Abstract

The anisotropic dependence of the formation of one-dimensional (1-D) spatial dark solitons on the orientation of intensity gradients in lithium niobate crystal is numerically specified. Based on this, we propose an approach to fabricate channel waveguides by employing 1-D spatial dark solitons. By exposure of two 1-D dark solitons with different orientations, channel waveguides can be created. The structures of the channel waveguides can be tuned by adjustment of the widths of the solitons and∕or the angles between the two exposures. A square channel waveguide is experimentally demonstrated in an iron-doped lithium niobate crystal by exposure of two orthogonal 1-D dark solitons in sequence.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. I. Stegeman and M. Segev, "Optical spatial solitons and their interactions: universality and diversity," Science 286, 1518-1523 (1999).
    [CrossRef] [PubMed]
  2. M. Shih, Z. Chen, M. Mitchell, M. Segev, H. Lee, R. S. Feigelson, and J. P. Wilde, "Waveguides induced by photorefractive screening solitons," J. Opt. Soc. Am. B 14, 3091-3101 (1997).
    [CrossRef]
  3. S. Liu, G. Zhang, Q. Sun, J. Xu, and G. Zhang, "Waveguides written and stored by photovoltaic dark spatial solitons in LiNbO3:Fe crystals,"Chin. Phys. Lett. 13, 737-740 (1996).
    [CrossRef]
  4. S. Liu, G. Zhang, G. Tian, Q. Sun, J. Xu, G. Zhang, and T. Yicheng, "(1+1)-Dimensional and (2+1)-dimensional waveguides induced by self-focused dark notches and crosses in LiNbO3:Fe crystal,"Appl. Opt. 36, 8982-8986 (1997).
    [CrossRef]
  5. E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, "Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,"Appl. Phys. Lett. 85, 2193-2195 (2004).
    [CrossRef]
  6. Z. Chen, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, "Self-trapping of an optical vortex by use of the bulk photovoltaic effect," Phys. Rev. Lett. 78, 2948-2951 (1997).
    [CrossRef]
  7. M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, "Observation of dark photovoltaic spatial solitons." Phys. Rev. A 52, 3095-3100 (1995).
    [CrossRef] [PubMed]
  8. M. Segev, G. C. Valley, M. C. Bashaw, M. Taya, and M. M. Fejer, "Photovoltaic spatial solitons," J. Opt. Soc. Am. B 14, 1772-1781 (1997).
    [CrossRef]
  9. M. Shih, P. Leach, M. Segev, M. H. Garrett, G. J. Salamo, and G. C. Valley, "Two-dimensional steady-state photorefractive screening solitons," Opt. Lett. 21, 324-326 (1996).
    [CrossRef] [PubMed]
  10. G. Duree, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, and E. Sharp, "Dimensionality and size of photorefractive spatial solitons," Opt. Lett. 19, 1195-1197 (1994).
    [CrossRef] [PubMed]
  11. G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. Fejer, and M. C. Bashaw, "Dark and bright photovoltaic spatial solitons," Phys. Rev. A 50, R4457-R4460 (1994).
    [CrossRef] [PubMed]
  12. J. Liu, "Universal theory of steady-state one-dimensional photorefractive solitons,"Chin. Phys. 10, 1037-1042 (2001).
    [CrossRef]
  13. W. L. She, K. K. Lee, and W. K. Lee, "Observation of two-dimensional bright photovoltaic spatial solitons," Phys. Rev. Lett. 83, 3182-3185 (1999).
    [CrossRef]
  14. Z. Chen, M. Mitchell, M. Shih, M. Segev, M. H. Garrett, and G. C. Valley, "Steady-state dark photorefractive screening solitons," Opt. Lett. 21, 629-631 (1996).
    [CrossRef] [PubMed]
  15. J. Liu and K. Lu, "Screening-photovoltaic spatial solitons in biased photovoltaic photorefractive crystals and their self-deflection," J. Opt. Soc. Am. B 16, 550-555 (1999).
    [CrossRef]
  16. K. Itoh, O. Matoba, and Y. Ichioka, "Fabrication experiment of photorefractive three-dimensional waveuides in lithium niobate,"Opt. Lett. 19, 652-654 (1994).
    [CrossRef] [PubMed]
  17. P. Zhang, D. Yang, J. Zhao, K. Su, J. Zhou, B. Li, and D. S. Yang, "Light-induced array of three-dimensional waveguides in lithium niobate by employing two-beam interference field."Chin. Phys. Lett. 21, 1558-1561 (2004).
    [CrossRef]
  18. K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, "Origin of thermal fixing in photorefractive lithium niobate crystals,"Phys. Rev. B 56, 1225-1235 (1997).
    [CrossRef]
  19. H. A. Eggert, B. Hecking, and K. Buse, "Electrical fixing in near-stoichiometric lithium niobate crystals," Opt. Lett. 29, 2476-2478 (2004).
    [CrossRef] [PubMed]
  20. G. A. Swartzlander, Jr., D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, "Spatial dark-soliton stripes and grids in self-defocusing materials," Phys. Rev. Lett. 66, 1583-1586 (1991).
    [CrossRef] [PubMed]
  21. A. A. Zozulya and D. Z. Anderson, "Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field,"Phys. Rev. A 51, 1520-1531 (1995).
    [CrossRef] [PubMed]
  22. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).
  23. T. A. Maldonado and T. K. Gaylord, "Electrooptic effect calculations: simplified procedure for arbitrary cases," Appl. Opt. 27, 5051-5066 (1988).
    [CrossRef] [PubMed]

