Abstract

We investigate the effect of the cross-sectional profile of an array of metallic nanowires on the feasibility of a localized surface plasmon resonance (LSPR) biosensor. Calculations were performed using rigorous coupled-wave analysis with an emphasis on the extinction properties of the LSPR structure. The results indicate that the nanowire structure, particularly that of a T-profile, delivers an extremely linear sensing performance over a wide range of the target refractive index with much enhanced sensitivity. The extinction-based LSPR structure also involves a relatively large dimension and thus is expected to provide a feasible biosensor using current semiconductor technology.

© 2006 Optical Society of America

Full Article  |  PDF Article
Related Articles
Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis

Kyung Min Byun, Sung June Kim, and Donghyun Kim
Opt. Express 13(10) 3737-3742 (2005)

Nanowire-based enhancement of localized surface plasmon resonance for highly sensitive detection: a theoretical study

Kyujung Kim, Soon Joon Yoon, and Donghyun Kim
Opt. Express 14(25) 12419-12431 (2006)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription