Abstract

We have developed a new photodisplacement microscope system for practical use that achieves high-sensitivity simultaneous real-time imaging of surface and subsurface structures from a single space-frequency multiplexed interferogram. In this system a linear region of photothermal displacement is excited on the sample surface for subsurface imaging by a line-focused intensity-modulated laser beam. Surface information such as reflectivity and topography along with the displacement is detected with a charge-coupled device sensor-based parallel heterodyne interferometer. Surface and subsurface information components are space-frequency multiplexed into the sensor signal as orthogonal functions based on a frequency-optimized undersampling scheme, allowing each to be discretely reproduced by using a real-time Fourier analysis technique. Preliminary experiments demonstrate that this system is effective, simultaneously imaging reflectivity, topography, and photodisplacement for the detection of subsurface lattice defects in silicon, at a remarkable speed of only 0.26  s/256×256 pixel area. This new microscope is promising for nondestructive hybrid surface and subsurface inspection and other applications.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (Wiley Interscience, 1980), pp. 170- 173, 295-296.
  2. Y. H. Wong, R. L. Thomas, and J. J. Pouch, " Subsurface structures of solids by scanning photoacoustic microscopy," Appl. Phys. Lett. 35, 368- 369 ( 1979).
    [CrossRef]
  3. Y. H. Wong, R. L. Thomas, and G. F. Hawkins, " Surface and subsurface structure of solids by laser photoacoustic spectroscopy," Appl. Phys. Lett. 32, 538- 539 ( 1978).
    [CrossRef]
  4. A. C. Boccara, D. Fournier, and J. Badoz, " Thermo-optical spectroscopy:detection by the'mirage effect'," Appl. Phys. Lett. 36, 130- 132 ( 1980).
    [CrossRef]
  5. J. C. Murphy and C. Aamodt, " Photothermal spectroscopy using optical beam probing:mirage effect," J. Appl. Phys. 51, 4580- 4588 ( 1980).
    [CrossRef]
  6. M. A. Olmstead and N. M. Amer, " A new probe of the optical properties of surfaces," J. Vac. Sci. Technol. B 1, 751- 755 ( 1983).
    [CrossRef]
  7. P. E. Nordal and S. O. Kanstad, " Photothermal radiometry," Phys. Sci. (Sweden) 20, 659- 662 ( 1979).
    [CrossRef]
  8. A. Rosencwaig and G. Busse, " High-resolution photoacoustic thermal-wave microscopy," Appl. Phys. Lett. 36, 725- 727 ( 1980).
    [CrossRef]
  9. T. Nakata, Y. Kembo, T. Kitamori, and T. Sawada, " Detection and imaging of subsurface microcracks in silicon wafers using photoacoustic microscope," Jpn. J. Appl. Phys. Suppl. 31-1, 146- 148 ( 1992).
  10. B. Witowski, W. L. Smith, and D. L. Willenborg, " Nondestructive technique for the detection of dislocations and stacking faults on silicon wafers," Appl. Phys. Lett. 52, 640- 642 ( 1988).
    [CrossRef]
  11. A. Rosencwaig and R. M. White, " Ion implant monitoring with thermal wave technology," Appl. Phys. Lett. 47, 584- 586 ( 1985).
    [CrossRef]
  12. H. I. Ringermacher and C. A. Kittredge, " Laser-in/laser-out photoacoustics using Doppler heterodyne interferometry," in Proceedings of the 1986 Ultrasonic Symposium (Institute of Electrical and Electronics Engineers, 1986), pp. 407- 410.
  13. K. R. Grice, L. J. Inglehart, L. D. Favro, P. K. Kuo, and R. L. Thomas, " Thermal wave imaging of closed cracks in opaque solids," J. Appl. Phys. 54, 6245- 6255 ( 1983).
    [CrossRef]
  14. I. Kaufman, P. T. Chang, H. S. Hsu, W. Y. Huang, and D. Y. Shyong, " Photothermal radiometric detection and imaging of surface cracks," J. Nondestruct. Eval. 6, 87- 100 ( 1987).
    [CrossRef]
  15. J. Hartikainen, " Fast photothermal measurement system for inspection of weak adhesion defects," Appl. Phys. Lett. 55, 1188- 1190 ( 1989).
    [CrossRef]
  16. S. Ameri, E. A. Ash, V. Neuman, and C. R. Petts, " Photodisplacement imaging," Electron. Lett. 17, 337- 338 ( 1981).
    [CrossRef]
  17. N. M. Amer and M. A. Olmstead, " A novel method for the study of optical properties of surfaces," Surf. Sci. 132, 68- 72 ( 1983).
    [CrossRef]
  18. L. C. M. Miranda, " Photodisplacement spectroscopy of solids: theory," Appl. Opt. 22, 2882- 2886 ( 1983).
    [CrossRef] [PubMed]
  19. J. -P. Monchalin, R. Heon, and N. Muzak, " Evaluation of ultrasonic inspection procedures by field mapping with an optical probe," Can. Metall. Q. 25, 247- 252 ( 1986).
  20. H. Takamatsu, Y. Nishimoto, and Y. Nakai, " Photodisplacement measurement by interferometric laser probe," Jpn. J. Appl. Phys. 29, 2847- 2850 ( 1990).
    [CrossRef]
  21. N. A. Massie, R. D. Nelson, and S. Holly, " High-performance real-time heterodyne interferometry," Appl. Opt. 18, 1797- 1803 ( 1979).
    [CrossRef] [PubMed]
  22. T. Nakata, H. H. Kobayashi, and T. Ninomiya, " Study on high-speed photothermal displacement microscopy using parallel excitation and phase-shifting signal integration," in Proceedings of 14th Symposium on Ultrasonic Electronics (Japan Society of Applied Physics, 1993), pp. 81- 82.
  23. T. Nakata and T. Ninomiya, " Practical realization of high-speed photodisplacement imaging by use of parallel excitation and parallel heterodyne detection:a numerical study," Appl. Opt. 43, 3287- 3296 ( 2004).
    [CrossRef] [PubMed]
  24. T. Nakata and T. Ninomiya, " A charge-coupled-device-based heterodyne technique for parallel photodisplacement imaging," J. Appl. Phys. 96, 6970- 6980 ( 2004).
    [CrossRef]
  25. T. Nakata and T. Ninomiya, " Real-time photodisplacement imaging using parallel excitation and parallel heterodyne interferometry," J. Appl. Phys. 97, 103110 1- 7 ( 2005).
    [CrossRef]
  26. T. Nakata and T. Ninomiya, " Simultaneous real-time imaging of surface and subsurface structures from a single space-frequency multiplexed photodisplacement interferogram," Appl. Opt. 44, 5809- 5817 ( 2005).
    [CrossRef] [PubMed]
  27. R. N. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, 1965), Chap. 10.
  28. Frequency Stabilization He-Ne Laser FS-1M, product catalog (Photon Probe, Inc., 1-6-2 Higashihirayama, Hino, Tokyo 191-0054 Japan, 2003).
  29. Frequency Shifter FS-1S, product catalog (Photon Probe, Inc., 1-6-2 Higashihirayama, Hino, Tokyo 191-0054 Japan, 2003).
  30. D Series Linear Charge-Coupled Photodiode Array RL0256D, product catalog (EG&G Reticon Co., 345 Potrero Avenue, Sunnyvale, Calif. 94086-4197, 1987).
  31. L. Chen, K. H. Yang, and Y. Zhang, " New technique of photodisplacement imaging using one laser for both excitation and detection," Appl. Phys. Lett. 50, 1349- 1351 ( 1987).
    [CrossRef]
  32. Y. Nagata, K. Yamanaka, H. Ogiso, S. Nakano, and T. Koda, " Characterization of ion implanted silicon and diamond by variable wavelength photoacoustic microscopy and scanning acoustic microscopy," Nondestr. Test. Eval. 8-9, 1013- 1023 ( 1992).
    [CrossRef]

