Abstract

A 2Gb/s 0.5  μm complementary metal-oxide semiconductor optical transceiver designed for board- or backplane level power-efficient interconnections is presented. The transceiver supports optical wake-on-link (OWL), an event-driven dynamic power-on technique. Depending on external events, the transceiver resides in either the active mode or the sleep mode and switches accordingly. The active-to-sleep transition shuts off the normal, gigabit link and turns on dedicated circuits to establish a low-power (1 .8   mW), low data rate (less than 100Mbits/s) link. In contrast the normal, gigabit link consumes over 100 mW. Similarly the sleep-to-active transition shuts off the low-power link and turns on the normal, gigabit link. The low-power link, sharing the same optical channel with the normal, gigabit link, is used to achieve transmitter∕receiver pair power-on synchronization and greatly reduces the power consumption of the transceiver. A free-space optical platform was built to evaluate the transceiver performance. The experiment successfully demonstrated the event-driven dynamic power-on operation. To our knowledge, this is the first time a dynamic power-on scheme has been implemented for optical interconnects. The areas of the circuits that implement the low-power link are approximately one-tenth of the areas of the gigabit link circuits.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Hawkins and B. Hawthorne, "2.5Gbps oxide isolated VCSEL reliability report"; http://www.adopco.com/publication/documents/2.5GbpsOxideIsolatedVCSELReliabilityReport.pdf (20 May 2003)
  2. Ulm Photonics VCSEL Fab, Ulm, Germany, "VCSEL output power measured at room temperature as a function of actual stress hours"; http://www.semiconductor-technology.com/projects/ulm_photonics/ulml_photonics5.html (2004).
  3. C. Wilmsen, H. Temkin, and L. A. Coldren, "Fabrication and performance of vertical-cavity surface-emitting lasers," in Vertical-Cavity Surface-Emitting Lasers: Design, Fabrication, Characterization and Applications (Cambridge University, 1999), pp. 193-225.
  4. B. Krzyzanowski, J. Guenter, and J. Tatum, "VCSEL Spice model"; http://www.adopco.com/publication/documents/VCSELSpiceModel.pdf (1998).
  5. D. Genossar and N. Shamir, "Intel Pentium M processor power estimation, budgeting, optimization, and validation," Intel Technol. J. 7(2), 44-49 (2003).
  6. S. Gochman, R. Ronen, I. Anati, A. Berkovits, T. Kurts, A. Naveh, A. Saeed, Z. Sperber, and R. C. Valentine, "The Intel Pentium M processor: microarchitecture and performance," Intel Technol. J. 7(2), 21-36 (2003).
  7. X. Wang, F. Kiamilev, G. Papen, J. Ekman, P. Gui, M. McFadden, J. Deroba, M. Haney, and C. Kuznia, "Performance-based power optimization for digital optical interconnection," Appl. Opt. 44, 6240-6252 (2005).
    [CrossRef] [PubMed]
