Abstract

The design, analysis, assembly methods, and optical-bench test results for a miniature injection-molded plastic objective lens used in a fiber-optic confocal reflectance microscope are presented. The five-lens plastic objective was tested as a stand-alone optical system before its integration into a confocal microscope for in vivo imaging of cells and tissue. Changing the spacing and rotation of the individual optical elements can compensate for fabrication inaccuracies and improve performance. The system performance of the miniature objective lens is measured by use of an industry-accepted slanted-edge modulation transfer function (MTF) metric. An estimated Strehl ratio of 0.61 and a MTF value of 0.66 at the fiber-optic bundle Nyquist frequency have been obtained. The optical bench testing system is configured to permit interactive optical alignment during testing to optimize performance. These results are part of an effort to demonstrate the manufacturability of low-cost, high-performance biomedical optics for high-resolution in vivo imaging. Disposable endoscopic microscope objectives could help in vivo confocal microscopy technology mature to permit wide-scale clinical screening and detection of early cancers and precancerous lesions.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Wilson, "Confocal microscopy," in Biomedical Photonics Handbook, T.Vo-Dinh, ed. (CRC Press, 2003), pp. 10-2-10-4.
  2. T. Collier, A. Lacy, A. Malpica, M. Follen, and R. Richards-Kortum, "Near real-time confocal microscopy of amelanotic tissue: detection of dysplasia in ex vivo cervical tissue," Acad. Radiol. 9, 504-512 (2002).
    [CrossRef] [PubMed]
  3. M. Rajadhyaksha, R. R. Anderson, and R. H. Webb, "Video-rate confocal scanning laser microscope for imaging human tissues in vivo," Appl. Opt. 38, 2105-2115 (1999).
    [CrossRef]
  4. W. Zheng, M. Harris, K. W. Kho, P. S. Thong, A. Hibbs, M. Olivo, and K. C. Soo, "Confocal endomicroscopic imaging of normal and neoplastic human tongue tissue using ALA-induced-PPIX fluorescence: a preliminary study," Oncol. Rep. 12, 397-401 (2004).
    [PubMed]
  5. A. F. Gmitro and D. Aziz, "Confocal microscopy through a fiber-optic imaging bundle," Opt. Lett. 44, 565-567 (1993).
    [CrossRef]
  6. K. B. Sung, C. Liang, M. R. Descour, T. Collier, M. Follen, A. Malpica, and R. Richards-Kortum, "Near real time in-vivo fibre optic confocal microscopy: sub-cellular structure resolved," J. Microsc. 207, 137-145 (2002).
    [CrossRef] [PubMed]
  7. C. Liang, M. R. Descour, K. B. Sung, and R. Richards-Kortum, "Fiber confocal reflectance microscope (FCRM) for in vivo imaging," Opt. Express 9, 821-830 (2001).
    [CrossRef] [PubMed]
  8. K. B. Sung, C. Liang, M. R. Descour, T. Collier, M. Follen, and R. Richards-Kortum, "Fiber optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues," IEEE Trans. Biomed. Eng. 49, 1168-1172 (2002).
    [CrossRef] [PubMed]
  9. K. Sung, R. Richards-Kortum, M. Follen, A. Malpica, C. Liang, and M. R. Descour, "Fiber optic confocal reflectance microscopy: a new real-time technique to view nuclear morphology in cervical squamous epithelium in vivo," Opt. Express 11, 3171-3181 (2003).
    [CrossRef] [PubMed]
  10. C. Liang, K. B. Sung, R. Richards-Kortum, and M. R. Descour, "Design of high NA miniature objective for endoscopic fiber confocal reflectance microscope (FCRM)," Appl. Opt. 41, 4603-4610 (2002).
    [CrossRef] [PubMed]
  11. A. K. Dunn, C. Smithpeter, A. J. Welch, and R. Richards-Kortum, "Sources of contrast in confocal reflectance imaging," Appl. Opt. 35, 3441-3446 (1996).
    [CrossRef] [PubMed]
  12. ZEMAX Development Corporation, http://www.zemax.com/.
  13. M. D. Chidley, C. Liang, M. Descour, K. B. Sung, R. Richards-Kortum, and A. Gillenwater, "Miniature injection-molded optics for fiber-optic, in vivo confocal microscopy," in International Optical Design Conference, P.K.Manhart and J.M.Sasian, eds., Proc. SPIE 4832, 126-136 (2002).
  14. N. G. Sultanova, I. D. Nikolov, and C. D. Ivanov, "Measuring the refractometric characteristics of optical plastics," Opt. Quantum Electron. 35, 21-34 (2003).
    [CrossRef]
  15. C. Liang, "Design of miniature microscope objective optics for biomedical imaging," Ph.D. dissertation (University of Arizona, 2002).
  16. S. Baumer, Handbook of Plastic Optics (Wiley-VCH, 2005), p. 28.
    [CrossRef]
  17. R. E. Fisher and B. Tadic-Galeb, Optical System Design (McGraw-Hill, 2000), pp. 110 and 302-307.
  18. Source, ZEMAX Optical Design Program User's Guide (February 2005), p. 243.
  19. K. Carlson, M. D. Chidley, K. B. Sung, M. R. Descour, A. Gillenwater, M. Follen, and R. Richards-Kortum, "In vivo fiber-optic confocal reflectance microscope with an injection-molded plastic miniature objective lens," Appl. Opt. 44, 1792-1797 (2005).
    [CrossRef] [PubMed]
  20. W. J. Smith, Modern Optical Engineering, 3rd ed. (McGraw-Hill, 2000), pp. 366-377.
  21. B. Wells, "Test and measurement: MTF provides an image-quality metric," Laser Focus World , 41(10), S7+/- (2005).
  22. A. P. Tzannes and J. M. Mooney, "Measurement of the modulation transfer function of infrared cameras," Opt. Eng. 34, 1808-1817 (1995).
    [CrossRef]
  23. P. D. Burns, "Slanted-edge MTF for digital camera and scanner analysis," in PICS 2000: Image Processing, Image Quality, Image Capture, Systems Conference (The Society for Imaging Science and Technology, 2000), pp. 135-138.
  24. P. D. Burns and D. Williams, "Refined slanted-edge measurements for practical camera and scanner testing," in PICS 2002: Image Processing, Image Quality, Image Capture, Systems Conference (The Society for Imaging Science and Technology, 2002), pp. 191-195.
  25. P. B. Greer and T. van Doorn, "Evaluation of an algorithm for the assessment of the MTF using an edge method," Med. Phys. 27, 2048-2059 (2000).
    [CrossRef] [PubMed]
  26. J. E. Greivenkamp, Field Guide to Geometrical Optics (SPIE Press, 2004), p. 89.
    [CrossRef]
  27. International Imaging Industry Association: http://www.i3a.org/downloadslowbariso.html.
  28. G. D. Boreman, Modulation Transfer Function in Optical and Electro-Optical Systems (SPIE Press, 2001), pp. 28 and 85-88.
    [CrossRef]

