hydrogen-loaded at 150-170 MPa," J. Non-Cryst. Solids 351, 3677-3684 (2005).
[CrossRef]

A. L. Tomashuk, E. M. Dianov, K. M. Golant, and A. O. Rybaltovskii, "Gamma-radiation-induced absorption in pure-silica-core fibers in the visible spectral region: the effect of H2-loading," IEEE Trans. Nucl. Sci. 45, 1576-1579 (1998).
[CrossRef]

E. M. Dianov, K. M. Golant, R. R. Khrapko, A. S. Kurkov, and A. L. Tomashuk, "Low-hydrogen silicon oxynitride optical fibers prepared by SPCVD," J. Lightwave Technol. 13, 1471-1474 (1995).
[CrossRef]

A. V. Lanin, O. V. Butov, E. M. Dianov, and K. M. Golant, "Behavior of in-fibre Bragg gratings in hydrogen atmosphere at elevated temperature," in Proceedings of 31st European Conference on Optical Communications (The Institution of Engineering and Technology, 2005), pp. 665-666.

Dong, L.

N. H. Ky, H. G. Limberger, R. P. Salathe, F. Cochet, and L. Dong, "UV-irradiation induced stress and index changes during the growth of type-I and type-IIA fiber gratings," Opt. Commun. 225, 313-318 (2003).
[CrossRef]

N. H. Ky, H. G. Limberger, R. P. Salathé, F. Cochet, and L. Dong, "Hydrogen-induced reduction of axial stress in optical fiber cores," Appl. Phys. Lett. 74, 516-518 (1999).
[CrossRef]

Douay, M.

A. Hidayat, Q. Wang, P. Niay, M. Douay, B. Poumellec, F. Kherbouche, and I. Riant, "Temperature-induced reversible changes in the spectral characteristics of fiber Bragg gratings," Appl. Opt. 40, 2632-2642 (2001).
[CrossRef]

W. X. Xie, P. Niay, P. Bernage, M. Douay, J. F. Bayon, T. Georges, M. Monerie, and B. Poumellec, "Experimental evidence of two types of photorefractive effects occurring during photoinscription of Bragg gratings within germano-silicate fibers," Opt. Commun. 104, 185-195 (1993).
[CrossRef]

Erdogan, T.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, "Decay of ultraviolet-induced fiber Bragg gratings," J. Appl. Phys. 76, 73-80 (1994).
[CrossRef]

Georges, T.

W. X. Xie, P. Niay, P. Bernage, M. Douay, J. F. Bayon, T. Georges, M. Monerie, and B. Poumellec, "Experimental evidence of two types of photorefractive effects occurring during photoinscription of Bragg gratings within germano-silicate fibers," Opt. Commun. 104, 185-195 (1993).
[CrossRef]

Golant, K. M.

A. V. Lanin, K. M. Golant, and I. V. Nikolin, "Interaction of molecular hydrogen with the doped silica core of an optical fiber at elevated temperatures," Tech. Phys. 49, 1600-1604 (2004).
[CrossRef]

O. V. Butov, K. M. Golant, and I. V. Nikolin, "Ultra-thermo-resistant Bragg gratings written in nitrogen-doped silica fibres," Electron. Lett. 38, 523-525 (2002).
[CrossRef]

K. M. Golant and V. V. Tugushev, "A mechanism for photoinduced electronic reconstruction of the oxygen vacancy in doped quartz glass and its characteristics," Phys. Solid State 41, 928-933 (1999).
[CrossRef]

V. V. Tugushev and K. M. Golant, "Excited oxygen-deficient center in silicon dioxide as a structurally non-rigid, mixed-valence complex," J. Non-Cryst. Solids 241, 166-173 (1998).
[CrossRef]

A. L. Tomashuk, E. M. Dianov, K. M. Golant, and A. O. Rybaltovskii, "Gamma-radiation-induced absorption in pure-silica-core fibers in the visible spectral region: the effect of H2-loading," IEEE Trans. Nucl. Sci. 45, 1576-1579 (1998).
[CrossRef]

E. M. Dianov, K. M. Golant, R. R. Khrapko, A. S. Kurkov, and A. L. Tomashuk, "Low-hydrogen silicon oxynitride optical fibers prepared by SPCVD," J. Lightwave Technol. 13, 1471-1474 (1995).
[CrossRef]

O. V. Butov and K. M. Golant, "Core-cladding structure transformation in silica optical fibers caused by UV-induced Bragg grating inscription," in Proceedings of the XX International Congress on Glass, O-14-047 (Kyoto, Japan, 2004).