  8. IEEE802.11 Standards, "Wireless LAN medium access control and physical layer specifications, 1999"; http://standards.ieee.org/getieee802/download/802.11-1999.pdf.
  9. C. Hu and J. Hou, "LISP: a link-indexed statistical traffic prediction approach to improving IEEE 802.11 PSM," in IEEE Proceedings of 24th International Conference on Distributed Computing Systems (IEEE, 2004), pp. 292-300.
    [CrossRef]
  10. S. Takeuchi, K. Yamazaki, K. Sezaki, and Y. Yasuda, "An improved power saving mechanism for MAC protocol in ad hoc networks," IEEE GLOBECOM 2004 (IEEE, 2005), Vol. 5, pp. 2791-2796.
  11. C. F. Chiasserini and R. Rao, "Combining paging with dynamic power management," in IEEE INFOCOM 2001 (IEEE, 2002), pp. 12-19.
  12. E. Shih, P. Bahl, and M. Sinclair, "Wake on wireless: an event-driven energy saving strategy for battery-operated devices," in ACM/IEEE Proceedings of the Eighth Annual International Conference on Mobile Computing and Networking (IEEE, 2002), pp. 160-171.
    [CrossRef]
  13. X. Wang, F. Kiamilev, and P. Gui, "Current-bleeding fast power-on for VCSEL-based gigabit optical transceivers," in IEEE/LEOS 2004 Annual Meeting (IEEE, 2005), Vol. 1, pp. 314-315.
  14. C. Su, L. K. Chen, and K. W. Cheung, "Theory of burst-mode receiver and its applications in optical multiaccess networks," J. Lightwave Technol. 15, 590-606 (1997).
    [CrossRef]
  15. Y. Ota, R. Swartz, V. Archer, S. Korotky, M. Banu, and A. Dunlop, "High-speed, burst-mode, packet-capable optical receiver and instantaneous clock recovery for optical bus operation," J. Lightwave Technol. 12, 325-331 (1994).
    [CrossRef]
  16. M. Banu and A. E. Dunlop, "Clock recovery circuits with instantaneous locking," Electron. Lett. 28, 2127-2130 (1992).
    [CrossRef]
  17. D. Bertsekas and R. Gallager, "Delay models in data networks," in Data Networks (Prentice-Hall, 1992), pp. 149-270.
  18. P. Gui, F. Kiamilev, X. Wang, X. Wang, M. McFadden, M. Haney, and C. Kuznia, "A 2Gbps 0.5μm CMOS parallel optical transceiver with fast power-on capability," J. Lightwave Technol. 22, 2135-2148 (2004).
    [CrossRef]
  19. R. G. Hunsperger, "Direct modulation of semiconductor lasers," in Integrated Optics: Theory and Technology, 5th ed. (Springer-Verlag, 2002), pp. 281-296.
  20. Peregrine Semiconductor SoS CMOS Foundry Service; http://www.peregrine-semi.com/ (2002).
  21. Xilinx, Inc., "Virtex-II Pro(tm) platform FPGA user guide," Document UG012; http://www.xilinx.com/bvdocs/userguides/ug012.pdf (19 April 2004).
  22. Xilinx, Inc., "RocketIO(tm) transceiver user guide," Document UG024; http://www.xilinx.com/bvdocs/userguides/ug024.pdf (24 February 2004).
  23. Xilinx, Inc., "Aurora protocol specification," Document SP002; http://www.xilinx.com/ (20 October 2003)
  24. Emcore Corporation, "1 × 4 VCSEL array 2.7-3.6Gb/s, 8685-1402," and "1 × 4 GaAs PIN photodiode array model 8485-1406"; http://www.emcore.com/ (2004).

