Abstract

We developed a novel fabrication method of a reduced wavelength-dependent quarter-wave plate (QWP) based on form birefringence of a multilayered subwavelength structure. The multilayered structure was constructed by depositing a high-refractive-index thin film on a subwavelength-structured substrate with a low refractive index. The surface structure of the substrate was shallow enough to be formed by a mass replication technology. A high-refractive-index subwavelength grating was formed on ridges of the substrate by sputtering Zn2SnO4 (refractive index of 2.03 at a wavelength of 633  nm). Moreover, since the grooves of the high-refractive-index grating were very deep and narrow, the dispersion of form birefringence suppressed the dependency of phase retardance on the wavelength of light in a limited spectral region. The phase retardance of the fabricated QWP was 89° at a 633  nm wavelength and 79° at a 785  nm wavelength.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Title, " Improvement of birefringent filters. 2: Achromatic waveplates," Appl. Opt. 14, 229- 237 ( 1975).
    [PubMed]
  2. D. C. Flanders, " Submicrometer periodicity grating as artificial anisotropic dielectrics," Appl. Phys. Lett. 42, 492- 494 ( 1983).
    [CrossRef]
  3. H. Kikuta, Y. Ohira, and K. Iwata, " Achromatic quarter-wave plates using dispersion of form birefringence," Appl. Opt. 36, 1566- 1572 ( 1997).
    [CrossRef] [PubMed]
  4. G. P. Nordin and P. C. Deguzman, " Broadband form birefringent quarter-wave plate for the mid-infrared wave region," Opt. Express 5, 163- 168 ( 1999).
    [CrossRef] [PubMed]
  5. R. Wimberger-Friedl, " Injection molding of sub-μm grating optical elements," J. Injection Molding Technol. 4, 78- 83 ( 2000).
  6. Y. Hirai and Y. Tanaka, " Application of nano-imprint lithography," J. Photopolym Sci. Technol. 15, 475- 480 ( 2002).
    [CrossRef]
  7. W. Yu, K. Satoh, H. Kikuta, T. Konishi, and T. Yotsuya, " Synthesis of wave plates using multilayered subwavelength structure," Jpn. J. Appl. Phys. 43, L439- L441 ( 2004).
    [CrossRef]
  8. E. B. Grann, M. G. Moharam, and D. A. Pommet, " Artificial uniaxial and biaxial dielectrics with use of two-dimensional subwavelength binary gratings," J. Opt. Soc. Am. A 11, 2695- 2704 ( 1994).
    [CrossRef]
  9. F. Montiel and M. Neviére, " Differential theory of gratings: extension to deep gratings of arbitrary profile and permittivity through the R-matrix propagation algorithm," J. Opt. Soc. Am. A 11, 3241- 3252 ( 1994).
    [CrossRef]
  10. L. I. Goray and J. F. Seely, " Efficiencies of master, replica, and multilayer gratings for the soft-x-ray-extreme-ultraviolet range: modeling based on the modified integral method and comparisons with measurements," Appl. Opt. 41, 1434- 1445 ( 2002).
    [CrossRef] [PubMed]
  11. D. L. Young, H. Moutinho, Y. Yan, and T. J. Coutts, " Growth and characterization of radio frequency magnetron sputter-deposited zinc stannate, Zn2SnO4, thin films," J. Appl. Phys. 92, 310- 319 ( 2002).
    [CrossRef]
  12. D. Poitras, J. A. Dobrowolski, T. Cassidy, and S. Moisa, " Ion-beam etching for the precise manufacture of optical coating," Appl. Opt. 42, 4037- 4044 ( 2003).
    [CrossRef] [PubMed]

2004

W. Yu, K. Satoh, H. Kikuta, T. Konishi, and T. Yotsuya, " Synthesis of wave plates using multilayered subwavelength structure," Jpn. J. Appl. Phys. 43, L439- L441 ( 2004).
[CrossRef]