2005 (2)

T. Nakata and T. Ninomiya, " Real-time photodisplacement imaging using parallel excitation and parallel heterodyne interferometry," J. Appl. Phys. 97, 103110 1- 7 ( 2005).
[CrossRef]

T. Nakata and T. Ninomiya, " Simultaneous real-time imaging of surface and subsurface structures from a single space-frequency multiplexed photodisplacement interferogram," Appl. Opt. 44, 5809- 5817 ( 2005).
[CrossRef] [PubMed]

2004 (2)

T. Nakata and T. Ninomiya, " Practical realization of high-speed photodisplacement imaging by use of parallel excitation and parallel heterodyne detection:a numerical study," Appl. Opt. 43, 3287- 3296 ( 2004).
[CrossRef] [PubMed]

T. Nakata and T. Ninomiya, " A charge-coupled-device-based heterodyne technique for parallel photodisplacement imaging," J. Appl. Phys. 96, 6970- 6980 ( 2004).
[CrossRef]

1992 (2)

Y. Nagata, K. Yamanaka, H. Ogiso, S. Nakano, and T. Koda, " Characterization of ion implanted silicon and diamond by variable wavelength photoacoustic microscopy and scanning acoustic microscopy," Nondestr. Test. Eval. 8-9, 1013- 1023 ( 1992).
[CrossRef]

T. Nakata, Y. Kembo, T. Kitamori, and T. Sawada, " Detection and imaging of subsurface microcracks in silicon wafers using photoacoustic microscope," Jpn. J. Appl. Phys. Suppl. 31-1, 146- 148 ( 1992).

1990 (1)

H. Takamatsu, Y. Nishimoto, and Y. Nakai, " Photodisplacement measurement by interferometric laser probe," Jpn. J. Appl. Phys. 29, 2847- 2850 ( 1990).
[CrossRef]

1989 (1)

J. Hartikainen, " Fast photothermal measurement system for inspection of weak adhesion defects," Appl. Phys. Lett. 55, 1188- 1190 ( 1989).
[CrossRef]

1988 (1)

B. Witowski, W. L. Smith, and D. L. Willenborg, " Nondestructive technique for the detection of dislocations and stacking faults on silicon wafers," Appl. Phys. Lett. 52, 640- 642 ( 1988).
[CrossRef]

1987 (2)

I. Kaufman, P. T. Chang, H. S. Hsu, W. Y. Huang, and D. Y. Shyong, " Photothermal radiometric detection and imaging of surface cracks," J. Nondestruct. Eval. 6, 87- 100 ( 1987).
[CrossRef]

L. Chen, K. H. Yang, and Y. Zhang, " New technique of photodisplacement imaging using one laser for both excitation and detection," Appl. Phys. Lett. 50, 1349- 1351 ( 1987).
[CrossRef]

1986 (1)

J. -P. Monchalin, R. Heon, and N. Muzak, " Evaluation of ultrasonic inspection procedures by field mapping with an optical probe," Can. Metall. Q. 25, 247- 252 ( 1986).