A. V. Lanin, O. V. Butov, E. M. Dianov, and K. M. Golant, "Behavior of in-fibre Bragg gratings in hydrogen atmosphere at elevated temperature," in Proceedings of 31st European Conference on Optical Communications (The Institution of Engineering and Technology, 2005), pp. 665-666.

Haller, E. E.

F. Piao, W. G. Oldham, and E. E. Haller, "Ultraviolet-induced densification of fused silica," J. Appl. Phys. 87, 3287-3293 (2000).
[CrossRef]

Haller, F.

I. Riant and F. Haller, "Study of the photosensitivity at 193 nm and comparison with photosensitivity at 240 nm influence of fiber tension: type IIa aging," J. Lightwave Technol. 15, 1464-1468 (1997).
[CrossRef]

Hartwig, C. M.

C. M. Hartwig, "Raman scattering from hydrogen and deuterium dissolved in silica as a function of pressure," J. Appl. Phys. 47, 956-959 (1976).
[CrossRef]

Hidayat, A.

Hillrichs, G.

P. Karlitschek, G. Hillrichs, and K. F. Klein, "Influence of hydrogen on the colour center formation in optical fibers induced by pulsed UV-laser radiation. Part 1: All silica fibers with high-OH undoped core," Opt. Commun. 155, 376-385 (1998).
[CrossRef]

Karlitschek, P.

P. Karlitschek, G. Hillrichs, and K. F. Klein, "Influence of hydrogen on the colour center formation in optical fibers induced by pulsed UV-laser radiation. Part 1: All silica fibers with high-OH undoped core," Opt. Commun. 155, 376-385 (1998).
[CrossRef]

Kherbouche, F.

Khrapko, R. R.

E. M. Dianov, K. M. Golant, R. R. Khrapko, A. S. Kurkov, and A. L. Tomashuk, "Low-hydrogen silicon oxynitride optical fibers prepared by SPCVD," J. Lightwave Technol. 13, 1471-1474 (1995).
[CrossRef]

Klein, K. F.

P. Karlitschek, G. Hillrichs, and K. F. Klein, "Influence of hydrogen on the colour center formation in optical fibers induced by pulsed UV-laser radiation. Part 1: All silica fibers with high-OH undoped core," Opt. Commun. 155, 376-385 (1998).
[CrossRef]

Klyamkin, S. N.

V. G. Plotnichenko, S. A. Vasiliev, A. O. Rybaltovskii, V. V. Koltashev, V. O. Sokolov, S. N. Klyamkin, O. I. Medvedkov, A. A. Rybaltovskii, A. R. Malosiev, and E. M. Dianov, "Hydrogen diffusion and ortho-para conversion in absorption and Raman spectra of germanosilicate optical fibers hydrogen-loaded at 150-170 MPa," J. Non-Cryst. Solids 351, 3677-3684 (2005).
[CrossRef]

Koltashev, V. V.

V. G. Plotnichenko, S. A. Vasiliev, A. O. Rybaltovskii, V. V. Koltashev, V. O. Sokolov, S. N. Klyamkin, O. I. Medvedkov, A. A. Rybaltovskii, A. R. Malosiev, and E. M. Dianov, "Hydrogen diffusion and ortho-para conversion in absorption and Raman spectra of germanosilicate optical fibers hydrogen-loaded at 150-170 MPa," J. Non-Cryst. Solids 351, 3677-3684 (2005).
[CrossRef]

Kurkov, A. S.

E. M. Dianov, K. M. Golant, R. R. Khrapko, A. S. Kurkov, and A. L. Tomashuk, "Low-hydrogen silicon oxynitride optical fibers prepared by SPCVD," J. Lightwave Technol. 13, 1471-1474 (1995).
[CrossRef]

Ky, N. H.