2005 (1)

2004 (1)

2003 (2)

D. Genossar and N. Shamir, "Intel Pentium M processor power estimation, budgeting, optimization, and validation," Intel Technol. J. 7(2), 44-49 (2003).

S. Gochman, R. Ronen, I. Anati, A. Berkovits, T. Kurts, A. Naveh, A. Saeed, Z. Sperber, and R. C. Valentine, "The Intel Pentium M processor: microarchitecture and performance," Intel Technol. J. 7(2), 21-36 (2003).

1997 (1)

C. Su, L. K. Chen, and K. W. Cheung, "Theory of burst-mode receiver and its applications in optical multiaccess networks," J. Lightwave Technol. 15, 590-606 (1997).
[CrossRef]

1994 (1)

Y. Ota, R. Swartz, V. Archer, S. Korotky, M. Banu, and A. Dunlop, "High-speed, burst-mode, packet-capable optical receiver and instantaneous clock recovery for optical bus operation," J. Lightwave Technol. 12, 325-331 (1994).
[CrossRef]

1992 (1)

M. Banu and A. E. Dunlop, "Clock recovery circuits with instantaneous locking," Electron. Lett. 28, 2127-2130 (1992).
[CrossRef]

Anati, I.

S. Gochman, R. Ronen, I. Anati, A. Berkovits, T. Kurts, A. Naveh, A. Saeed, Z. Sperber, and R. C. Valentine, "The Intel Pentium M processor: microarchitecture and performance," Intel Technol. J. 7(2), 21-36 (2003).

Archer, V.

Y. Ota, R. Swartz, V. Archer, S. Korotky, M. Banu, and A. Dunlop, "High-speed, burst-mode, packet-capable optical receiver and instantaneous clock recovery for optical bus operation," J. Lightwave Technol. 12, 325-331 (1994).
[CrossRef]

Bahl, P.

E. Shih, P. Bahl, and M. Sinclair, "Wake on wireless: an event-driven energy saving strategy for battery-operated devices," in ACM/IEEE Proceedings of the Eighth Annual International Conference on Mobile Computing and Networking (IEEE, 2002), pp. 160-171.
[CrossRef]

Banu, M.

Y. Ota, R. Swartz, V. Archer, S. Korotky, M. Banu, and A. Dunlop, "High-speed, burst-mode, packet-capable optical receiver and instantaneous clock recovery for optical bus operation," J. Lightwave Technol. 12, 325-331 (1994).
[CrossRef]

M. Banu and A. E. Dunlop, "Clock recovery circuits with instantaneous locking," Electron. Lett. 28, 2127-2130 (1992).
[CrossRef]

Berkovits, A.

S. Gochman, R. Ronen, I. Anati, A. Berkovits, T. Kurts, A. Naveh, A. Saeed, Z. Sperber, and R. C. Valentine, "The Intel Pentium M processor: microarchitecture and performance," Intel Technol. J. 7(2), 21-36 (2003).

Bertsekas, D.

D. Bertsekas and R. Gallager, "Delay models in data networks," in Data Networks (Prentice-Hall, 1992), pp. 149-270.

Chen, L. K.

C. Su, L. K. Chen, and K. W. Cheung, "Theory of burst-mode receiver and its applications in optical multiaccess networks," J. Lightwave Technol. 15, 590-606 (1997).
[CrossRef]

Cheung, K. W.

C. Su, L. K. Chen, and K. W. Cheung, "Theory of burst-mode receiver and its applications in optical multiaccess networks," J. Lightwave Technol. 15, 590-606 (1997).
[CrossRef]

Chiasserini, C. F.

C. F. Chiasserini and R. Rao, "Combining paging with dynamic power management," in IEEE INFOCOM 2001 (IEEE, 2002), pp. 12-19.

Coldren, L. A.

C. Wilmsen, H. Temkin, and L. A. Coldren, "Fabrication and performance of vertical-cavity surface-emitting lasers," in Vertical-Cavity Surface-Emitting Lasers: Design, Fabrication, Characterization and Applications (Cambridge University, 1999), pp. 193-225.

Deroba, J.

Dunlop, A.

Y. Ota, R. Swartz, V. Archer, S. Korotky, M. Banu, and A. Dunlop, "High-speed, burst-mode, packet-capable optical receiver and instantaneous clock recovery for optical bus operation," J. Lightwave Technol. 12, 325-331 (1994).
[CrossRef]

Dunlop, A. E.

M. Banu and A. E. Dunlop, "Clock recovery circuits with instantaneous locking," Electron. Lett. 28, 2127-2130 (1992).
[CrossRef]

Ekman, J.

Gallager, R.

D. Bertsekas and R. Gallager, "Delay models in data networks," in Data Networks (Prentice-Hall, 1992), pp. 149-270.

Genossar, D.

D. Genossar and N. Shamir, "Intel Pentium M processor power estimation, budgeting, optimization, and validation," Intel Technol. J. 7(2), 44-49 (2003).

Gochman, S.

S. Gochman, R. Ronen, I. Anati, A. Berkovits, T. Kurts, A. Naveh, A. Saeed, Z. Sperber, and R. C. Valentine, "The Intel Pentium M processor: microarchitecture and performance," Intel Technol. J. 7(2), 21-36 (2003).