1985 (1)

A. Rosencwaig and R. M. White, " Ion implant monitoring with thermal wave technology," Appl. Phys. Lett. 47, 584- 586 ( 1985).
[CrossRef]

1983 (4)

K. R. Grice, L. J. Inglehart, L. D. Favro, P. K. Kuo, and R. L. Thomas, " Thermal wave imaging of closed cracks in opaque solids," J. Appl. Phys. 54, 6245- 6255 ( 1983).
[CrossRef]

M. A. Olmstead and N. M. Amer, " A new probe of the optical properties of surfaces," J. Vac. Sci. Technol. B 1, 751- 755 ( 1983).
[CrossRef]

N. M. Amer and M. A. Olmstead, " A novel method for the study of optical properties of surfaces," Surf. Sci. 132, 68- 72 ( 1983).
[CrossRef]

L. C. M. Miranda, " Photodisplacement spectroscopy of solids: theory," Appl. Opt. 22, 2882- 2886 ( 1983).
[CrossRef] [PubMed]

1981 (1)

S. Ameri, E. A. Ash, V. Neuman, and C. R. Petts, " Photodisplacement imaging," Electron. Lett. 17, 337- 338 ( 1981).
[CrossRef]

1980 (3)

A. Rosencwaig and G. Busse, " High-resolution photoacoustic thermal-wave microscopy," Appl. Phys. Lett. 36, 725- 727 ( 1980).
[CrossRef]

A. C. Boccara, D. Fournier, and J. Badoz, " Thermo-optical spectroscopy:detection by the'mirage effect'," Appl. Phys. Lett. 36, 130- 132 ( 1980).
[CrossRef]

J. C. Murphy and C. Aamodt, " Photothermal spectroscopy using optical beam probing:mirage effect," J. Appl. Phys. 51, 4580- 4588 ( 1980).
[CrossRef]

1979 (3)

Y. H. Wong, R. L. Thomas, and J. J. Pouch, " Subsurface structures of solids by scanning photoacoustic microscopy," Appl. Phys. Lett. 35, 368- 369 ( 1979).
[CrossRef]

P. E. Nordal and S. O. Kanstad, " Photothermal radiometry," Phys. Sci. (Sweden) 20, 659- 662 ( 1979).
[CrossRef]

N. A. Massie, R. D. Nelson, and S. Holly, " High-performance real-time heterodyne interferometry," Appl. Opt. 18, 1797- 1803 ( 1979).
[CrossRef] [PubMed]

1978 (1)

Y. H. Wong, R. L. Thomas, and G. F. Hawkins, " Surface and subsurface structure of solids by laser photoacoustic spectroscopy," Appl. Phys. Lett. 32, 538- 539 ( 1978).
[CrossRef]

Aamodt, C.

J. C. Murphy and C. Aamodt, " Photothermal spectroscopy using optical beam probing:mirage effect," J. Appl. Phys. 51, 4580- 4588 ( 1980).
[CrossRef]

Amer, N. M.

M. A. Olmstead and N. M. Amer, " A new probe of the optical properties of surfaces," J. Vac. Sci. Technol. B 1, 751- 755 ( 1983).
[CrossRef]

N. M. Amer and M. A. Olmstead, " A novel method for the study of optical properties of surfaces," Surf. Sci. 132, 68- 72 ( 1983).
[CrossRef]

Ameri, S.

S. Ameri, E. A. Ash, V. Neuman, and C. R. Petts, " Photodisplacement imaging," Electron. Lett. 17, 337- 338 ( 1981).
[CrossRef]

Ash, E. A.

S. Ameri, E. A. Ash, V. Neuman, and C. R. Petts, " Photodisplacement imaging," Electron. Lett. 17, 337- 338 ( 1981).
[CrossRef]

Badoz, J.

A. C. Boccara, D. Fournier, and J. Badoz, " Thermo-optical spectroscopy:detection by the'mirage effect'," Appl. Phys. Lett. 36, 130- 132 ( 1980).
[CrossRef]

Boccara, A. C.

A. C. Boccara, D. Fournier, and J. Badoz, " Thermo-optical spectroscopy:detection by the'mirage effect'," Appl. Phys. Lett. 36, 130- 132 ( 1980).
[CrossRef]

Bracewell, R. N.

R. N. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, 1965), Chap. 10.

Busse, G.

A. Rosencwaig and G. Busse, " High-resolution photoacoustic thermal-wave microscopy," Appl. Phys. Lett. 36, 725- 727 ( 1980).
[CrossRef]

Chang, P. T.

I. Kaufman, P. T. Chang, H. S. Hsu, W. Y. Huang, and D. Y. Shyong, " Photothermal radiometric detection and imaging of surface cracks," J. Nondestruct. Eval. 6, 87- 100 ( 1987).
[CrossRef]

Chen, L.

L. Chen, K. H. Yang, and Y. Zhang, " New technique of photodisplacement imaging using one laser for both excitation and detection," Appl. Phys. Lett. 50, 1349- 1351 ( 1987).
[CrossRef]

Favro, L. D.

K. R. Grice, L. J. Inglehart, L. D. Favro, P. K. Kuo, and R. L. Thomas, " Thermal wave imaging of closed cracks in opaque solids," J. Appl. Phys. 54, 6245- 6255 ( 1983).
[CrossRef]

Fournier, D.

A. C. Boccara, D. Fournier, and J. Badoz, " Thermo-optical spectroscopy:detection by the'mirage effect'," Appl. Phys. Lett. 36, 130- 132 ( 1980).
[CrossRef]

Grice, K. R.