2003

2002

L. I. Goray and J. F. Seely, " Efficiencies of master, replica, and multilayer gratings for the soft-x-ray-extreme-ultraviolet range: modeling based on the modified integral method and comparisons with measurements," Appl. Opt. 41, 1434- 1445 ( 2002).
[CrossRef] [PubMed]

D. L. Young, H. Moutinho, Y. Yan, and T. J. Coutts, " Growth and characterization of radio frequency magnetron sputter-deposited zinc stannate, Zn2SnO4, thin films," J. Appl. Phys. 92, 310- 319 ( 2002).
[CrossRef]

Y. Hirai and Y. Tanaka, " Application of nano-imprint lithography," J. Photopolym Sci. Technol. 15, 475- 480 ( 2002).
[CrossRef]

2000

R. Wimberger-Friedl, " Injection molding of sub-μm grating optical elements," J. Injection Molding Technol. 4, 78- 83 ( 2000).

1999

1997

1994

1983

D. C. Flanders, " Submicrometer periodicity grating as artificial anisotropic dielectrics," Appl. Phys. Lett. 42, 492- 494 ( 1983).
[CrossRef]

1975

Cassidy, T.

Coutts, T. J.

D. L. Young, H. Moutinho, Y. Yan, and T. J. Coutts, " Growth and characterization of radio frequency magnetron sputter-deposited zinc stannate, Zn2SnO4, thin films," J. Appl. Phys. 92, 310- 319 ( 2002).
[CrossRef]

Deguzman, P. C.

Dobrowolski, J. A.

Flanders, D. C.

D. C. Flanders, " Submicrometer periodicity grating as artificial anisotropic dielectrics," Appl. Phys. Lett. 42, 492- 494 ( 1983).
[CrossRef]

Goray, L. I.

Grann, E. B.

Hirai, Y.

Y. Hirai and Y. Tanaka, " Application of nano-imprint lithography," J. Photopolym Sci. Technol. 15, 475- 480 ( 2002).
[CrossRef]

Iwata, K.

Kikuta, H.

W. Yu, K. Satoh, H. Kikuta, T. Konishi, and T. Yotsuya, " Synthesis of wave plates using multilayered subwavelength structure," Jpn. J. Appl. Phys. 43, L439- L441 ( 2004).
[CrossRef]

H. Kikuta, Y. Ohira, and K. Iwata, " Achromatic quarter-wave plates using dispersion of form birefringence," Appl. Opt. 36, 1566- 1572 ( 1997).
[CrossRef] [PubMed]

Konishi, T.

W. Yu, K. Satoh, H. Kikuta, T. Konishi, and T. Yotsuya, " Synthesis of wave plates using multilayered subwavelength structure," Jpn. J. Appl. Phys. 43, L439- L441 ( 2004).
[CrossRef]

Moharam, M. G.

Moisa, S.

Montiel, F.

Moutinho, H.

D. L. Young, H. Moutinho, Y. Yan, and T. J. Coutts, " Growth and characterization of radio frequency magnetron sputter-deposited zinc stannate, Zn2SnO4, thin films," J. Appl. Phys. 92, 310- 319 ( 2002).
[CrossRef]

Neviére, M.

Nordin, G. P.

Ohira, Y.

Poitras, D.

Pommet, D. A.

Satoh, K.

W. Yu, K. Satoh, H. Kikuta, T. Konishi, and T. Yotsuya, " Synthesis of wave plates using multilayered subwavelength structure," Jpn. J. Appl. Phys. 43, L439- L441 ( 2004).
[CrossRef]

Seely, J. F.

Tanaka, Y.

Y. Hirai and Y. Tanaka, " Application of nano-imprint lithography," J. Photopolym Sci. Technol. 15, 475- 480 ( 2002).
[CrossRef]

Title, A. M.

Wimberger-Friedl, R.

R. Wimberger-Friedl, " Injection molding of sub-μm grating optical elements," J. Injection Molding Technol. 4, 78- 83 ( 2000).

