Abstract

We studied the effectiveness of using polarized illumination and detection to enhance the visibility of targets buried in highly scattering media. The effects of background optical properties including scattering coefficient, absorption coefficient, and anisotropy on image visibility were examined. Both linearly and circularly polarized light were used in the imaging. Three different types of target were investigated: scattering, absorption, and reflection. The experimental results indicate that target visibility improvement achieved by a specific polarization method depends on both the background optical properties and the target type. By analyzing all polarization images, it is possible to reveal certain information about target or the scattering background.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Konnen, Polarized Light in Nature (Cambridge U. Press, 1985).
  2. T. W. Cronin, N. Shashar, R. L. Caldwell, J. Marshall, A. G. Cheroske, and T. H. Chiou, "Polarization vision and its role in biological signaling," Integr. Comp. Biol. 43, 549-548 (2003).
    [CrossRef] [PubMed]
  3. S. G. Demos and R. R. Alfano, "Optical polarization imaging," Appl. Opt. 36, 150-155 (1997).
    [CrossRef] [PubMed]
  4. G. D. Lewis, D. L. Jordan, and P. J. Roberts, "Backscattering target detection in a turbid medium by polarization discrimination," Appl. Opt. 38, 3937-3944 (1999).
    [CrossRef]
  5. S. G. Demos, H. B. Radousky, and R. R. Alfano, "Deep subsurface imaging in tissues using spectral and polarization filtering," Opt. Express 7, 23-28 (2000).
    [CrossRef] [PubMed]
  6. S. L. Jacques, J. R. Roman, K. Lee, "Imaging superficial tissues with polarized light," Lasers Surg. Med. 26, 119-129 (2000).
    [CrossRef] [PubMed]
  7. S. Morgan and I. Stockford, "Surface-reflection elimination in polarization imaging of superficial tissue," Opt. Lett. 28, 114-116 (2003).
    [CrossRef] [PubMed]
  8. V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, "Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structuresin situ," IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999).
    [CrossRef]
  9. M. P. Rowe and E. N. Pugh, Jr., J. S. Tyo, and N. Engheta, "Polarization-difference imaging: a biologically inspired technique for observation through scattering media," Opt. Lett. 20, 608-610 (1995).
    [CrossRef] [PubMed]
  10. J. S. Tyo, M. P. Rowe, E. N. Pugh, Jr., and N. Engheta, "Target detection in optically scattered media by polarization-difference imaging," Appl. Opt. 35, 1855-1870 (1996).
    [CrossRef] [PubMed]
  11. Y. Y. Schechner, S. G. Narasimhan, and S. K. Nayar, "Polarization-based vision through haze," Appl. Opt. 42, 511-525 (2003).
    [CrossRef] [PubMed]
  12. L. B. Wolff, "Polarization-based material classification from specular reflection," IEEE Trans. Pattern Anal. Mach. Intell. 12, 1059-1071 (1990).
    [CrossRef]
  13. L. B. Wolff and T. E. Boult, "Constraining object features using a polarization reflectance model," IEEE Trans. Pattern Anal. Mach. Intell. 13, 635-657 (1991).
    [CrossRef]
  14. H. Chen and L. B. Wolff, "Polarization phase-based method for material classification in computer vision," Int. J. Comput. Vis. 28, 73-83 (1998).
    [CrossRef]
  15. S. G. Demos, A. J. Papadopoulos, H. Savage, A. S. Heerdt, S. Schantz, and P. R. Alfano, "Polarization filter for biomedical tissue optical imaging," Photochem. Photobiol. 66, 821-825 (1997).
    [CrossRef]
  16. S. L. Jacques, J. R. Roman, and K. Lee, "Imaging superficial tissues with polarized light," Lasers Surg. Med. 26, 119-129 (2000).
    [CrossRef] [PubMed]
  17. S. L. Jacques, J. C. Ramella-Roman, and K. Lee, "Imaging skin pathology with polarized light," J. Biomed. Opt. 7, 329-340 (2002).
    [CrossRef] [PubMed]
  18. G. D. Gilbert and J. C. Pernicka, "Improvement of underwater visibility by reduction of backscatter with a circular polarization technique," Appl. Opt. 6, 741-746 (1967).
    [CrossRef] [PubMed]
  19. G. D. Gilbert and J. C. Pemicka, "Improvement of underwater visibility by reduction of backscatter with a circular polarization technique," Appl. Opt. 6, 741-746 (1967).
    [CrossRef] [PubMed]
  20. V. Sankaran, J. T. Walsh, and D. J. Maitland, "Comparative study of polarized light propagation in biologic tissues," J. Biomed. Opt. 7, 300-306 (2002).
    [CrossRef] [PubMed]
  21. F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, "Polarization memory of multiply scattered light," Phys. Rev. B 40, 9342-9345 (1989).
    [CrossRef]
  22. A. D. Kim and M. Moscoso, "Backscattering of circularly polarized pulses," Opt. Lett. 27, 1589-1991 (2002).
    [CrossRef]
  23. X. Ni and R. R. Alfano, "Time-resolved backscattering of circularly and linearly polarized light in a turbid medium," Opt. Lett. 29, 2773-2775 (2004).
    [CrossRef] [PubMed]
  24. S. A. Kartazayeva, X. Ni, and R. R. Alfano, "Backscattering target detection in a turbid medium by use of circularly and linearly polarized light," Opt. Lett. 30, 1168-1170 (2005).
    [CrossRef] [PubMed]
  25. G. Yao, "Differential optical polarization imaging in turbid media with different embedded objects," Opt. Commun. 241, 255-261 (2004).
    [CrossRef]
  26. R. Nothdurft and G. Yao, "Expression of target optical properties in subsurface polarization-gated imaging," Opt. Express 13, 4185-4195 (2005).
    [CrossRef] [PubMed]
  27. N. Ghosh, H. S. Patel, and P. K. Gupta, "Depolarization of light in tissue phantoms--effect of a distribution in the size of scatterers," Opt. Express 11, 2198-2205 (2003).
    [CrossRef] [PubMed]
  28. R. Nothdurft and G. Yao, "Reveal obscured subsurface object using laser speckle imaging," Opt. Express 13, 10034-10039 (2005).
    [CrossRef] [PubMed]
  29. F. Fabbri, M. A. Franceschini, and S. Fantini, "Characterization of spatial and temporal variations in the optical properties of tissue like media with diffuse reflectance imaging," Appl. Opt. 42, 3063-3072 (2003).
    [CrossRef] [PubMed]
  30. S. P. Morgan and M. E. Ridgway, "Polarization properties of light backscattered from a two layer scattering medium," Opt. Express 7, 395-402 (2000).
    [CrossRef] [PubMed]