K. R. Grice, L. J. Inglehart, L. D. Favro, P. K. Kuo, and R. L. Thomas, " Thermal wave imaging of closed cracks in opaque solids," J. Appl. Phys. 54, 6245- 6255 ( 1983).
[CrossRef]

Hartikainen, J.

J. Hartikainen, " Fast photothermal measurement system for inspection of weak adhesion defects," Appl. Phys. Lett. 55, 1188- 1190 ( 1989).
[CrossRef]

Hawkins, G. F.

Y. H. Wong, R. L. Thomas, and G. F. Hawkins, " Surface and subsurface structure of solids by laser photoacoustic spectroscopy," Appl. Phys. Lett. 32, 538- 539 ( 1978).
[CrossRef]

Heon, R.

J. -P. Monchalin, R. Heon, and N. Muzak, " Evaluation of ultrasonic inspection procedures by field mapping with an optical probe," Can. Metall. Q. 25, 247- 252 ( 1986).

Holly, S.

Hsu, H. S.

I. Kaufman, P. T. Chang, H. S. Hsu, W. Y. Huang, and D. Y. Shyong, " Photothermal radiometric detection and imaging of surface cracks," J. Nondestruct. Eval. 6, 87- 100 ( 1987).
[CrossRef]

Huang, W. Y.

I. Kaufman, P. T. Chang, H. S. Hsu, W. Y. Huang, and D. Y. Shyong, " Photothermal radiometric detection and imaging of surface cracks," J. Nondestruct. Eval. 6, 87- 100 ( 1987).
[CrossRef]

Inglehart, L. J.

K. R. Grice, L. J. Inglehart, L. D. Favro, P. K. Kuo, and R. L. Thomas, " Thermal wave imaging of closed cracks in opaque solids," J. Appl. Phys. 54, 6245- 6255 ( 1983).
[CrossRef]

Kanstad, S. O.

P. E. Nordal and S. O. Kanstad, " Photothermal radiometry," Phys. Sci. (Sweden) 20, 659- 662 ( 1979).
[CrossRef]

Kaufman, I.

I. Kaufman, P. T. Chang, H. S. Hsu, W. Y. Huang, and D. Y. Shyong, " Photothermal radiometric detection and imaging of surface cracks," J. Nondestruct. Eval. 6, 87- 100 ( 1987).
[CrossRef]

Kembo, Y.

T. Nakata, Y. Kembo, T. Kitamori, and T. Sawada, " Detection and imaging of subsurface microcracks in silicon wafers using photoacoustic microscope," Jpn. J. Appl. Phys. Suppl. 31-1, 146- 148 ( 1992).

Kitamori, T.

T. Nakata, Y. Kembo, T. Kitamori, and T. Sawada, " Detection and imaging of subsurface microcracks in silicon wafers using photoacoustic microscope," Jpn. J. Appl. Phys. Suppl. 31-1, 146- 148 ( 1992).

Kittredge, C. A.

H. I. Ringermacher and C. A. Kittredge, " Laser-in/laser-out photoacoustics using Doppler heterodyne interferometry," in Proceedings of the 1986 Ultrasonic Symposium (Institute of Electrical and Electronics Engineers, 1986), pp. 407- 410.

Kobayashi, H. H.

T. Nakata, H. H. Kobayashi, and T. Ninomiya, " Study on high-speed photothermal displacement microscopy using parallel excitation and phase-shifting signal integration," in Proceedings of 14th Symposium on Ultrasonic Electronics (Japan Society of Applied Physics, 1993), pp. 81- 82.

Koda, T.

Y. Nagata, K. Yamanaka, H. Ogiso, S. Nakano, and T. Koda, " Characterization of ion implanted silicon and diamond by variable wavelength photoacoustic microscopy and scanning acoustic microscopy," Nondestr. Test. Eval. 8-9, 1013- 1023 ( 1992).
[CrossRef]

Kuo, P. K.

K. R. Grice, L. J. Inglehart, L. D. Favro, P. K. Kuo, and R. L. Thomas, " Thermal wave imaging of closed cracks in opaque solids," J. Appl. Phys. 54, 6245- 6255 ( 1983).
[CrossRef]

Massie, N. A.

Miranda, L. C. M.

Monchalin, J. -P.

J. -P. Monchalin, R. Heon, and N. Muzak, " Evaluation of ultrasonic inspection procedures by field mapping with an optical probe," Can. Metall. Q. 25, 247- 252 ( 1986).

Murphy, J. C.

J. C. Murphy and C. Aamodt, " Photothermal spectroscopy using optical beam probing:mirage effect," J. Appl. Phys. 51, 4580- 4588 ( 1980).
[CrossRef]

Muzak, N.

J. -P. Monchalin, R. Heon, and N. Muzak, " Evaluation of ultrasonic inspection procedures by field mapping with an optical probe," Can. Metall. Q. 25, 247- 252 ( 1986).

Nagata, Y.

Y. Nagata, K. Yamanaka, H. Ogiso, S. Nakano, and T. Koda, " Characterization of ion implanted silicon and diamond by variable wavelength photoacoustic microscopy and scanning acoustic microscopy," Nondestr. Test. Eval. 8-9, 1013- 1023 ( 1992).
[CrossRef]

Nakai, Y.

H. Takamatsu, Y. Nishimoto, and Y. Nakai, " Photodisplacement measurement by interferometric laser probe," Jpn. J. Appl. Phys. 29, 2847- 2850 ( 1990).
[CrossRef]

Nakano, S.

Y. Nagata, K. Yamanaka, H. Ogiso, S. Nakano, and T. Koda, " Characterization of ion implanted silicon and diamond by variable wavelength photoacoustic microscopy and scanning acoustic microscopy," Nondestr. Test. Eval. 8-9, 1013- 1023 ( 1992).
[CrossRef]

Nakata, T.