N. H. Ky, H. G. Limberger, R. P. Salathe, F. Cochet, and L. Dong, "UV-irradiation induced stress and index changes during the growth of type-I and type-IIA fiber gratings," Opt. Commun. 225, 313-318 (2003).
[CrossRef]

N. H. Ky, H. G. Limberger, R. P. Salathé, F. Cochet, and L. Dong, "Hydrogen-induced reduction of axial stress in optical fiber cores," Appl. Phys. Lett. 74, 516-518 (1999).
[CrossRef]

Lanin, A. V.

A. V. Lanin, K. M. Golant, and I. V. Nikolin, "Interaction of molecular hydrogen with the doped silica core of an optical fiber at elevated temperatures," Tech. Phys. 49, 1600-1604 (2004).
[CrossRef]

A. V. Lanin, O. V. Butov, E. M. Dianov, and K. M. Golant, "Behavior of in-fibre Bragg gratings in hydrogen atmosphere at elevated temperature," in Proceedings of 31st European Conference on Optical Communications (The Institution of Engineering and Technology, 2005), pp. 665-666.

Leconte, B.

B. Leconte, "Contribution à l'étude de la photosensibilité des fibres en silice sous l'effet d'une insolation par un laser ArF," Ph.D. thesis No. 2379, (University of Lille, France, 1998). Available upon request.

Lemaire, P. J.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, "Decay of ultraviolet-induced fiber Bragg gratings," J. Appl. Phys. 76, 73-80 (1994).
[CrossRef]

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, "High-pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibers," Electron. Lett. 29, 1191-1193 (1993).
[CrossRef]

Limberger, H. G.

N. H. Ky, H. G. Limberger, R. P. Salathe, F. Cochet, and L. Dong, "UV-irradiation induced stress and index changes during the growth of type-I and type-IIA fiber gratings," Opt. Commun. 225, 313-318 (2003).
[CrossRef]

N. H. Ky, H. G. Limberger, R. P. Salathé, F. Cochet, and L. Dong, "Hydrogen-induced reduction of axial stress in optical fiber cores," Appl. Phys. Lett. 74, 516-518 (1999).
[CrossRef]

Liou, C. L.

C. L. Liou, L. A. Wang, M. C. Shih, and T. J. Chuang, "Characteristics of hydrogenated fiber Bragg gratings," Appl. Phys. A 64, 191-197 (1997).
[CrossRef]

C. L. Liou, L. A. Wang, M. C. Shih, and T. J. Chuang, "Characteristics of hydrogenated fiber Bragg gratings," Appl. Phys. A 64, 191-197 (1997).
[CrossRef]

Malosiev, A. R.

V. G. Plotnichenko, S. A. Vasiliev, A. O. Rybaltovskii, V. V. Koltashev, V. O. Sokolov, S. N. Klyamkin, O. I. Medvedkov, A. A. Rybaltovskii, A. R. Malosiev, and E. M. Dianov, "Hydrogen diffusion and ortho-para conversion in absorption and Raman spectra of germanosilicate optical fibers hydrogen-loaded at 150-170 MPa," J. Non-Cryst. Solids 351, 3677-3684 (2005).
[CrossRef]

Medvedkov, O. I.

S. A. Vasiliev, O. I. Medvedkov, V. G. Plotnichenko, E. M. Dianov, and A. O. Rybaltovsky, "Increased solubility of molecular hydrogen in UV-exposed germanosilicate fibers," Opt. Lett. 31, 11-13 (2006).
[CrossRef] [PubMed]

V. G. Plotnichenko, S. A. Vasiliev, A. O. Rybaltovskii, V. V. Koltashev, V. O. Sokolov, S. N. Klyamkin, O. I. Medvedkov, A. A. Rybaltovskii, A. R. Malosiev, and E. M. Dianov, "Hydrogen diffusion and ortho-para conversion in absorption and Raman spectra of germanosilicate optical fibers hydrogen-loaded at 150-170 MPa," J. Non-Cryst. Solids 351, 3677-3684 (2005).
[CrossRef]

Mizrahi, V.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, "Decay of ultraviolet-induced fiber Bragg gratings," J. Appl. Phys. 76, 73-80 (1994).
[CrossRef]

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, "High-pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibers," Electron. Lett. 29, 1191-1193 (1993).
[CrossRef]

Monerie, M.