2005 (2)

2004 (1)

W. Zheng, M. Harris, K. W. Kho, P. S. Thong, A. Hibbs, M. Olivo, and K. C. Soo, "Confocal endomicroscopic imaging of normal and neoplastic human tongue tissue using ALA-induced-PPIX fluorescence: a preliminary study," Oncol. Rep. 12, 397-401 (2004).
[PubMed]

2003 (2)

2002 (5)

C. Liang, "Design of miniature microscope objective optics for biomedical imaging," Ph.D. dissertation (University of Arizona, 2002).

K. B. Sung, C. Liang, M. R. Descour, T. Collier, M. Follen, and R. Richards-Kortum, "Fiber optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues," IEEE Trans. Biomed. Eng. 49, 1168-1172 (2002).
[CrossRef] [PubMed]

C. Liang, K. B. Sung, R. Richards-Kortum, and M. R. Descour, "Design of high NA miniature objective for endoscopic fiber confocal reflectance microscope (FCRM)," Appl. Opt. 41, 4603-4610 (2002).
[CrossRef] [PubMed]

K. B. Sung, C. Liang, M. R. Descour, T. Collier, M. Follen, A. Malpica, and R. Richards-Kortum, "Near real time in-vivo fibre optic confocal microscopy: sub-cellular structure resolved," J. Microsc. 207, 137-145 (2002).
[CrossRef] [PubMed]

T. Collier, A. Lacy, A. Malpica, M. Follen, and R. Richards-Kortum, "Near real-time confocal microscopy of amelanotic tissue: detection of dysplasia in ex vivo cervical tissue," Acad. Radiol. 9, 504-512 (2002).
[CrossRef] [PubMed]

2001 (1)

2000 (2)

P. D. Burns, "Slanted-edge MTF for digital camera and scanner analysis," in PICS 2000: Image Processing, Image Quality, Image Capture, Systems Conference (The Society for Imaging Science and Technology, 2000), pp. 135-138.