T. Nakata and T. Ninomiya, " Real-time photodisplacement imaging using parallel excitation and parallel heterodyne interferometry," J. Appl. Phys. 97, 103110 1- 7 ( 2005).
[CrossRef]

T. Nakata and T. Ninomiya, " Simultaneous real-time imaging of surface and subsurface structures from a single space-frequency multiplexed photodisplacement interferogram," Appl. Opt. 44, 5809- 5817 ( 2005).
[CrossRef] [PubMed]

T. Nakata and T. Ninomiya, " Practical realization of high-speed photodisplacement imaging by use of parallel excitation and parallel heterodyne detection:a numerical study," Appl. Opt. 43, 3287- 3296 ( 2004).
[CrossRef] [PubMed]

T. Nakata and T. Ninomiya, " A charge-coupled-device-based heterodyne technique for parallel photodisplacement imaging," J. Appl. Phys. 96, 6970- 6980 ( 2004).
[CrossRef]

T. Nakata, Y. Kembo, T. Kitamori, and T. Sawada, " Detection and imaging of subsurface microcracks in silicon wafers using photoacoustic microscope," Jpn. J. Appl. Phys. Suppl. 31-1, 146- 148 ( 1992).

T. Nakata, H. H. Kobayashi, and T. Ninomiya, " Study on high-speed photothermal displacement microscopy using parallel excitation and phase-shifting signal integration," in Proceedings of 14th Symposium on Ultrasonic Electronics (Japan Society of Applied Physics, 1993), pp. 81- 82.

Nelson, R. D.

Neuman, V.

S. Ameri, E. A. Ash, V. Neuman, and C. R. Petts, " Photodisplacement imaging," Electron. Lett. 17, 337- 338 ( 1981).
[CrossRef]

Ninomiya, T.

T. Nakata and T. Ninomiya, " Simultaneous real-time imaging of surface and subsurface structures from a single space-frequency multiplexed photodisplacement interferogram," Appl. Opt. 44, 5809- 5817 ( 2005).
[CrossRef] [PubMed]

T. Nakata and T. Ninomiya, " Real-time photodisplacement imaging using parallel excitation and parallel heterodyne interferometry," J. Appl. Phys. 97, 103110 1- 7 ( 2005).
[CrossRef]

T. Nakata and T. Ninomiya, " A charge-coupled-device-based heterodyne technique for parallel photodisplacement imaging," J. Appl. Phys. 96, 6970- 6980 ( 2004).
[CrossRef]

T. Nakata and T. Ninomiya, " Practical realization of high-speed photodisplacement imaging by use of parallel excitation and parallel heterodyne detection:a numerical study," Appl. Opt. 43, 3287- 3296 ( 2004).
[CrossRef] [PubMed]

T. Nakata, H. H. Kobayashi, and T. Ninomiya, " Study on high-speed photothermal displacement microscopy using parallel excitation and phase-shifting signal integration," in Proceedings of 14th Symposium on Ultrasonic Electronics (Japan Society of Applied Physics, 1993), pp. 81- 82.

Nishimoto, Y.

H. Takamatsu, Y. Nishimoto, and Y. Nakai, " Photodisplacement measurement by interferometric laser probe," Jpn. J. Appl. Phys. 29, 2847- 2850 ( 1990).
[CrossRef]

Nordal, P. E.

P. E. Nordal and S. O. Kanstad, " Photothermal radiometry," Phys. Sci. (Sweden) 20, 659- 662 ( 1979).
[CrossRef]

Ogiso, H.

Y. Nagata, K. Yamanaka, H. Ogiso, S. Nakano, and T. Koda, " Characterization of ion implanted silicon and diamond by variable wavelength photoacoustic microscopy and scanning acoustic microscopy," Nondestr. Test. Eval. 8-9, 1013- 1023 ( 1992).
[CrossRef]

Olmstead, M. A.

M. A. Olmstead and N. M. Amer, " A new probe of the optical properties of surfaces," J. Vac. Sci. Technol. B 1, 751- 755 ( 1983).
[CrossRef]

N. M. Amer and M. A. Olmstead, " A novel method for the study of optical properties of surfaces," Surf. Sci. 132, 68- 72 ( 1983).
[CrossRef]

Petts, C. R.

S. Ameri, E. A. Ash, V. Neuman, and C. R. Petts, " Photodisplacement imaging," Electron. Lett. 17, 337- 338 ( 1981).
[CrossRef]

Pouch, J. J.

Y. H. Wong, R. L. Thomas, and J. J. Pouch, " Subsurface structures of solids by scanning photoacoustic microscopy," Appl. Phys. Lett. 35, 368- 369 ( 1979).
[CrossRef]

Ringermacher, H. I.

H. I. Ringermacher and C. A. Kittredge, " Laser-in/laser-out photoacoustics using Doppler heterodyne interferometry," in Proceedings of the 1986 Ultrasonic Symposium (Institute of Electrical and Electronics Engineers, 1986), pp. 407- 410.

Rosencwaig, A.

A. Rosencwaig and R. M. White, " Ion implant monitoring with thermal wave technology," Appl. Phys. Lett. 47, 584- 586 ( 1985).
[CrossRef]

A. Rosencwaig and G. Busse, " High-resolution photoacoustic thermal-wave microscopy," Appl. Phys. Lett. 36, 725- 727 ( 1980).
[CrossRef]

A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (Wiley Interscience, 1980), pp. 170- 173, 295-296.