Guenter, J.

B. Krzyzanowski, J. Guenter, and J. Tatum, "VCSEL Spice model"; http://www.adopco.com/publication/documents/VCSELSpiceModel.pdf (1998).

Gui, P.

Haney, M.

Hawkins, B.

B. Hawkins and B. Hawthorne, "2.5Gbps oxide isolated VCSEL reliability report"; http://www.adopco.com/publication/documents/2.5GbpsOxideIsolatedVCSELReliabilityReport.pdf (20 May 2003)

Hawthorne, B.

B. Hawkins and B. Hawthorne, "2.5Gbps oxide isolated VCSEL reliability report"; http://www.adopco.com/publication/documents/2.5GbpsOxideIsolatedVCSELReliabilityReport.pdf (20 May 2003)

Hou, J.

C. Hu and J. Hou, "LISP: a link-indexed statistical traffic prediction approach to improving IEEE 802.11 PSM," in IEEE Proceedings of 24th International Conference on Distributed Computing Systems (IEEE, 2004), pp. 292-300.
[CrossRef]

Hu, C.

C. Hu and J. Hou, "LISP: a link-indexed statistical traffic prediction approach to improving IEEE 802.11 PSM," in IEEE Proceedings of 24th International Conference on Distributed Computing Systems (IEEE, 2004), pp. 292-300.
[CrossRef]

Hunsperger, R. G.

R. G. Hunsperger, "Direct modulation of semiconductor lasers," in Integrated Optics: Theory and Technology, 5th ed. (Springer-Verlag, 2002), pp. 281-296.

Kiamilev, F.

Korotky, S.

Y. Ota, R. Swartz, V. Archer, S. Korotky, M. Banu, and A. Dunlop, "High-speed, burst-mode, packet-capable optical receiver and instantaneous clock recovery for optical bus operation," J. Lightwave Technol. 12, 325-331 (1994).
[CrossRef]

Krzyzanowski, B.

B. Krzyzanowski, J. Guenter, and J. Tatum, "VCSEL Spice model"; http://www.adopco.com/publication/documents/VCSELSpiceModel.pdf (1998).

Kurts, T.

S. Gochman, R. Ronen, I. Anati, A. Berkovits, T. Kurts, A. Naveh, A. Saeed, Z. Sperber, and R. C. Valentine, "The Intel Pentium M processor: microarchitecture and performance," Intel Technol. J. 7(2), 21-36 (2003).

Kuznia, C.

McFadden, M.

Naveh, A.

S. Gochman, R. Ronen, I. Anati, A. Berkovits, T. Kurts, A. Naveh, A. Saeed, Z. Sperber, and R. C. Valentine, "The Intel Pentium M processor: microarchitecture and performance," Intel Technol. J. 7(2), 21-36 (2003).

Ota, Y.

Y. Ota, R. Swartz, V. Archer, S. Korotky, M. Banu, and A. Dunlop, "High-speed, burst-mode, packet-capable optical receiver and instantaneous clock recovery for optical bus operation," J. Lightwave Technol. 12, 325-331 (1994).
[CrossRef]

Papen, G.

Rao, R.

C. F. Chiasserini and R. Rao, "Combining paging with dynamic power management," in IEEE INFOCOM 2001 (IEEE, 2002), pp. 12-19.

Ronen, R.

S. Gochman, R. Ronen, I. Anati, A. Berkovits, T. Kurts, A. Naveh, A. Saeed, Z. Sperber, and R. C. Valentine, "The Intel Pentium M processor: microarchitecture and performance," Intel Technol. J. 7(2), 21-36 (2003).

Saeed, A.

S. Gochman, R. Ronen, I. Anati, A. Berkovits, T. Kurts, A. Naveh, A. Saeed, Z. Sperber, and R. C. Valentine, "The Intel Pentium M processor: microarchitecture and performance," Intel Technol. J. 7(2), 21-36 (2003).

Sezaki, K.