W. X. Xie, P. Niay, P. Bernage, M. Douay, J. F. Bayon, T. Georges, M. Monerie, and B. Poumellec, "Experimental evidence of two types of photorefractive effects occurring during photoinscription of Bragg gratings within germano-silicate fibers," Opt. Commun. 104, 185-195 (1993).
[CrossRef]

Monroe, D.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, "Decay of ultraviolet-induced fiber Bragg gratings," J. Appl. Phys. 76, 73-80 (1994).
[CrossRef]

Neustruev, V. B.

V. B. Neustruev, "Color centres in germanosilicate glass and optical fibres," J. Phys.: Condens. Matter 6, 6901-6936 (1994).
[CrossRef]

Niay, P.

Nikolin, I. V.

A. V. Lanin, K. M. Golant, and I. V. Nikolin, "Interaction of molecular hydrogen with the doped silica core of an optical fiber at elevated temperatures," Tech. Phys. 49, 1600-1604 (2004).
[CrossRef]

O. V. Butov, K. M. Golant, and I. V. Nikolin, "Ultra-thermo-resistant Bragg gratings written in nitrogen-doped silica fibres," Electron. Lett. 38, 523-525 (2002).
[CrossRef]

Oldham, W. G.

F. Piao, W. G. Oldham, and E. E. Haller, "Ultraviolet-induced densification of fused silica," J. Appl. Phys. 87, 3287-3293 (2000).
[CrossRef]

Piao, F.

F. Piao, W. G. Oldham, and E. E. Haller, "Ultraviolet-induced densification of fused silica," J. Appl. Phys. 87, 3287-3293 (2000).
[CrossRef]

Plotnichenko, V. G.

S. A. Vasiliev, O. I. Medvedkov, V. G. Plotnichenko, E. M. Dianov, and A. O. Rybaltovsky, "Increased solubility of molecular hydrogen in UV-exposed germanosilicate fibers," Opt. Lett. 31, 11-13 (2006).
[CrossRef] [PubMed]

V. G. Plotnichenko, S. A. Vasiliev, A. O. Rybaltovskii, V. V. Koltashev, V. O. Sokolov, S. N. Klyamkin, O. I. Medvedkov, A. A. Rybaltovskii, A. R. Malosiev, and E. M. Dianov, "Hydrogen diffusion and ortho-para conversion in absorption and Raman spectra of germanosilicate optical fibers hydrogen-loaded at 150-170 MPa," J. Non-Cryst. Solids 351, 3677-3684 (2005).
[CrossRef]

Poumellec, B.

Radtsig, V. A.

V. A. Radtsig, "Nitrogen-containing paramagnetic centers in vitreous silica," Kinet. Katal. 46, 578-596 (2005).
[CrossRef]

Reed, W. A.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, "High-pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibers," Electron. Lett. 29, 1191-1193 (1993).
[CrossRef]

Riant, I.

A. Hidayat, Q. Wang, P. Niay, M. Douay, B. Poumellec, F. Kherbouche, and I. Riant, "Temperature-induced reversible changes in the spectral characteristics of fiber Bragg gratings," Appl. Opt. 40, 2632-2642 (2001).
[CrossRef]

I. Riant and F. Haller, "Study of the photosensitivity at 193 nm and comparison with photosensitivity at 240 nm influence of fiber tension: type IIa aging," J. Lightwave Technol. 15, 1464-1468 (1997).
[CrossRef]

Rybaltovskii, A. A.

V. G. Plotnichenko, S. A. Vasiliev, A. O. Rybaltovskii, V. V. Koltashev, V. O. Sokolov, S. N. Klyamkin, O. I. Medvedkov, A. A. Rybaltovskii, A. R. Malosiev, and E. M. Dianov, "Hydrogen diffusion and ortho-para conversion in absorption and Raman spectra of germanosilicate optical fibers hydrogen-loaded at 150-170 MPa," J. Non-Cryst. Solids 351, 3677-3684 (2005).
[CrossRef]

Rybaltovskii, A. O.