Sawada, T.

T. Nakata, Y. Kembo, T. Kitamori, and T. Sawada, " Detection and imaging of subsurface microcracks in silicon wafers using photoacoustic microscope," Jpn. J. Appl. Phys. Suppl. 31-1, 146- 148 ( 1992).

Shyong, D. Y.

I. Kaufman, P. T. Chang, H. S. Hsu, W. Y. Huang, and D. Y. Shyong, " Photothermal radiometric detection and imaging of surface cracks," J. Nondestruct. Eval. 6, 87- 100 ( 1987).
[CrossRef]

Smith, W. L.

B. Witowski, W. L. Smith, and D. L. Willenborg, " Nondestructive technique for the detection of dislocations and stacking faults on silicon wafers," Appl. Phys. Lett. 52, 640- 642 ( 1988).
[CrossRef]

Takamatsu, H.

H. Takamatsu, Y. Nishimoto, and Y. Nakai, " Photodisplacement measurement by interferometric laser probe," Jpn. J. Appl. Phys. 29, 2847- 2850 ( 1990).
[CrossRef]

Thomas, R. L.

K. R. Grice, L. J. Inglehart, L. D. Favro, P. K. Kuo, and R. L. Thomas, " Thermal wave imaging of closed cracks in opaque solids," J. Appl. Phys. 54, 6245- 6255 ( 1983).
[CrossRef]

Y. H. Wong, R. L. Thomas, and J. J. Pouch, " Subsurface structures of solids by scanning photoacoustic microscopy," Appl. Phys. Lett. 35, 368- 369 ( 1979).
[CrossRef]

Y. H. Wong, R. L. Thomas, and G. F. Hawkins, " Surface and subsurface structure of solids by laser photoacoustic spectroscopy," Appl. Phys. Lett. 32, 538- 539 ( 1978).
[CrossRef]

White, R. M.

A. Rosencwaig and R. M. White, " Ion implant monitoring with thermal wave technology," Appl. Phys. Lett. 47, 584- 586 ( 1985).
[CrossRef]

Willenborg, D. L.

B. Witowski, W. L. Smith, and D. L. Willenborg, " Nondestructive technique for the detection of dislocations and stacking faults on silicon wafers," Appl. Phys. Lett. 52, 640- 642 ( 1988).
[CrossRef]

Witowski, B.

B. Witowski, W. L. Smith, and D. L. Willenborg, " Nondestructive technique for the detection of dislocations and stacking faults on silicon wafers," Appl. Phys. Lett. 52, 640- 642 ( 1988).
[CrossRef]

Wong, Y. H.

Y. H. Wong, R. L. Thomas, and J. J. Pouch, " Subsurface structures of solids by scanning photoacoustic microscopy," Appl. Phys. Lett. 35, 368- 369 ( 1979).
[CrossRef]

Y. H. Wong, R. L. Thomas, and G. F. Hawkins, " Surface and subsurface structure of solids by laser photoacoustic spectroscopy," Appl. Phys. Lett. 32, 538- 539 ( 1978).
[CrossRef]

Yamanaka, K.

Y. Nagata, K. Yamanaka, H. Ogiso, S. Nakano, and T. Koda, " Characterization of ion implanted silicon and diamond by variable wavelength photoacoustic microscopy and scanning acoustic microscopy," Nondestr. Test. Eval. 8-9, 1013- 1023 ( 1992).
[CrossRef]

Yang, K. H.

L. Chen, K. H. Yang, and Y. Zhang, " New technique of photodisplacement imaging using one laser for both excitation and detection," Appl. Phys. Lett. 50, 1349- 1351 ( 1987).
[CrossRef]

Zhang, Y.

L. Chen, K. H. Yang, and Y. Zhang, " New technique of photodisplacement imaging using one laser for both excitation and detection," Appl. Phys. Lett. 50, 1349- 1351 ( 1987).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (8)

L. Chen, K. H. Yang, and Y. Zhang, " New technique of photodisplacement imaging using one laser for both excitation and detection," Appl. Phys. Lett. 50, 1349- 1351 ( 1987).
[CrossRef]

J. Hartikainen, " Fast photothermal measurement system for inspection of weak adhesion defects," Appl. Phys. Lett. 55, 1188- 1190 ( 1989).
[CrossRef]

Y. H. Wong, R. L. Thomas, and J. J. Pouch, " Subsurface structures of solids by scanning photoacoustic microscopy," Appl. Phys. Lett. 35, 368- 369 ( 1979).
[CrossRef]

Y. H. Wong, R. L. Thomas, and G. F. Hawkins, " Surface and subsurface structure of solids by laser photoacoustic spectroscopy," Appl. Phys. Lett. 32, 538- 539 ( 1978).
[CrossRef]

A. C. Boccara, D. Fournier, and J. Badoz, " Thermo-optical spectroscopy:detection by the'mirage effect'," Appl. Phys. Lett. 36, 130- 132 ( 1980).
[CrossRef]

A. Rosencwaig and G. Busse, " High-resolution photoacoustic thermal-wave microscopy," Appl. Phys. Lett. 36, 725- 727 ( 1980).
[CrossRef]

B. Witowski, W. L. Smith, and D. L. Willenborg, " Nondestructive technique for the detection of dislocations and stacking faults on silicon wafers," Appl. Phys. Lett. 52, 640- 642 ( 1988).
[CrossRef]

A. Rosencwaig and R. M. White, " Ion implant monitoring with thermal wave technology," Appl. Phys. Lett. 47, 584- 586 ( 1985).
[CrossRef]

Can. Metall. Q. (1)

J. -P. Monchalin, R. Heon, and N. Muzak, " Evaluation of ultrasonic inspection procedures by field mapping with an optical probe," Can. Metall. Q. 25, 247- 252 ( 1986).