S. Takeuchi, K. Yamazaki, K. Sezaki, and Y. Yasuda, "An improved power saving mechanism for MAC protocol in ad hoc networks," IEEE GLOBECOM 2004 (IEEE, 2005), Vol. 5, pp. 2791-2796.

Shamir, N.

D. Genossar and N. Shamir, "Intel Pentium M processor power estimation, budgeting, optimization, and validation," Intel Technol. J. 7(2), 44-49 (2003).

Shih, E.

E. Shih, P. Bahl, and M. Sinclair, "Wake on wireless: an event-driven energy saving strategy for battery-operated devices," in ACM/IEEE Proceedings of the Eighth Annual International Conference on Mobile Computing and Networking (IEEE, 2002), pp. 160-171.
[CrossRef]

Sinclair, M.

E. Shih, P. Bahl, and M. Sinclair, "Wake on wireless: an event-driven energy saving strategy for battery-operated devices," in ACM/IEEE Proceedings of the Eighth Annual International Conference on Mobile Computing and Networking (IEEE, 2002), pp. 160-171.
[CrossRef]

Sperber, Z.

S. Gochman, R. Ronen, I. Anati, A. Berkovits, T. Kurts, A. Naveh, A. Saeed, Z. Sperber, and R. C. Valentine, "The Intel Pentium M processor: microarchitecture and performance," Intel Technol. J. 7(2), 21-36 (2003).

Su, C.

C. Su, L. K. Chen, and K. W. Cheung, "Theory of burst-mode receiver and its applications in optical multiaccess networks," J. Lightwave Technol. 15, 590-606 (1997).
[CrossRef]

Swartz, R.

Y. Ota, R. Swartz, V. Archer, S. Korotky, M. Banu, and A. Dunlop, "High-speed, burst-mode, packet-capable optical receiver and instantaneous clock recovery for optical bus operation," J. Lightwave Technol. 12, 325-331 (1994).
[CrossRef]

Takeuchi, S.

S. Takeuchi, K. Yamazaki, K. Sezaki, and Y. Yasuda, "An improved power saving mechanism for MAC protocol in ad hoc networks," IEEE GLOBECOM 2004 (IEEE, 2005), Vol. 5, pp. 2791-2796.

Tatum, J.

B. Krzyzanowski, J. Guenter, and J. Tatum, "VCSEL Spice model"; http://www.adopco.com/publication/documents/VCSELSpiceModel.pdf (1998).

Temkin, H.

C. Wilmsen, H. Temkin, and L. A. Coldren, "Fabrication and performance of vertical-cavity surface-emitting lasers," in Vertical-Cavity Surface-Emitting Lasers: Design, Fabrication, Characterization and Applications (Cambridge University, 1999), pp. 193-225.

Valentine, R. C.

S. Gochman, R. Ronen, I. Anati, A. Berkovits, T. Kurts, A. Naveh, A. Saeed, Z. Sperber, and R. C. Valentine, "The Intel Pentium M processor: microarchitecture and performance," Intel Technol. J. 7(2), 21-36 (2003).

Wang, X.

Wilmsen, C.

C. Wilmsen, H. Temkin, and L. A. Coldren, "Fabrication and performance of vertical-cavity surface-emitting lasers," in Vertical-Cavity Surface-Emitting Lasers: Design, Fabrication, Characterization and Applications (Cambridge University, 1999), pp. 193-225.

Yamazaki, K.

S. Takeuchi, K. Yamazaki, K. Sezaki, and Y. Yasuda, "An improved power saving mechanism for MAC protocol in ad hoc networks," IEEE GLOBECOM 2004 (IEEE, 2005), Vol. 5, pp. 2791-2796.

Yasuda, Y.

S. Takeuchi, K. Yamazaki, K. Sezaki, and Y. Yasuda, "An improved power saving mechanism for MAC protocol in ad hoc networks," IEEE GLOBECOM 2004 (IEEE, 2005), Vol. 5, pp. 2791-2796.