V. G. Plotnichenko, S. A. Vasiliev, A. O. Rybaltovskii, V. V. Koltashev, V. O. Sokolov, S. N. Klyamkin, O. I. Medvedkov, A. A. Rybaltovskii, A. R. Malosiev, and E. M. Dianov, "Hydrogen diffusion and ortho-para conversion in absorption and Raman spectra of germanosilicate optical fibers hydrogen-loaded at 150-170 MPa," J. Non-Cryst. Solids 351, 3677-3684 (2005).
[CrossRef]

A. L. Tomashuk, E. M. Dianov, K. M. Golant, and A. O. Rybaltovskii, "Gamma-radiation-induced absorption in pure-silica-core fibers in the visible spectral region: the effect of H2-loading," IEEE Trans. Nucl. Sci. 45, 1576-1579 (1998).
[CrossRef]

Rybaltovsky, A. O.

Salathe, R. P.

N. H. Ky, H. G. Limberger, R. P. Salathe, F. Cochet, and L. Dong, "UV-irradiation induced stress and index changes during the growth of type-I and type-IIA fiber gratings," Opt. Commun. 225, 313-318 (2003).
[CrossRef]

Salathé, R. P.

N. H. Ky, H. G. Limberger, R. P. Salathé, F. Cochet, and L. Dong, "Hydrogen-induced reduction of axial stress in optical fiber cores," Appl. Phys. Lett. 74, 516-518 (1999).
[CrossRef]

Shih, M. C.

C. L. Liou, L. A. Wang, M. C. Shih, and T. J. Chuang, "Characteristics of hydrogenated fiber Bragg gratings," Appl. Phys. A 64, 191-197 (1997).
[CrossRef]

C. L. Liou, L. A. Wang, M. C. Shih, and T. J. Chuang, "Characteristics of hydrogenated fiber Bragg gratings," Appl. Phys. A 64, 191-197 (1997).
[CrossRef]

Sokolov, V. O.

V. G. Plotnichenko, S. A. Vasiliev, A. O. Rybaltovskii, V. V. Koltashev, V. O. Sokolov, S. N. Klyamkin, O. I. Medvedkov, A. A. Rybaltovskii, A. R. Malosiev, and E. M. Dianov, "Hydrogen diffusion and ortho-para conversion in absorption and Raman spectra of germanosilicate optical fibers hydrogen-loaded at 150-170 MPa," J. Non-Cryst. Solids 351, 3677-3684 (2005).
[CrossRef]

Tomashuk, A. L.

A. L. Tomashuk, E. M. Dianov, K. M. Golant, and A. O. Rybaltovskii, "Gamma-radiation-induced absorption in pure-silica-core fibers in the visible spectral region: the effect of H2-loading," IEEE Trans. Nucl. Sci. 45, 1576-1579 (1998).
[CrossRef]

E. M. Dianov, K. M. Golant, R. R. Khrapko, A. S. Kurkov, and A. L. Tomashuk, "Low-hydrogen silicon oxynitride optical fibers prepared by SPCVD," J. Lightwave Technol. 13, 1471-1474 (1995).
[CrossRef]

Tugushev, V. V.

K. M. Golant and V. V. Tugushev, "A mechanism for photoinduced electronic reconstruction of the oxygen vacancy in doped quartz glass and its characteristics," Phys. Solid State 41, 928-933 (1999).
[CrossRef]

V. V. Tugushev and K. M. Golant, "Excited oxygen-deficient center in silicon dioxide as a structurally non-rigid, mixed-valence complex," J. Non-Cryst. Solids 241, 166-173 (1998).
[CrossRef]

Vasiliev, S. A.

S. A. Vasiliev, O. I. Medvedkov, V. G. Plotnichenko, E. M. Dianov, and A. O. Rybaltovsky, "Increased solubility of molecular hydrogen in UV-exposed germanosilicate fibers," Opt. Lett. 31, 11-13 (2006).
[CrossRef] [PubMed]

V. G. Plotnichenko, S. A. Vasiliev, A. O. Rybaltovskii, V. V. Koltashev, V. O. Sokolov, S. N. Klyamkin, O. I. Medvedkov, A. A. Rybaltovskii, A. R. Malosiev, and E. M. Dianov, "Hydrogen diffusion and ortho-para conversion in absorption and Raman spectra of germanosilicate optical fibers hydrogen-loaded at 150-170 MPa," J. Non-Cryst. Solids 351, 3677-3684 (2005).
[CrossRef]

Wang, L. A.