Electron. Lett. (1)

S. Ameri, E. A. Ash, V. Neuman, and C. R. Petts, " Photodisplacement imaging," Electron. Lett. 17, 337- 338 ( 1981).
[CrossRef]

J. Appl. Phys. (4)

K. R. Grice, L. J. Inglehart, L. D. Favro, P. K. Kuo, and R. L. Thomas, " Thermal wave imaging of closed cracks in opaque solids," J. Appl. Phys. 54, 6245- 6255 ( 1983).
[CrossRef]

J. C. Murphy and C. Aamodt, " Photothermal spectroscopy using optical beam probing:mirage effect," J. Appl. Phys. 51, 4580- 4588 ( 1980).
[CrossRef]

T. Nakata and T. Ninomiya, " A charge-coupled-device-based heterodyne technique for parallel photodisplacement imaging," J. Appl. Phys. 96, 6970- 6980 ( 2004).
[CrossRef]

T. Nakata and T. Ninomiya, " Real-time photodisplacement imaging using parallel excitation and parallel heterodyne interferometry," J. Appl. Phys. 97, 103110 1- 7 ( 2005).
[CrossRef]

J. Nondestruct. Eval. (1)

I. Kaufman, P. T. Chang, H. S. Hsu, W. Y. Huang, and D. Y. Shyong, " Photothermal radiometric detection and imaging of surface cracks," J. Nondestruct. Eval. 6, 87- 100 ( 1987).
[CrossRef]

J. Vac. Sci. Technol. B (1)

M. A. Olmstead and N. M. Amer, " A new probe of the optical properties of surfaces," J. Vac. Sci. Technol. B 1, 751- 755 ( 1983).
[CrossRef]

Jpn. J. Appl. Phys. (1)

H. Takamatsu, Y. Nishimoto, and Y. Nakai, " Photodisplacement measurement by interferometric laser probe," Jpn. J. Appl. Phys. 29, 2847- 2850 ( 1990).
[CrossRef]

Jpn. J. Appl. Phys. Suppl. (1)

T. Nakata, Y. Kembo, T. Kitamori, and T. Sawada, " Detection and imaging of subsurface microcracks in silicon wafers using photoacoustic microscope," Jpn. J. Appl. Phys. Suppl. 31-1, 146- 148 ( 1992).

Nondestr. Test. Eval. (1)

Y. Nagata, K. Yamanaka, H. Ogiso, S. Nakano, and T. Koda, " Characterization of ion implanted silicon and diamond by variable wavelength photoacoustic microscopy and scanning acoustic microscopy," Nondestr. Test. Eval. 8-9, 1013- 1023 ( 1992).
[CrossRef]

Phys. Sci. (1)

P. E. Nordal and S. O. Kanstad, " Photothermal radiometry," Phys. Sci. (Sweden) 20, 659- 662 ( 1979).
[CrossRef]

Surf. Sci. (1)

N. M. Amer and M. A. Olmstead, " A novel method for the study of optical properties of surfaces," Surf. Sci. 132, 68- 72 ( 1983).
[CrossRef]

Other (7)

T. Nakata, H. H. Kobayashi, and T. Ninomiya, " Study on high-speed photothermal displacement microscopy using parallel excitation and phase-shifting signal integration," in Proceedings of 14th Symposium on Ultrasonic Electronics (Japan Society of Applied Physics, 1993), pp. 81- 82.

H. I. Ringermacher and C. A. Kittredge, " Laser-in/laser-out photoacoustics using Doppler heterodyne interferometry," in Proceedings of the 1986 Ultrasonic Symposium (Institute of Electrical and Electronics Engineers, 1986), pp. 407- 410.

R. N. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, 1965), Chap. 10.

Frequency Stabilization He-Ne Laser FS-1M, product catalog (Photon Probe, Inc., 1-6-2 Higashihirayama, Hino, Tokyo 191-0054 Japan, 2003).

Frequency Shifter FS-1S, product catalog (Photon Probe, Inc., 1-6-2 Higashihirayama, Hino, Tokyo 191-0054 Japan, 2003).

D Series Linear Charge-Coupled Photodiode Array RL0256D, product catalog (EG&G Reticon Co., 345 Potrero Avenue, Sunnyvale, Calif. 94086-4197, 1987).

A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (Wiley Interscience, 1980), pp. 170- 173, 295-296.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Basic concept of real-time photodisplacement microscopy.

Fig. 2
Fig. 2

Parallel excitation and parallel heterodyne detection of surface and subsurface information.

Fig. 3
Fig. 3

Integration and readout procedure in the CCD sensor.

Fig. 4
Fig. 4

Schematic diagram of real-time photodisplacement microscope system:L1, L2, and L3, relay lenses; CCD, charge-coupled device;DM, dichroic mirror; AOM, acousto-optic modulator; PBS, polarizing beam splitter; BS1, beam splitter; BS2, cube beam splitter; PL, polarizer; PD, photodiode; CL, cylindrical lens; IL, imaging lens; VME, Versa Module Eurocard.

Fig. 5
Fig. 5

Excitation beam and probe and reference beams:(a) Micrograph of top, the line-focused spot of the excitation beam and bottom, its intensity profile; (b) Top, micrograph of the line-focused spots of the probe beam S superposed on the excitation beam and the reference beam R; bottom, micrograph magnifying a 166 μm wide area of the beam spots in the upper image.