P. B. Greer and T. van Doorn, "Evaluation of an algorithm for the assessment of the MTF using an edge method," Med. Phys. 27, 2048-2059 (2000).
[CrossRef] [PubMed]

1999 (1)

1996 (1)

1995 (1)

A. P. Tzannes and J. M. Mooney, "Measurement of the modulation transfer function of infrared cameras," Opt. Eng. 34, 1808-1817 (1995).
[CrossRef]

1993 (1)

A. F. Gmitro and D. Aziz, "Confocal microscopy through a fiber-optic imaging bundle," Opt. Lett. 44, 565-567 (1993).
[CrossRef]

Anderson, R. R.

Aziz, D.

A. F. Gmitro and D. Aziz, "Confocal microscopy through a fiber-optic imaging bundle," Opt. Lett. 44, 565-567 (1993).
[CrossRef]

Baumer, S.

S. Baumer, Handbook of Plastic Optics (Wiley-VCH, 2005), p. 28.
[CrossRef]

Boreman, G. D.

G. D. Boreman, Modulation Transfer Function in Optical and Electro-Optical Systems (SPIE Press, 2001), pp. 28 and 85-88.
[CrossRef]

Burns, P. D.

P. D. Burns, "Slanted-edge MTF for digital camera and scanner analysis," in PICS 2000: Image Processing, Image Quality, Image Capture, Systems Conference (The Society for Imaging Science and Technology, 2000), pp. 135-138.

P. D. Burns and D. Williams, "Refined slanted-edge measurements for practical camera and scanner testing," in PICS 2002: Image Processing, Image Quality, Image Capture, Systems Conference (The Society for Imaging Science and Technology, 2002), pp. 191-195.

Carlson, K.

Chidley, M. D.

K. Carlson, M. D. Chidley, K. B. Sung, M. R. Descour, A. Gillenwater, M. Follen, and R. Richards-Kortum, "In vivo fiber-optic confocal reflectance microscope with an injection-molded plastic miniature objective lens," Appl. Opt. 44, 1792-1797 (2005).
[CrossRef] [PubMed]

M. D. Chidley, C. Liang, M. Descour, K. B. Sung, R. Richards-Kortum, and A. Gillenwater, "Miniature injection-molded optics for fiber-optic, in vivo confocal microscopy," in International Optical Design Conference, P.K.Manhart and J.M.Sasian, eds., Proc. SPIE 4832, 126-136 (2002).

Collier, T.

T. Collier, A. Lacy, A. Malpica, M. Follen, and R. Richards-Kortum, "Near real-time confocal microscopy of amelanotic tissue: detection of dysplasia in ex vivo cervical tissue," Acad. Radiol. 9, 504-512 (2002).
[CrossRef] [PubMed]

K. B. Sung, C. Liang, M. R. Descour, T. Collier, M. Follen, A. Malpica, and R. Richards-Kortum, "Near real time in-vivo fibre optic confocal microscopy: sub-cellular structure resolved," J. Microsc. 207, 137-145 (2002).
[CrossRef] [PubMed]

K. B. Sung, C. Liang, M. R. Descour, T. Collier, M. Follen, and R. Richards-Kortum, "Fiber optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues," IEEE Trans. Biomed. Eng. 49, 1168-1172 (2002).
[CrossRef] [PubMed]

Descour, M.

M. D. Chidley, C. Liang, M. Descour, K. B. Sung, R. Richards-Kortum, and A. Gillenwater, "Miniature injection-molded optics for fiber-optic, in vivo confocal microscopy," in International Optical Design Conference, P.K.Manhart and J.M.Sasian, eds., Proc. SPIE 4832, 126-136 (2002).

Descour, M. R.

Dunn, A. K.

Fisher, R. E.

R. E. Fisher and B. Tadic-Galeb, Optical System Design (McGraw-Hill, 2000), pp. 110 and 302-307.

Follen, M.