C. L. Liou, L. A. Wang, M. C. Shih, and T. J. Chuang, "Characteristics of hydrogenated fiber Bragg gratings," Appl. Phys. A 64, 191-197 (1997).
[CrossRef]

C. L. Liou, L. A. Wang, M. C. Shih, and T. J. Chuang, "Characteristics of hydrogenated fiber Bragg gratings," Appl. Phys. A 64, 191-197 (1997).
[CrossRef]

Wang, Q.

Xie, W. X.

W. X. Xie, P. Niay, P. Bernage, M. Douay, J. F. Bayon, T. Georges, M. Monerie, and B. Poumellec, "Experimental evidence of two types of photorefractive effects occurring during photoinscription of Bragg gratings within germano-silicate fibers," Opt. Commun. 104, 185-195 (1993).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. A (2)

C. L. Liou, L. A. Wang, M. C. Shih, and T. J. Chuang, "Characteristics of hydrogenated fiber Bragg gratings," Appl. Phys. A 64, 191-197 (1997).
[CrossRef]

C. L. Liou, L. A. Wang, M. C. Shih, and T. J. Chuang, "Characteristics of hydrogenated fiber Bragg gratings," Appl. Phys. A 64, 191-197 (1997).
[CrossRef]

Appl. Phys. Lett. (1)

N. H. Ky, H. G. Limberger, R. P. Salathé, F. Cochet, and L. Dong, "Hydrogen-induced reduction of axial stress in optical fiber cores," Appl. Phys. Lett. 74, 516-518 (1999).
[CrossRef]

Electron. Lett. (2)

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, "High-pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibers," Electron. Lett. 29, 1191-1193 (1993).
[CrossRef]

O. V. Butov, K. M. Golant, and I. V. Nikolin, "Ultra-thermo-resistant Bragg gratings written in nitrogen-doped silica fibres," Electron. Lett. 38, 523-525 (2002).
[CrossRef]

IEEE Trans. Nucl. Sci. (1)

A. L. Tomashuk, E. M. Dianov, K. M. Golant, and A. O. Rybaltovskii, "Gamma-radiation-induced absorption in pure-silica-core fibers in the visible spectral region: the effect of H2-loading," IEEE Trans. Nucl. Sci. 45, 1576-1579 (1998).
[CrossRef]

J. Appl. Phys. (3)

C. M. Hartwig, "Raman scattering from hydrogen and deuterium dissolved in silica as a function of pressure," J. Appl. Phys. 47, 956-959 (1976).
[CrossRef]

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, "Decay of ultraviolet-induced fiber Bragg gratings," J. Appl. Phys. 76, 73-80 (1994).
[CrossRef]

F. Piao, W. G. Oldham, and E. E. Haller, "Ultraviolet-induced densification of fused silica," J. Appl. Phys. 87, 3287-3293 (2000).
[CrossRef]

J. Lightwave Technol. (2)

I. Riant and F. Haller, "Study of the photosensitivity at 193 nm and comparison with photosensitivity at 240 nm influence of fiber tension: type IIa aging," J. Lightwave Technol. 15, 1464-1468 (1997).
[CrossRef]

E. M. Dianov, K. M. Golant, R. R. Khrapko, A. S. Kurkov, and A. L. Tomashuk, "Low-hydrogen silicon oxynitride optical fibers prepared by SPCVD," J. Lightwave Technol. 13, 1471-1474 (1995).
[CrossRef]

J. Non-Cryst. Solids (2)

V. G. Plotnichenko, S. A. Vasiliev, A. O. Rybaltovskii, V. V. Koltashev, V. O. Sokolov, S. N. Klyamkin, O. I. Medvedkov, A. A. Rybaltovskii, A. R. Malosiev, and E. M. Dianov, "Hydrogen diffusion and ortho-para conversion in absorption and Raman spectra of germanosilicate optical fibers hydrogen-loaded at 150-170 MPa," J. Non-Cryst. Solids 351, 3677-3684 (2005).
[CrossRef]

V. V. Tugushev and K. M. Golant, "Excited oxygen-deficient center in silicon dioxide as a structurally non-rigid, mixed-valence complex," J. Non-Cryst. Solids 241, 166-173 (1998).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys.: Condens. Matter (1)