2005 (3)

2004 (2)

X. Ni and R. R. Alfano, "Time-resolved backscattering of circularly and linearly polarized light in a turbid medium," Opt. Lett. 29, 2773-2775 (2004).
[CrossRef] [PubMed]

G. Yao, "Differential optical polarization imaging in turbid media with different embedded objects," Opt. Commun. 241, 255-261 (2004).
[CrossRef]

2003 (5)

2002 (3)

A. D. Kim and M. Moscoso, "Backscattering of circularly polarized pulses," Opt. Lett. 27, 1589-1991 (2002).
[CrossRef]

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, "Imaging skin pathology with polarized light," J. Biomed. Opt. 7, 329-340 (2002).
[CrossRef] [PubMed]

V. Sankaran, J. T. Walsh, and D. J. Maitland, "Comparative study of polarized light propagation in biologic tissues," J. Biomed. Opt. 7, 300-306 (2002).
[CrossRef] [PubMed]

2000 (4)

1999 (2)

G. D. Lewis, D. L. Jordan, and P. J. Roberts, "Backscattering target detection in a turbid medium by polarization discrimination," Appl. Opt. 38, 3937-3944 (1999).
[CrossRef]

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, "Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structuresin situ," IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999).
[CrossRef]

1998 (1)

H. Chen and L. B. Wolff, "Polarization phase-based method for material classification in computer vision," Int. J. Comput. Vis. 28, 73-83 (1998).
[CrossRef]

1997 (2)

S. G. Demos, A. J. Papadopoulos, H. Savage, A. S. Heerdt, S. Schantz, and P. R. Alfano, "Polarization filter for biomedical tissue optical imaging," Photochem. Photobiol. 66, 821-825 (1997).
[CrossRef]

S. G. Demos and R. R. Alfano, "Optical polarization imaging," Appl. Opt. 36, 150-155 (1997).
[CrossRef] [PubMed]

1996 (1)

1995 (1)

1991 (1)

L. B. Wolff and T. E. Boult, "Constraining object features using a polarization reflectance model," IEEE Trans. Pattern Anal. Mach. Intell. 13, 635-657 (1991).
[CrossRef]

1990 (1)

L. B. Wolff, "Polarization-based material classification from specular reflection," IEEE Trans. Pattern Anal. Mach. Intell. 12, 1059-1071 (1990).
[CrossRef]

1989 (1)

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, "Polarization memory of multiply scattered light," Phys. Rev. B 40, 9342-9345 (1989).
[CrossRef]

1967 (2)

Alfano, P. R.