K. Carlson, M. D. Chidley, K. B. Sung, M. R. Descour, A. Gillenwater, M. Follen, and R. Richards-Kortum, "In vivo fiber-optic confocal reflectance microscope with an injection-molded plastic miniature objective lens," Appl. Opt. 44, 1792-1797 (2005).
[CrossRef] [PubMed]

K. Sung, R. Richards-Kortum, M. Follen, A. Malpica, C. Liang, and M. R. Descour, "Fiber optic confocal reflectance microscopy: a new real-time technique to view nuclear morphology in cervical squamous epithelium in vivo," Opt. Express 11, 3171-3181 (2003).
[CrossRef] [PubMed]

K. B. Sung, C. Liang, M. R. Descour, T. Collier, M. Follen, A. Malpica, and R. Richards-Kortum, "Near real time in-vivo fibre optic confocal microscopy: sub-cellular structure resolved," J. Microsc. 207, 137-145 (2002).
[CrossRef] [PubMed]

K. B. Sung, C. Liang, M. R. Descour, T. Collier, M. Follen, and R. Richards-Kortum, "Fiber optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues," IEEE Trans. Biomed. Eng. 49, 1168-1172 (2002).
[CrossRef] [PubMed]

T. Collier, A. Lacy, A. Malpica, M. Follen, and R. Richards-Kortum, "Near real-time confocal microscopy of amelanotic tissue: detection of dysplasia in ex vivo cervical tissue," Acad. Radiol. 9, 504-512 (2002).
[CrossRef] [PubMed]

Gillenwater, A.

K. Carlson, M. D. Chidley, K. B. Sung, M. R. Descour, A. Gillenwater, M. Follen, and R. Richards-Kortum, "In vivo fiber-optic confocal reflectance microscope with an injection-molded plastic miniature objective lens," Appl. Opt. 44, 1792-1797 (2005).
[CrossRef] [PubMed]

M. D. Chidley, C. Liang, M. Descour, K. B. Sung, R. Richards-Kortum, and A. Gillenwater, "Miniature injection-molded optics for fiber-optic, in vivo confocal microscopy," in International Optical Design Conference, P.K.Manhart and J.M.Sasian, eds., Proc. SPIE 4832, 126-136 (2002).

Gmitro, A. F.

A. F. Gmitro and D. Aziz, "Confocal microscopy through a fiber-optic imaging bundle," Opt. Lett. 44, 565-567 (1993).
[CrossRef]

Greer, P. B.

P. B. Greer and T. van Doorn, "Evaluation of an algorithm for the assessment of the MTF using an edge method," Med. Phys. 27, 2048-2059 (2000).
[CrossRef] [PubMed]

Greivenkamp, J. E.

J. E. Greivenkamp, Field Guide to Geometrical Optics (SPIE Press, 2004), p. 89.
[CrossRef]

Harris, M.

W. Zheng, M. Harris, K. W. Kho, P. S. Thong, A. Hibbs, M. Olivo, and K. C. Soo, "Confocal endomicroscopic imaging of normal and neoplastic human tongue tissue using ALA-induced-PPIX fluorescence: a preliminary study," Oncol. Rep. 12, 397-401 (2004).
[PubMed]

Hibbs, A.

W. Zheng, M. Harris, K. W. Kho, P. S. Thong, A. Hibbs, M. Olivo, and K. C. Soo, "Confocal endomicroscopic imaging of normal and neoplastic human tongue tissue using ALA-induced-PPIX fluorescence: a preliminary study," Oncol. Rep. 12, 397-401 (2004).
[PubMed]

Ivanov, C. D.

N. G. Sultanova, I. D. Nikolov, and C. D. Ivanov, "Measuring the refractometric characteristics of optical plastics," Opt. Quantum Electron. 35, 21-34 (2003).
[CrossRef]

Kho, K. W.

W. Zheng, M. Harris, K. W. Kho, P. S. Thong, A. Hibbs, M. Olivo, and K. C. Soo, "Confocal endomicroscopic imaging of normal and neoplastic human tongue tissue using ALA-induced-PPIX fluorescence: a preliminary study," Oncol. Rep. 12, 397-401 (2004).
[PubMed]

Lacy, A.

T. Collier, A. Lacy, A. Malpica, M. Follen, and R. Richards-Kortum, "Near real-time confocal microscopy of amelanotic tissue: detection of dysplasia in ex vivo cervical tissue," Acad. Radiol. 9, 504-512 (2002).
[CrossRef] [PubMed]

Liang, C.