2004 (3)

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, "Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,"Appl. Phys. Lett. 85, 2193-2195 (2004).
[CrossRef]

P. Zhang, D. Yang, J. Zhao, K. Su, J. Zhou, B. Li, and D. S. Yang, "Light-induced array of three-dimensional waveguides in lithium niobate by employing two-beam interference field."Chin. Phys. Lett. 21, 1558-1561 (2004).
[CrossRef]

H. A. Eggert, B. Hecking, and K. Buse, "Electrical fixing in near-stoichiometric lithium niobate crystals," Opt. Lett. 29, 2476-2478 (2004).
[CrossRef] [PubMed]

2001 (1)

J. Liu, "Universal theory of steady-state one-dimensional photorefractive solitons,"Chin. Phys. 10, 1037-1042 (2001).
[CrossRef]

1999 (3)

W. L. She, K. K. Lee, and W. K. Lee, "Observation of two-dimensional bright photovoltaic spatial solitons," Phys. Rev. Lett. 83, 3182-3185 (1999).
[CrossRef]

J. Liu and K. Lu, "Screening-photovoltaic spatial solitons in biased photovoltaic photorefractive crystals and their self-deflection," J. Opt. Soc. Am. B 16, 550-555 (1999).
[CrossRef]

G. I. Stegeman and M. Segev, "Optical spatial solitons and their interactions: universality and diversity," Science 286, 1518-1523 (1999).
[CrossRef] [PubMed]

1997 (5)

M. Shih, Z. Chen, M. Mitchell, M. Segev, H. Lee, R. S. Feigelson, and J. P. Wilde, "Waveguides induced by photorefractive screening solitons," J. Opt. Soc. Am. B 14, 3091-3101 (1997).
[CrossRef]

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, "Origin of thermal fixing in photorefractive lithium niobate crystals,"Phys. Rev. B 56, 1225-1235 (1997).
[CrossRef]

Z. Chen, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, "Self-trapping of an optical vortex by use of the bulk photovoltaic effect," Phys. Rev. Lett. 78, 2948-2951 (1997).
[CrossRef]

M. Segev, G. C. Valley, M. C. Bashaw, M. Taya, and M. M. Fejer, "Photovoltaic spatial solitons," J. Opt. Soc. Am. B 14, 1772-1781 (1997).
[CrossRef]

S. Liu, G. Zhang, G. Tian, Q. Sun, J. Xu, G. Zhang, and T. Yicheng, "(1+1)-Dimensional and (2+1)-dimensional waveguides induced by self-focused dark notches and crosses in LiNbO3:Fe crystal,"Appl. Opt. 36, 8982-8986 (1997).
[CrossRef]

1996 (3)

M. Shih, P. Leach, M. Segev, M. H. Garrett, G. J. Salamo, and G. C. Valley, "Two-dimensional steady-state photorefractive screening solitons," Opt. Lett. 21, 324-326 (1996).
[CrossRef] [PubMed]

Z. Chen, M. Mitchell, M. Shih, M. Segev, M. H. Garrett, and G. C. Valley, "Steady-state dark photorefractive screening solitons," Opt. Lett. 21, 629-631 (1996).
[CrossRef] [PubMed]

S. Liu, G. Zhang, Q. Sun, J. Xu, and G. Zhang, "Waveguides written and stored by photovoltaic dark spatial solitons in LiNbO3:Fe crystals,"Chin. Phys. Lett. 13, 737-740 (1996).
[CrossRef]

1995 (2)

M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, "Observation of dark photovoltaic spatial solitons." Phys. Rev. A 52, 3095-3100 (1995).
[CrossRef] [PubMed]

A. A. Zozulya and D. Z. Anderson, "Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field,"Phys. Rev. A 51, 1520-1531 (1995).
[CrossRef] [PubMed]

1994 (3)

K. Itoh, O. Matoba, and Y. Ichioka, "Fabrication experiment of photorefractive three-dimensional waveuides in lithium niobate,"Opt. Lett. 19, 652-654 (1994).
[CrossRef] [PubMed]

G. Duree, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, and E. Sharp, "Dimensionality and size of photorefractive spatial solitons," Opt. Lett. 19, 1195-1197 (1994).
[CrossRef] [PubMed]

G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. Fejer, and M. C. Bashaw, "Dark and bright photovoltaic spatial solitons," Phys. Rev. A 50, R4457-R4460 (1994).
[CrossRef] [PubMed]

1991 (1)

G. A. Swartzlander, Jr., D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, "Spatial dark-soliton stripes and grids in self-defocusing materials," Phys. Rev. Lett. 66, 1583-1586 (1991).
[CrossRef] [PubMed]

1988 (1)

Andersen, D. R.