Appl. Opt. (1)

Electron. Lett. (1)

M. Banu and A. E. Dunlop, "Clock recovery circuits with instantaneous locking," Electron. Lett. 28, 2127-2130 (1992).
[CrossRef]

Intel Technol. J. (2)

D. Genossar and N. Shamir, "Intel Pentium M processor power estimation, budgeting, optimization, and validation," Intel Technol. J. 7(2), 44-49 (2003).

S. Gochman, R. Ronen, I. Anati, A. Berkovits, T. Kurts, A. Naveh, A. Saeed, Z. Sperber, and R. C. Valentine, "The Intel Pentium M processor: microarchitecture and performance," Intel Technol. J. 7(2), 21-36 (2003).

J. Lightwave Technol. (3)

C. Su, L. K. Chen, and K. W. Cheung, "Theory of burst-mode receiver and its applications in optical multiaccess networks," J. Lightwave Technol. 15, 590-606 (1997).
[CrossRef]

Y. Ota, R. Swartz, V. Archer, S. Korotky, M. Banu, and A. Dunlop, "High-speed, burst-mode, packet-capable optical receiver and instantaneous clock recovery for optical bus operation," J. Lightwave Technol. 12, 325-331 (1994).
[CrossRef]

P. Gui, F. Kiamilev, X. Wang, X. Wang, M. McFadden, M. Haney, and C. Kuznia, "A 2Gbps 0.5μm CMOS parallel optical transceiver with fast power-on capability," J. Lightwave Technol. 22, 2135-2148 (2004).
[CrossRef]

Other (17)

R. G. Hunsperger, "Direct modulation of semiconductor lasers," in Integrated Optics: Theory and Technology, 5th ed. (Springer-Verlag, 2002), pp. 281-296.

Peregrine Semiconductor SoS CMOS Foundry Service; http://www.peregrine-semi.com/ (2002).

Xilinx, Inc., "Virtex-II Pro(tm) platform FPGA user guide," Document UG012; http://www.xilinx.com/bvdocs/userguides/ug012.pdf (19 April 2004).

Xilinx, Inc., "RocketIO(tm) transceiver user guide," Document UG024; http://www.xilinx.com/bvdocs/userguides/ug024.pdf (24 February 2004).

Xilinx, Inc., "Aurora protocol specification," Document SP002; http://www.xilinx.com/ (20 October 2003)

Emcore Corporation, "1 × 4 VCSEL array 2.7-3.6Gb/s, 8685-1402," and "1 × 4 GaAs PIN photodiode array model 8485-1406"; http://www.emcore.com/ (2004).

IEEE802.11 Standards, "Wireless LAN medium access control and physical layer specifications, 1999"; http://standards.ieee.org/getieee802/download/802.11-1999.pdf.

C. Hu and J. Hou, "LISP: a link-indexed statistical traffic prediction approach to improving IEEE 802.11 PSM," in IEEE Proceedings of 24th International Conference on Distributed Computing Systems (IEEE, 2004), pp. 292-300.
[CrossRef]

S. Takeuchi, K. Yamazaki, K. Sezaki, and Y. Yasuda, "An improved power saving mechanism for MAC protocol in ad hoc networks," IEEE GLOBECOM 2004 (IEEE, 2005), Vol. 5, pp. 2791-2796.

C. F. Chiasserini and R. Rao, "Combining paging with dynamic power management," in IEEE INFOCOM 2001 (IEEE, 2002), pp. 12-19.

E. Shih, P. Bahl, and M. Sinclair, "Wake on wireless: an event-driven energy saving strategy for battery-operated devices," in ACM/IEEE Proceedings of the Eighth Annual International Conference on Mobile Computing and Networking (IEEE, 2002), pp. 160-171.
[CrossRef]

X. Wang, F. Kiamilev, and P. Gui, "Current-bleeding fast power-on for VCSEL-based gigabit optical transceivers," in IEEE/LEOS 2004 Annual Meeting (IEEE, 2005), Vol. 1, pp. 314-315.