K. Sung, R. Richards-Kortum, M. Follen, A. Malpica, C. Liang, and M. R. Descour, "Fiber optic confocal reflectance microscopy: a new real-time technique to view nuclear morphology in cervical squamous epithelium in vivo," Opt. Express 11, 3171-3181 (2003).
[CrossRef] [PubMed]

C. Liang, K. B. Sung, R. Richards-Kortum, and M. R. Descour, "Design of high NA miniature objective for endoscopic fiber confocal reflectance microscope (FCRM)," Appl. Opt. 41, 4603-4610 (2002).
[CrossRef] [PubMed]

C. Liang, "Design of miniature microscope objective optics for biomedical imaging," Ph.D. dissertation (University of Arizona, 2002).

K. B. Sung, C. Liang, M. R. Descour, T. Collier, M. Follen, A. Malpica, and R. Richards-Kortum, "Near real time in-vivo fibre optic confocal microscopy: sub-cellular structure resolved," J. Microsc. 207, 137-145 (2002).
[CrossRef] [PubMed]

K. B. Sung, C. Liang, M. R. Descour, T. Collier, M. Follen, and R. Richards-Kortum, "Fiber optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues," IEEE Trans. Biomed. Eng. 49, 1168-1172 (2002).
[CrossRef] [PubMed]

C. Liang, M. R. Descour, K. B. Sung, and R. Richards-Kortum, "Fiber confocal reflectance microscope (FCRM) for in vivo imaging," Opt. Express 9, 821-830 (2001).
[CrossRef] [PubMed]

M. D. Chidley, C. Liang, M. Descour, K. B. Sung, R. Richards-Kortum, and A. Gillenwater, "Miniature injection-molded optics for fiber-optic, in vivo confocal microscopy," in International Optical Design Conference, P.K.Manhart and J.M.Sasian, eds., Proc. SPIE 4832, 126-136 (2002).

Malpica, A.

K. Sung, R. Richards-Kortum, M. Follen, A. Malpica, C. Liang, and M. R. Descour, "Fiber optic confocal reflectance microscopy: a new real-time technique to view nuclear morphology in cervical squamous epithelium in vivo," Opt. Express 11, 3171-3181 (2003).
[CrossRef] [PubMed]

K. B. Sung, C. Liang, M. R. Descour, T. Collier, M. Follen, A. Malpica, and R. Richards-Kortum, "Near real time in-vivo fibre optic confocal microscopy: sub-cellular structure resolved," J. Microsc. 207, 137-145 (2002).
[CrossRef] [PubMed]

T. Collier, A. Lacy, A. Malpica, M. Follen, and R. Richards-Kortum, "Near real-time confocal microscopy of amelanotic tissue: detection of dysplasia in ex vivo cervical tissue," Acad. Radiol. 9, 504-512 (2002).
[CrossRef] [PubMed]

Mooney, J. M.

A. P. Tzannes and J. M. Mooney, "Measurement of the modulation transfer function of infrared cameras," Opt. Eng. 34, 1808-1817 (1995).
[CrossRef]

Nikolov, I. D.

N. G. Sultanova, I. D. Nikolov, and C. D. Ivanov, "Measuring the refractometric characteristics of optical plastics," Opt. Quantum Electron. 35, 21-34 (2003).
[CrossRef]

Olivo, M.

W. Zheng, M. Harris, K. W. Kho, P. S. Thong, A. Hibbs, M. Olivo, and K. C. Soo, "Confocal endomicroscopic imaging of normal and neoplastic human tongue tissue using ALA-induced-PPIX fluorescence: a preliminary study," Oncol. Rep. 12, 397-401 (2004).
[PubMed]

Rajadhyaksha, M.

Richards-Kortum, R.

K. Carlson, M. D. Chidley, K. B. Sung, M. R. Descour, A. Gillenwater, M. Follen, and R. Richards-Kortum, "In vivo fiber-optic confocal reflectance microscope with an injection-molded plastic miniature objective lens," Appl. Opt. 44, 1792-1797 (2005).
[CrossRef] [PubMed]

K. Sung, R. Richards-Kortum, M. Follen, A. Malpica, C. Liang, and M. R. Descour, "Fiber optic confocal reflectance microscopy: a new real-time technique to view nuclear morphology in cervical squamous epithelium in vivo," Opt. Express 11, 3171-3181 (2003).
[CrossRef] [PubMed]

C. Liang, K. B. Sung, R. Richards-Kortum, and M. R. Descour, "Design of high NA miniature objective for endoscopic fiber confocal reflectance microscope (FCRM)," Appl. Opt. 41, 4603-4610 (2002).
[CrossRef] [PubMed]