Yan, Y.

D. L. Young, H. Moutinho, Y. Yan, and T. J. Coutts, " Growth and characterization of radio frequency magnetron sputter-deposited zinc stannate, Zn2SnO4, thin films," J. Appl. Phys. 92, 310- 319 ( 2002).
[CrossRef]

Yotsuya, T.

W. Yu, K. Satoh, H. Kikuta, T. Konishi, and T. Yotsuya, " Synthesis of wave plates using multilayered subwavelength structure," Jpn. J. Appl. Phys. 43, L439- L441 ( 2004).
[CrossRef]

Young, D. L.

D. L. Young, H. Moutinho, Y. Yan, and T. J. Coutts, " Growth and characterization of radio frequency magnetron sputter-deposited zinc stannate, Zn2SnO4, thin films," J. Appl. Phys. 92, 310- 319 ( 2002).
[CrossRef]

Yu, W.

W. Yu, K. Satoh, H. Kikuta, T. Konishi, and T. Yotsuya, " Synthesis of wave plates using multilayered subwavelength structure," Jpn. J. Appl. Phys. 43, L439- L441 ( 2004).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

D. C. Flanders, " Submicrometer periodicity grating as artificial anisotropic dielectrics," Appl. Phys. Lett. 42, 492- 494 ( 1983).
[CrossRef]

J. Appl. Phys.

D. L. Young, H. Moutinho, Y. Yan, and T. J. Coutts, " Growth and characterization of radio frequency magnetron sputter-deposited zinc stannate, Zn2SnO4, thin films," J. Appl. Phys. 92, 310- 319 ( 2002).
[CrossRef]

J. Injection Molding Technol.

R. Wimberger-Friedl, " Injection molding of sub-μm grating optical elements," J. Injection Molding Technol. 4, 78- 83 ( 2000).

J. Opt. Soc. Am. A

J. Photopolym Sci. Technol.

Y. Hirai and Y. Tanaka, " Application of nano-imprint lithography," J. Photopolym Sci. Technol. 15, 475- 480 ( 2002).
[CrossRef]

Jpn. J. Appl. Phys.

W. Yu, K. Satoh, H. Kikuta, T. Konishi, and T. Yotsuya, " Synthesis of wave plates using multilayered subwavelength structure," Jpn. J. Appl. Phys. 43, L439- L441 ( 2004).
[CrossRef]

Opt. Express

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the multilayer SWS. The fill factor is defined as tT.

Fig. 2
Fig. 2

Form birefringence of each layer as a function of the refractive index of deposition material n 2. The refractive index of substrate n 1 is 1.46 and the fill factor is 0.5.

Fig. 3
Fig. 3

Effective refractive indices for TE and TM waves in the upper layer (j = 1) as a function of wavelength. δn is the difference of effective refractive indices, i.e., the form birefringence.

Fig. 4
Fig. 4

Dependency of form birefringence and phase retardance on wavelength. (a) The form birefringence as a function of wavelength for different fill factors 0.5, 0.6, 0.7, and 0.8. The grating period is 320 nm. (b) The phase retardance calculated with a rigorous electromagnetic grating analysis. The thickness of deposited thin film D 2 is equal to groove depth D 1. The depths D 1 are 400, 480, 620, and 830 nm for the fill factors of 0.5, 0.6, 0.7, and 0.8, respectively.

Fig. 5
Fig. 5

Fabricated multilayered QWPs. (a) The SWS substrate of fused silica. The grating period is 320 nm. The grooves are 500 nm in depth and 180 nm in width. (b) The multilayered SWS for 320 nm ZTO deposition. (c) The multilayered SWS for 500 nm ZTO deposition.

Fig. 6
Fig. 6

Measured phase retardances of the fabricated QWPs. A calculated phase retardance of a conventional zeroth-order QWP is shown for comparison.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n eff = λ / d / 2 ,
cos δ ϕ = ( I 0 I 90 ) / I TE I TM .

Metrics