V. B. Neustruev, "Color centres in germanosilicate glass and optical fibres," J. Phys.: Condens. Matter 6, 6901-6936 (1994).
[CrossRef]

Kinet. Katal. (1)

V. A. Radtsig, "Nitrogen-containing paramagnetic centers in vitreous silica," Kinet. Katal. 46, 578-596 (2005).
[CrossRef]

Opt. Commun. (3)

P. Karlitschek, G. Hillrichs, and K. F. Klein, "Influence of hydrogen on the colour center formation in optical fibers induced by pulsed UV-laser radiation. Part 1: All silica fibers with high-OH undoped core," Opt. Commun. 155, 376-385 (1998).
[CrossRef]

N. H. Ky, H. G. Limberger, R. P. Salathe, F. Cochet, and L. Dong, "UV-irradiation induced stress and index changes during the growth of type-I and type-IIA fiber gratings," Opt. Commun. 225, 313-318 (2003).
[CrossRef]

W. X. Xie, P. Niay, P. Bernage, M. Douay, J. F. Bayon, T. Georges, M. Monerie, and B. Poumellec, "Experimental evidence of two types of photorefractive effects occurring during photoinscription of Bragg gratings within germano-silicate fibers," Opt. Commun. 104, 185-195 (1993).
[CrossRef]

Opt. Lett. (2)

Phys. Solid State (1)

K. M. Golant and V. V. Tugushev, "A mechanism for photoinduced electronic reconstruction of the oxygen vacancy in doped quartz glass and its characteristics," Phys. Solid State 41, 928-933 (1999).
[CrossRef]

Tech. Phys. (1)

A. V. Lanin, K. M. Golant, and I. V. Nikolin, "Interaction of molecular hydrogen with the doped silica core of an optical fiber at elevated temperatures," Tech. Phys. 49, 1600-1604 (2004).
[CrossRef]

Other (3)

A. V. Lanin, O. V. Butov, E. M. Dianov, and K. M. Golant, "Behavior of in-fibre Bragg gratings in hydrogen atmosphere at elevated temperature," in Proceedings of 31st European Conference on Optical Communications (The Institution of Engineering and Technology, 2005), pp. 665-666.

O. V. Butov and K. M. Golant, "Core-cladding structure transformation in silica optical fibers caused by UV-induced Bragg grating inscription," in Proceedings of the XX International Congress on Glass, O-14-047 (Kyoto, Japan, 2004).

B. Leconte, "Contribution à l'étude de la photosensibilité des fibres en silice sous l'effet d'une insolation par un laser ArF," Ph.D. thesis No. 2379, (University of Lille, France, 1998). Available upon request.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup for optical fibers' hydrogen loading and their transmission spectra monitoring. OSA, optical spectrum analyzer; GPIB, general-purpose interface bus.

Fig. 2
Fig. 2

Bragg wavelength change during room-temperature hydrogen loading of samples 1, 2, 5, and 6.

Fig. 3
Fig. 3

NICC change during room-temperature hydrogen loading of samples 1, 2, 5, and 6.

Fig. 4
Fig. 4

Irreversible changes in λ B induced by the annealing cycles of Ge-doped Bragg gratings in a hydrogen atmosphere (samples 1 and 2) and their counterparts in air (samples 3 and 4).

Fig. 5
Fig. 5

Irreversible changes in NICC induced by annealing cycles of Ge-doped Bragg gratings in a hydrogen atmosphere (samples 1 and 2) and their counterparts in air (samples 3 and 4).

Fig. 6
Fig. 6

Irreversible changes in NICC induced by annealing cycles of N-doped Bragg gratings in a hydrogen atmosphere (samples 5 and 6) and their counterparts in air (samples 7 and 8).

Fig. 7
Fig. 7

Irreversible changes in λ B induced by annealing cycles of N-doped Bragg gratings in a hydrogen atmosphere (samples 5 and 6) and their counterparts in air (samples 7 and 8).

Tables (1)

Tables Icon

Table 1 Parameters of In-Fiber Bragg Gratings Used in Experiments

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ B = 2 n eff Λ ,
NICC = tanh 1 ( R ) tanh 1 ( R 0 ) ,

Metrics