T. Collier, A. Lacy, A. Malpica, M. Follen, and R. Richards-Kortum, "Near real-time confocal microscopy of amelanotic tissue: detection of dysplasia in ex vivo cervical tissue," Acad. Radiol. 9, 504-512 (2002).
[CrossRef] [PubMed]

K. B. Sung, C. Liang, M. R. Descour, T. Collier, M. Follen, A. Malpica, and R. Richards-Kortum, "Near real time in-vivo fibre optic confocal microscopy: sub-cellular structure resolved," J. Microsc. 207, 137-145 (2002).
[CrossRef] [PubMed]

K. B. Sung, C. Liang, M. R. Descour, T. Collier, M. Follen, and R. Richards-Kortum, "Fiber optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues," IEEE Trans. Biomed. Eng. 49, 1168-1172 (2002).
[CrossRef] [PubMed]

C. Liang, M. R. Descour, K. B. Sung, and R. Richards-Kortum, "Fiber confocal reflectance microscope (FCRM) for in vivo imaging," Opt. Express 9, 821-830 (2001).
[CrossRef] [PubMed]

A. K. Dunn, C. Smithpeter, A. J. Welch, and R. Richards-Kortum, "Sources of contrast in confocal reflectance imaging," Appl. Opt. 35, 3441-3446 (1996).
[CrossRef] [PubMed]

M. D. Chidley, C. Liang, M. Descour, K. B. Sung, R. Richards-Kortum, and A. Gillenwater, "Miniature injection-molded optics for fiber-optic, in vivo confocal microscopy," in International Optical Design Conference, P.K.Manhart and J.M.Sasian, eds., Proc. SPIE 4832, 126-136 (2002).

Smith, W. J.

W. J. Smith, Modern Optical Engineering, 3rd ed. (McGraw-Hill, 2000), pp. 366-377.

Smithpeter, C.

Soo, K. C.

W. Zheng, M. Harris, K. W. Kho, P. S. Thong, A. Hibbs, M. Olivo, and K. C. Soo, "Confocal endomicroscopic imaging of normal and neoplastic human tongue tissue using ALA-induced-PPIX fluorescence: a preliminary study," Oncol. Rep. 12, 397-401 (2004).
[PubMed]

Sultanova, N. G.

N. G. Sultanova, I. D. Nikolov, and C. D. Ivanov, "Measuring the refractometric characteristics of optical plastics," Opt. Quantum Electron. 35, 21-34 (2003).
[CrossRef]

Sung, K.

Sung, K. B.

K. Carlson, M. D. Chidley, K. B. Sung, M. R. Descour, A. Gillenwater, M. Follen, and R. Richards-Kortum, "In vivo fiber-optic confocal reflectance microscope with an injection-molded plastic miniature objective lens," Appl. Opt. 44, 1792-1797 (2005).
[CrossRef] [PubMed]

C. Liang, K. B. Sung, R. Richards-Kortum, and M. R. Descour, "Design of high NA miniature objective for endoscopic fiber confocal reflectance microscope (FCRM)," Appl. Opt. 41, 4603-4610 (2002).
[CrossRef] [PubMed]

K. B. Sung, C. Liang, M. R. Descour, T. Collier, M. Follen, and R. Richards-Kortum, "Fiber optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues," IEEE Trans. Biomed. Eng. 49, 1168-1172 (2002).
[CrossRef] [PubMed]

K. B. Sung, C. Liang, M. R. Descour, T. Collier, M. Follen, A. Malpica, and R. Richards-Kortum, "Near real time in-vivo fibre optic confocal microscopy: sub-cellular structure resolved," J. Microsc. 207, 137-145 (2002).
[CrossRef] [PubMed]

C. Liang, M. R. Descour, K. B. Sung, and R. Richards-Kortum, "Fiber confocal reflectance microscope (FCRM) for in vivo imaging," Opt. Express 9, 821-830 (2001).
[CrossRef] [PubMed]

M. D. Chidley, C. Liang, M. Descour, K. B. Sung, R. Richards-Kortum, and A. Gillenwater, "Miniature injection-molded optics for fiber-optic, in vivo confocal microscopy," in International Optical Design Conference, P.K.Manhart and J.M.Sasian, eds., Proc. SPIE 4832, 126-136 (2002).

Tadic-Galeb, B.

R. E. Fisher and B. Tadic-Galeb, Optical System Design (McGraw-Hill, 2000), pp. 110 and 302-307.

Thong, P. S.