S. G. Demos, A. J. Papadopoulos, H. Savage, A. S. Heerdt, S. Schantz, and P. R. Alfano, "Polarization filter for biomedical tissue optical imaging," Photochem. Photobiol. 66, 821-825 (1997).
[CrossRef]

Alfano, R. R.

Backman, V.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, "Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structuresin situ," IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999).
[CrossRef]

Badizadegan, K.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, "Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structuresin situ," IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999).
[CrossRef]

Boult, T. E.

L. B. Wolff and T. E. Boult, "Constraining object features using a polarization reflectance model," IEEE Trans. Pattern Anal. Mach. Intell. 13, 635-657 (1991).
[CrossRef]

Caldwell, R. L.

T. W. Cronin, N. Shashar, R. L. Caldwell, J. Marshall, A. G. Cheroske, and T. H. Chiou, "Polarization vision and its role in biological signaling," Integr. Comp. Biol. 43, 549-548 (2003).
[CrossRef] [PubMed]

Chen, H.

H. Chen and L. B. Wolff, "Polarization phase-based method for material classification in computer vision," Int. J. Comput. Vis. 28, 73-83 (1998).
[CrossRef]

Cheroske, A. G.

T. W. Cronin, N. Shashar, R. L. Caldwell, J. Marshall, A. G. Cheroske, and T. H. Chiou, "Polarization vision and its role in biological signaling," Integr. Comp. Biol. 43, 549-548 (2003).
[CrossRef] [PubMed]

Chiou, T. H.

T. W. Cronin, N. Shashar, R. L. Caldwell, J. Marshall, A. G. Cheroske, and T. H. Chiou, "Polarization vision and its role in biological signaling," Integr. Comp. Biol. 43, 549-548 (2003).
[CrossRef] [PubMed]

Cronin, T. W.

T. W. Cronin, N. Shashar, R. L. Caldwell, J. Marshall, A. G. Cheroske, and T. H. Chiou, "Polarization vision and its role in biological signaling," Integr. Comp. Biol. 43, 549-548 (2003).
[CrossRef] [PubMed]

Dasari, R. R.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, "Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structuresin situ," IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999).
[CrossRef]

Demos, S. G.

Engheta, N.

Fabbri, F.

Fantini, S.

Feld, M. S.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, "Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structuresin situ," IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999).
[CrossRef]

Franceschini, M. A.

Ghosh, N.

Gilbert, G. D.

Gupta, P. K.

Gurjar, R.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, "Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structuresin situ," IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999).
[CrossRef]

Heerdt, A. S.

S. G. Demos, A. J. Papadopoulos, H. Savage, A. S. Heerdt, S. Schantz, and P. R. Alfano, "Polarization filter for biomedical tissue optical imaging," Photochem. Photobiol. 66, 821-825 (1997).
[CrossRef]

Itzkan, I.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, "Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structuresin situ," IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999).
[CrossRef]

Jacques, S. L.

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, "Imaging skin pathology with polarized light," J. Biomed. Opt. 7, 329-340 (2002).
[CrossRef] [PubMed]

S. L. Jacques, J. R. Roman, and K. Lee, "Imaging superficial tissues with polarized light," Lasers Surg. Med. 26, 119-129 (2000).
[CrossRef] [PubMed]

S. L. Jacques, J. R. Roman, K. Lee, "Imaging superficial tissues with polarized light," Lasers Surg. Med. 26, 119-129 (2000).
[CrossRef] [PubMed]

Jordan, D. L.

Kartazayeva, S. A.

Kim, A. D.

Konnen, G. P.

G. P. Konnen, Polarized Light in Nature (Cambridge U. Press, 1985).

Lee, K.

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, "Imaging skin pathology with polarized light," J. Biomed. Opt. 7, 329-340 (2002).
[CrossRef] [PubMed]

S. L. Jacques, J. R. Roman, and K. Lee, "Imaging superficial tissues with polarized light," Lasers Surg. Med. 26, 119-129 (2000).
[CrossRef] [PubMed]

S. L. Jacques, J. R. Roman, K. Lee, "Imaging superficial tissues with polarized light," Lasers Surg. Med. 26, 119-129 (2000).
[CrossRef] [PubMed]

Lewis, G. D.