Fig. 6
Fig. 6

Signal control circuit based on PLL circuits.

Fig. 7
Fig. 7

Signal input circuit.

Fig. 8
Fig. 8

Parallel signal-processing circuits:CLR, clear signal; CTRL, control signal.

Fig. 9
Fig. 9

Real-time photodisplacement microscope system:(a) parallel excitation optics and parallel heterodyne interferometer; (b) signal-processing unit into which five signal-processing circuit boards are plugged.

Fig. 10
Fig. 10

Photodisplacement sensitivity:(a) aluminum-coated silica plate used as the specimen; (b) dependence of noise equivalent amplitude AN on detection time TD.

Fig. 11
Fig. 11

Surface and subsurface images obtained simultaneously for the analysis of subsurface defects:(a) silicon wafer locally implanted with 300 keV Ar+ ions at a dose of 1 × 1015 ions∕cm2 used as the subsurface defect sample; (b) reflectivity image; (c) topography image; (d) photodisplacement amplitude image; (e) photodisplacement phase image.

Fig. 12
Fig. 12

Surface and subsurface images obtained simultaneously for the analysis of subsurface structures:(a) SiO2 pattern of 0.5 μm thickness on a silicon substrate coated with a 0.6 μm layer of aluminum used as the subsurface structure sample; (b) reflectivity image; (c) photodisplacement amplitude image.

Fig. 13
Fig. 13

Dependence of photodisplacement amplitude on 300 keV Ar+ ion implantation at a dose of 1 × 109 to 1 × 1014 ions∕cm2.

Tables (3)

Tables Icon

Table 1 Relationship between Parameters and Frequencies for PLL Circuits

Tables Icon

Table 2 Operations in Signal-Processing Circuits

Tables Icon

Table 3 System Parameters

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

I ( x , t ) = 2 α I L R s ( x ) + 2 α I L R s ( x ) { cos [ 2 π f B t + ϕ path ( x ) + 4 π n a h ( x ) λ ] + 2 π λ A ( x ) sin [ 2 π ( f B + f E ) t + ϕ path ( x ) + 4 π n a h ( x ) λ + θ ( x ) ] + 2 π λ A ( x ) sin [ 2 π ( f B f E ) t + ϕ path ( x ) + 4 π n a h ( x ) λ - θ ( x ) ] } ,
f S : f B : f E = 8 p : 8 p u ± 1 : 8 p v 1 ,
S ( m , i ) = i Δ t ( i + 1 ) Δ t I ( m , t ) d t = 2 α I L R s ( m ) ( 1 f s ) + 2 α I L R s ( m ) { 1 π f B sin ( ± π 8 p ) cos [ ± π 4 p i ± π 8 p + ϕ path ( m ) + 4 π n a h ( m ) λ ] + 2 A ( m ) λ ( f B f E ) sin ( ± π 4 p ) sin [ ± π 2 p i ± π 4 p + ϕ path ( m ) + 4 π n a h ( m ) λ θ ( m ) ] } .
D 0 ( m ) = 1 L q = 0 L 1 S ( m , q )
= 2 α I L R s ( m ) f S ,
E 1 ( m ) = 1 M q = 0 M 1 ( 1 ) q S ( m , 4 q )
= 2 α I L R s ( m ) π f B sin ( ± π 8 p ) × cos [ ± π 8 p + ϕ path ( m ) + 4 π n a h ( m ) λ ] ,
H 1 ( m ) = 1 M q = 0 M 1 ( 1 ) q S ( m , 4 q + 2 )
= 2 α I L R s ( m ) π f B sin ( ± π 8 p ) × sin [ ± π 8 p + ϕ path ( m ) + 4 π n a h ( m ) λ ] ,
E 2 ( m ) = 1 N q = 0 N 1 ( 1 ) q S ( m , 2 q + 1 )
= 4 α I L R s ( m ) λ ( f B f E ) A ( m ) sin ( ± π 4 p ) ×  cos [ ± π 4 p + ϕ path ( m ) + 4 π n a h ( m ) λ θ ( m ) ] ,
H 2 ( m ) = 1 N q = 0 N 1 ( 1 ) q S ( m , 2 q )
= 4 α I L R s ( m ) λ ( f B f E ) A ( m ) sin ( ± π 4 p )  × sin [ ± π 4 p + ϕ path ( m ) + 4 π n a h ( m ) λ θ ( m ) ] ,
R s ( m ) = f S 2 α I L D 0 ( m ) ,
h ( m ) = λ 4 π n a [ tan 1 H 1 ( m ) E 1 ( m ) π 8 p ϕ path ( m ) ] ,
A ( m ) = λ ( f B f E ) 2 f S sin ( ± π 4 p ) D 0 ( m ) [ E 2     2 ( m ) + H 2     2 ( m ) ] 1 / 2 ,
θ ( m ) = tan 1 H 2 ( m ) E 2 ( m ) + tan 1 H 1 ( m ) E 1 ( m ) ± π 8 p .
D 0 ( m ) = 1 L q = 0 L 1 S ( m , q )
E 1 ( m ) = 1 M q = 0 M 1 ( 1 ) q S ( m , 4 q )
H 1 ( m ) = 1 M q = 0 M 1 ( 1 ) q S ( m , 4 q + 2 )
E 2 ( m ) = 1 N q = 0 N 1 ( 1 ) q S ( m , 2 q + 1 )
H 2 ( m ) = 1 N     q = 0 N 1 ( 1 ) q S ( m , 2 q )

Metrics