B. Hawkins and B. Hawthorne, "2.5Gbps oxide isolated VCSEL reliability report"; http://www.adopco.com/publication/documents/2.5GbpsOxideIsolatedVCSELReliabilityReport.pdf (20 May 2003)

Ulm Photonics VCSEL Fab, Ulm, Germany, "VCSEL output power measured at room temperature as a function of actual stress hours"; http://www.semiconductor-technology.com/projects/ulm_photonics/ulml_photonics5.html (2004).

C. Wilmsen, H. Temkin, and L. A. Coldren, "Fabrication and performance of vertical-cavity surface-emitting lasers," in Vertical-Cavity Surface-Emitting Lasers: Design, Fabrication, Characterization and Applications (Cambridge University, 1999), pp. 193-225.

B. Krzyzanowski, J. Guenter, and J. Tatum, "VCSEL Spice model"; http://www.adopco.com/publication/documents/VCSELSpiceModel.pdf (1998).

D. Bertsekas and R. Gallager, "Delay models in data networks," in Data Networks (Prentice-Hall, 1992), pp. 149-270.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (25)

Fig. 1
Fig. 1

Conceptual operation of optical wake-on-link.

Fig. 2
Fig. 2

Mode transition diagram of optical wake-on-link.

Fig. 3
Fig. 3

Simple characterization of an event stream.

Fig. 4
Fig. 4

Power saving percentage surface.

Fig. 5
Fig. 5

Power saving percentage contours.

Fig. 6
Fig. 6

Conceptual block diagram of the transceiver that supports optical wake-on-link.

Fig. 7
Fig. 7

Differential CML transmitter.

Fig. 8
Fig. 8

Differential CML receiver.

Fig. 9
Fig. 9

Low-power optical link featuring LVDS and CMOS signaling.

Fig. 10
Fig. 10

Low-power passive TIA.

Fig. 11
Fig. 11

Gigabit and under-terminated LVDS drivers.

Fig. 12
Fig. 12

Schematics of AMPFLT.

Fig. 13
Fig. 13

Functional block diagram of the experiment system.

Fig. 14
Fig. 14

Schematics of the experiment system.

Fig. 15
Fig. 15

Microphotographs of the transceiver with flip-chip bonded OE Arrays: Tx (left) and Rx (right).

Fig. 16
Fig. 16

Microphotographs of the chip-on-board structures: Tx (left) and Rx (right).

Fig. 17
Fig. 17

Optical and monitoring system.

Fig. 18
Fig. 18

VCSEL lighting spots on Rx as seen by the camera.

Fig. 19
Fig. 19

Typical eye diagram of the gigabit link at 2 Gbits∕s after 11-hour continuous operation.

Fig. 20
Fig. 20

Differential and single-ended eye diagram contrasts.

Fig. 21
Fig. 21

Typical low-power link eye diagrams at 75 Mbits∕s LVDS (left) and CMOS (right).

Fig. 22
Fig. 22

Gigabit and low-power links power consumptions.

Fig. 23
Fig. 23

Optical wake-on-link experiment scheme.

Fig. 24
Fig. 24

Optical wake-on-link demo: Scheme 1.

Fig. 25
Fig. 25

Optical wake-on-link demo: Scheme 2.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

p ( t d ) = 1 τ d e t d / τ d , p ( t i ) = 1 τ i e t i / τ d ,
E saved = τ + τ off [ t i ( τ on + τ off ) ] ( P active P sleep ) 1 τ i e t i / τ i d t i = τ i e ( τ + τ off ) / τ i ( P active P sleep ) ,
E = ( τ d + τ i ) P active .
I 400 = 9 16 I 50 .
x = τ d τ off = 78 T 77 T = 1.013 , y = τ i τ off = 200 T 77 T = 2.597.
E saved E = y x + y exp ( 1 / y ) ( 1 1.8 105 ) = 48.1 % .

Metrics