MacKintosh, F. C.

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, "Polarization memory of multiply scattered light," Phys. Rev. B 40, 9342-9345 (1989).
[CrossRef]

Maitland, D. J.

V. Sankaran, J. T. Walsh, and D. J. Maitland, "Comparative study of polarized light propagation in biologic tissues," J. Biomed. Opt. 7, 300-306 (2002).
[CrossRef] [PubMed]

Marshall, J.

T. W. Cronin, N. Shashar, R. L. Caldwell, J. Marshall, A. G. Cheroske, and T. H. Chiou, "Polarization vision and its role in biological signaling," Integr. Comp. Biol. 43, 549-548 (2003).
[CrossRef] [PubMed]

Morgan, S.

Morgan, S. P.

Moscoso, M.

Narasimhan, S. G.

Nayar, S. K.

Ni, X.

Nothdurft, R.

Papadopoulos, A. J.

S. G. Demos, A. J. Papadopoulos, H. Savage, A. S. Heerdt, S. Schantz, and P. R. Alfano, "Polarization filter for biomedical tissue optical imaging," Photochem. Photobiol. 66, 821-825 (1997).
[CrossRef]

Patel, H. S.

Pemicka, J. C.

Perelman, L. T.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, "Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structuresin situ," IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999).
[CrossRef]

Pernicka, J. C.

Pine, D. J.

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, "Polarization memory of multiply scattered light," Phys. Rev. B 40, 9342-9345 (1989).
[CrossRef]

Pugh, E. N.

Radousky, H. B.

Ramella-Roman, J. C.

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, "Imaging skin pathology with polarized light," J. Biomed. Opt. 7, 329-340 (2002).
[CrossRef] [PubMed]

Ridgway, M. E.

Roberts, P. J.

Roman, J. R.

S. L. Jacques, J. R. Roman, K. Lee, "Imaging superficial tissues with polarized light," Lasers Surg. Med. 26, 119-129 (2000).
[CrossRef] [PubMed]

S. L. Jacques, J. R. Roman, and K. Lee, "Imaging superficial tissues with polarized light," Lasers Surg. Med. 26, 119-129 (2000).
[CrossRef] [PubMed]

Rowe, M. P.

Sankaran, V.

V. Sankaran, J. T. Walsh, and D. J. Maitland, "Comparative study of polarized light propagation in biologic tissues," J. Biomed. Opt. 7, 300-306 (2002).
[CrossRef] [PubMed]

Savage, H.

S. G. Demos, A. J. Papadopoulos, H. Savage, A. S. Heerdt, S. Schantz, and P. R. Alfano, "Polarization filter for biomedical tissue optical imaging," Photochem. Photobiol. 66, 821-825 (1997).
[CrossRef]

Schantz, S.

S. G. Demos, A. J. Papadopoulos, H. Savage, A. S. Heerdt, S. Schantz, and P. R. Alfano, "Polarization filter for biomedical tissue optical imaging," Photochem. Photobiol. 66, 821-825 (1997).
[CrossRef]

Schechner, Y. Y.

Shashar, N.

T. W. Cronin, N. Shashar, R. L. Caldwell, J. Marshall, A. G. Cheroske, and T. H. Chiou, "Polarization vision and its role in biological signaling," Integr. Comp. Biol. 43, 549-548 (2003).
[CrossRef] [PubMed]

Stockford, I.

Tyo, J. S.

Walsh, J. T.

V. Sankaran, J. T. Walsh, and D. J. Maitland, "Comparative study of polarized light propagation in biologic tissues," J. Biomed. Opt. 7, 300-306 (2002).
[CrossRef] [PubMed]

Weitz, D. A.

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, "Polarization memory of multiply scattered light," Phys. Rev. B 40, 9342-9345 (1989).
[CrossRef]

Wolff, L. B.

H. Chen and L. B. Wolff, "Polarization phase-based method for material classification in computer vision," Int. J. Comput. Vis. 28, 73-83 (1998).
[CrossRef]

L. B. Wolff and T. E. Boult, "Constraining object features using a polarization reflectance model," IEEE Trans. Pattern Anal. Mach. Intell. 13, 635-657 (1991).
[CrossRef]

L. B. Wolff, "Polarization-based material classification from specular reflection," IEEE Trans. Pattern Anal. Mach. Intell. 12, 1059-1071 (1990).
[CrossRef]

Yao, G.

Zhu, J. X.