W. Zheng, M. Harris, K. W. Kho, P. S. Thong, A. Hibbs, M. Olivo, and K. C. Soo, "Confocal endomicroscopic imaging of normal and neoplastic human tongue tissue using ALA-induced-PPIX fluorescence: a preliminary study," Oncol. Rep. 12, 397-401 (2004).
[PubMed]

Tzannes, A. P.

A. P. Tzannes and J. M. Mooney, "Measurement of the modulation transfer function of infrared cameras," Opt. Eng. 34, 1808-1817 (1995).
[CrossRef]

van Doorn, T.

P. B. Greer and T. van Doorn, "Evaluation of an algorithm for the assessment of the MTF using an edge method," Med. Phys. 27, 2048-2059 (2000).
[CrossRef] [PubMed]

Webb, R. H.

Welch, A. J.

Wells, B.

B. Wells, "Test and measurement: MTF provides an image-quality metric," Laser Focus World , 41(10), S7+/- (2005).

Williams, D.

P. D. Burns and D. Williams, "Refined slanted-edge measurements for practical camera and scanner testing," in PICS 2002: Image Processing, Image Quality, Image Capture, Systems Conference (The Society for Imaging Science and Technology, 2002), pp. 191-195.

Wilson, T.

T. Wilson, "Confocal microscopy," in Biomedical Photonics Handbook, T.Vo-Dinh, ed. (CRC Press, 2003), pp. 10-2-10-4.

Zheng, W.

W. Zheng, M. Harris, K. W. Kho, P. S. Thong, A. Hibbs, M. Olivo, and K. C. Soo, "Confocal endomicroscopic imaging of normal and neoplastic human tongue tissue using ALA-induced-PPIX fluorescence: a preliminary study," Oncol. Rep. 12, 397-401 (2004).
[PubMed]

Acad. Radiol. (1)

T. Collier, A. Lacy, A. Malpica, M. Follen, and R. Richards-Kortum, "Near real-time confocal microscopy of amelanotic tissue: detection of dysplasia in ex vivo cervical tissue," Acad. Radiol. 9, 504-512 (2002).
[CrossRef] [PubMed]

Appl. Opt. (4)

IEEE Trans. Biomed. Eng. (1)

K. B. Sung, C. Liang, M. R. Descour, T. Collier, M. Follen, and R. Richards-Kortum, "Fiber optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues," IEEE Trans. Biomed. Eng. 49, 1168-1172 (2002).
[CrossRef] [PubMed]

J. Microsc. (1)

K. B. Sung, C. Liang, M. R. Descour, T. Collier, M. Follen, A. Malpica, and R. Richards-Kortum, "Near real time in-vivo fibre optic confocal microscopy: sub-cellular structure resolved," J. Microsc. 207, 137-145 (2002).
[CrossRef] [PubMed]

Laser Focus World (1)

B. Wells, "Test and measurement: MTF provides an image-quality metric," Laser Focus World , 41(10), S7+/- (2005).

Med. Phys. (1)

P. B. Greer and T. van Doorn, "Evaluation of an algorithm for the assessment of the MTF using an edge method," Med. Phys. 27, 2048-2059 (2000).
[CrossRef] [PubMed]

Oncol. Rep. (1)

W. Zheng, M. Harris, K. W. Kho, P. S. Thong, A. Hibbs, M. Olivo, and K. C. Soo, "Confocal endomicroscopic imaging of normal and neoplastic human tongue tissue using ALA-induced-PPIX fluorescence: a preliminary study," Oncol. Rep. 12, 397-401 (2004).
[PubMed]

Opt. Eng. (1)

A. P. Tzannes and J. M. Mooney, "Measurement of the modulation transfer function of infrared cameras," Opt. Eng. 34, 1808-1817 (1995).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

A. F. Gmitro and D. Aziz, "Confocal microscopy through a fiber-optic imaging bundle," Opt. Lett. 44, 565-567 (1993).
[CrossRef]

Opt. Quantum Electron. (1)

N. G. Sultanova, I. D. Nikolov, and C. D. Ivanov, "Measuring the refractometric characteristics of optical plastics," Opt. Quantum Electron. 35, 21-34 (2003).
[CrossRef]

Other (13)

C. Liang, "Design of miniature microscope objective optics for biomedical imaging," Ph.D. dissertation (University of Arizona, 2002).

S. Baumer, Handbook of Plastic Optics (Wiley-VCH, 2005), p. 28.
[CrossRef]

R. E. Fisher and B. Tadic-Galeb, Optical System Design (McGraw-Hill, 2000), pp. 110 and 302-307.

Source, ZEMAX Optical Design Program User's Guide (February 2005), p. 243.

W. J. Smith, Modern Optical Engineering, 3rd ed. (McGraw-Hill, 2000), pp. 366-377.

P. D. Burns, "Slanted-edge MTF for digital camera and scanner analysis," in PICS 2000: Image Processing, Image Quality, Image Capture, Systems Conference (The Society for Imaging Science and Technology, 2000), pp. 135-138.

P. D. Burns and D. Williams, "Refined slanted-edge measurements for practical camera and scanner testing," in PICS 2002: Image Processing, Image Quality, Image Capture, Systems Conference (The Society for Imaging Science and Technology, 2002), pp. 191-195.

T. Wilson, "Confocal microscopy," in Biomedical Photonics Handbook, T.Vo-Dinh, ed. (CRC Press, 2003), pp. 10-2-10-4.

ZEMAX Development Corporation, http://www.zemax.com/.

M. D. Chidley, C. Liang, M. Descour, K. B. Sung, R. Richards-Kortum, and A. Gillenwater, "Miniature injection-molded optics for fiber-optic, in vivo confocal microscopy," in International Optical Design Conference, P.K.Manhart and J.M.Sasian, eds., Proc. SPIE 4832, 126-136 (2002).

J. E. Greivenkamp, Field Guide to Geometrical Optics (SPIE Press, 2004), p. 89.
[CrossRef]

International Imaging Industry Association: http://www.i3a.org/downloadslowbariso.html.

G. D. Boreman, Modulation Transfer Function in Optical and Electro-Optical Systems (SPIE Press, 2001), pp. 28 and 85-88.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Optical design layout for the previous eight-element glass-optics miniature objective. The overall object-to-image distance is 20.4 mm and has a maximum CA of 4.2 mm. (b) Current five-element injection-molded plastic (BETA) design layout. Object-to-image distance, 17.9 mm; CA, 5.0 mm.

Fig. 2
Fig. 2

3D BETA model; inset, photograph of an actual miniature injection-molded objective.

Fig. 3
Fig. 3

Cross-sectional drawing and 3D model of a rotation fixture with a miniature objective installed.

Fig. 4
Fig. 4

Four subimages are selected, as shown, from each image. A second image is taken here, and then two images are collected at the opposite corner. A total of 16 subimages from four different edge transitions combines to yield the test MTF curve, which is used to calculate the estimated SR value (BETA17, 700 μm balls from lens L3 to lens L4).

Fig. 5
Fig. 5

Optical bench testing diagram.

Fig. 6
Fig. 6

USAF Test Chart resolution target image obtained with a miniature injection-molded objective (BETA17, 800 μm balls from lens L3 to lens L4). Group 7 element 6 has a spatial frequency of 228 LPMM, corresponding to a resolution of 760 LPMM in tissue space. (The corner inset has been enhanced for display purposes.)

Fig. 7
Fig. 7

Estimated SR at multiple conjugates for four rotations (BETA15, 700 μm balls from lens L3 to lens L4).

Fig. 8
Fig. 8

Estimated SR maxima for different-sized balls from lens L3 to lens L4 while the same rotational alignment (BETA17) is maintained.

Fig. 9
Fig. 9

BETA gray-scale birefringence images (light source–left-hand circular polarizer–lens–right-hand circular polarizer–microscope–camera).

Fig. 10
Fig. 10

Combined test MTF (BETA17, 700 μm balls from lens L3 to lens L4) with as-fabricated ZEMAX model data.

Fig. 11
Fig. 11

Effect of rotation of lens L3 on as-fabricated ZEMAX model.

Tables (5)

Tables Icon

Table 1 Design Specifications for the BETA Injection-Molded Objective

Tables Icon

Table 2 Specifications for the Coherent Fiber-Optic Bundle a

Tables Icon

Table 3 Injection-Molding Manufacturing Tolerances Used for the Tolerance Analysis

Tables Icon

Table 4 Prescription Data: BETA Miniature Injection-Molded Lens

Tables Icon

Table 5 BETA Even-Asphere Coefficients a

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

SR = OTF test ( ξ , η ) OTF diffraction ( ξ , η ) .

Metrics