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, "Polarization memory of multiply scattered light," Phys. Rev. B 40, 9342-9345 (1989).
[CrossRef]

Appl. Opt. (7)

IEEE J. Sel. Top. Quantum Electron. (1)

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, "Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structuresin situ," IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999).
[CrossRef]

IEEE Trans. Pattern Anal. Mach. Intell. (2)

L. B. Wolff, "Polarization-based material classification from specular reflection," IEEE Trans. Pattern Anal. Mach. Intell. 12, 1059-1071 (1990).
[CrossRef]

L. B. Wolff and T. E. Boult, "Constraining object features using a polarization reflectance model," IEEE Trans. Pattern Anal. Mach. Intell. 13, 635-657 (1991).
[CrossRef]

Int. J. Comput. Vis. (1)

H. Chen and L. B. Wolff, "Polarization phase-based method for material classification in computer vision," Int. J. Comput. Vis. 28, 73-83 (1998).
[CrossRef]

Integr. Comp. Biol. (1)

T. W. Cronin, N. Shashar, R. L. Caldwell, J. Marshall, A. G. Cheroske, and T. H. Chiou, "Polarization vision and its role in biological signaling," Integr. Comp. Biol. 43, 549-548 (2003).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, "Imaging skin pathology with polarized light," J. Biomed. Opt. 7, 329-340 (2002).
[CrossRef] [PubMed]

V. Sankaran, J. T. Walsh, and D. J. Maitland, "Comparative study of polarized light propagation in biologic tissues," J. Biomed. Opt. 7, 300-306 (2002).
[CrossRef] [PubMed]

Lasers Surg. Med. (2)

S. L. Jacques, J. R. Roman, K. Lee, "Imaging superficial tissues with polarized light," Lasers Surg. Med. 26, 119-129 (2000).
[CrossRef] [PubMed]

S. L. Jacques, J. R. Roman, and K. Lee, "Imaging superficial tissues with polarized light," Lasers Surg. Med. 26, 119-129 (2000).
[CrossRef] [PubMed]

Opt. Commun. (1)

G. Yao, "Differential optical polarization imaging in turbid media with different embedded objects," Opt. Commun. 241, 255-261 (2004).
[CrossRef]

Opt. Express (5)

Opt. Lett. (5)

Photochem. Photobiol. (1)

S. G. Demos, A. J. Papadopoulos, H. Savage, A. S. Heerdt, S. Schantz, and P. R. Alfano, "Polarization filter for biomedical tissue optical imaging," Photochem. Photobiol. 66, 821-825 (1997).
[CrossRef]

Phys. Rev. B (1)

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, "Polarization memory of multiply scattered light," Phys. Rev. B 40, 9342-9345 (1989).
[CrossRef]

Other (1)

G. P. Konnen, Polarized Light in Nature (Cambridge U. Press, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the experimental setup: P, polarizer; QW, quarter-wave plate; VW, variable wave plate.

Fig. 2
Fig. 2

Polarization images of combined multiple targets in the scattering media of two different scattering coefficients. The absorption coefficient is 0.1 cm - 1 , g = 0.72 . The reflection target is placed at the top of the image, and the scattering and absorption targets are located at the bottom left and right, respectively. Physical depth was adjusted to maintain an optical depth of 0.9   mfp .

Fig. 3
Fig. 3

Effects of background optical properties on an unpolarized image visibility of (a) scattering target, (b) absorption target, and (c) reflection target. The background optical properties are listed in the figure legend as μ s ′∕μ a g.

Fig. 4
Fig. 4

Effects of background optical properties on polarization image visibility of a scattering target. The optical properties of the turbid media are: (a) μ s = 3.75 cm - 1 , μ a = 0.1 cm - 1 , and g = 0.92 ; (b) μ s = 15.0 cm - 1 , μ a = 0.1 cm - 1 , and g = 0.92 ; (c) μ s = 15.0 cm - 1 , μ a = 0.4 cm - 1 , and g = 0.92 ; (d) μ s = 3.75 cm - 1 , μ a = 0.1 cm - 1 , and g = 0.72 .

Fig. 5
Fig. 5

Effects of background optical properties on the polarization image visibility of an absorption target. The optical properties of the turbid media are the same as in Fig. 4.

Fig. 6
Fig. 6

Effects of background optical properties on the polarization image visibility of a reflection target. The optical properties of the turbid media are the same as in Fig. 4.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

DIFF = CO - CR .
POL = DIFF ( CO + CR ) .
visibility = | T ¯ - B ¯ | σ B ,

Metrics