G. A. Swartzlander, Jr., D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, "Spatial dark-soliton stripes and grids in self-defocusing materials," Phys. Rev. Lett. 66, 1583-1586 (1991).
[CrossRef] [PubMed]

Anderson, D. Z.

A. A. Zozulya and D. Z. Anderson, "Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field,"Phys. Rev. A 51, 1520-1531 (1995).
[CrossRef] [PubMed]

Bashaw, M. C.

M. Segev, G. C. Valley, M. C. Bashaw, M. Taya, and M. M. Fejer, "Photovoltaic spatial solitons," J. Opt. Soc. Am. B 14, 1772-1781 (1997).
[CrossRef]

M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, "Observation of dark photovoltaic spatial solitons." Phys. Rev. A 52, 3095-3100 (1995).
[CrossRef] [PubMed]

G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. Fejer, and M. C. Bashaw, "Dark and bright photovoltaic spatial solitons," Phys. Rev. A 50, R4457-R4460 (1994).
[CrossRef] [PubMed]

Bertolotti, M.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, "Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,"Appl. Phys. Lett. 85, 2193-2195 (2004).
[CrossRef]

Breer, S.

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, "Origin of thermal fixing in photorefractive lithium niobate crystals,"Phys. Rev. B 56, 1225-1235 (1997).
[CrossRef]

Buse, K.

H. A. Eggert, B. Hecking, and K. Buse, "Electrical fixing in near-stoichiometric lithium niobate crystals," Opt. Lett. 29, 2476-2478 (2004).
[CrossRef] [PubMed]

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, "Origin of thermal fixing in photorefractive lithium niobate crystals,"Phys. Rev. B 56, 1225-1235 (1997).
[CrossRef]

Chauvet, M.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, "Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,"Appl. Phys. Lett. 85, 2193-2195 (2004).
[CrossRef]

Chen, Z.

Z. Chen, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, "Self-trapping of an optical vortex by use of the bulk photovoltaic effect," Phys. Rev. Lett. 78, 2948-2951 (1997).
[CrossRef]

M. Shih, Z. Chen, M. Mitchell, M. Segev, H. Lee, R. S. Feigelson, and J. P. Wilde, "Waveguides induced by photorefractive screening solitons," J. Opt. Soc. Am. B 14, 3091-3101 (1997).
[CrossRef]

Z. Chen, M. Mitchell, M. Shih, M. Segev, M. H. Garrett, and G. C. Valley, "Steady-state dark photorefractive screening solitons," Opt. Lett. 21, 629-631 (1996).
[CrossRef] [PubMed]

Crosignani, B.

G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. Fejer, and M. C. Bashaw, "Dark and bright photovoltaic spatial solitons," Phys. Rev. A 50, R4457-R4460 (1994).
[CrossRef] [PubMed]

G. Duree, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, and E. Sharp, "Dimensionality and size of photorefractive spatial solitons," Opt. Lett. 19, 1195-1197 (1994).
[CrossRef] [PubMed]

Di Porto, P.

G. Duree, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, and E. Sharp, "Dimensionality and size of photorefractive spatial solitons," Opt. Lett. 19, 1195-1197 (1994).
[CrossRef] [PubMed]

Duree, G.

G. Duree, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, and E. Sharp, "Dimensionality and size of photorefractive spatial solitons," Opt. Lett. 19, 1195-1197 (1994).
[CrossRef] [PubMed]

Eggert, H. A.

H. A. Eggert, B. Hecking, and K. Buse, "Electrical fixing in near-stoichiometric lithium niobate crystals," Opt. Lett. 29, 2476-2478 (2004).
[CrossRef] [PubMed]

Fazio, E.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, "Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,"Appl. Phys. Lett. 85, 2193-2195 (2004).
[CrossRef]

Feigelson, R. S.

M. Shih, Z. Chen, M. Mitchell, M. Segev, H. Lee, R. S. Feigelson, and J. P. Wilde, "Waveguides induced by photorefractive screening solitons," J. Opt. Soc. Am. B 14, 3091-3101 (1997).
[CrossRef]

Fejer, M.

G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. Fejer, and M. C. Bashaw, "Dark and bright photovoltaic spatial solitons," Phys. Rev. A 50, R4457-R4460 (1994).
[CrossRef] [PubMed]

Fejer, M. M.

M. Segev, G. C. Valley, M. C. Bashaw, M. Taya, and M. M. Fejer, "Photovoltaic spatial solitons," J. Opt. Soc. Am. B 14, 1772-1781 (1997).
[CrossRef]

M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, "Observation of dark photovoltaic spatial solitons." Phys. Rev. A 52, 3095-3100 (1995).
[CrossRef] [PubMed]

Gao, M.

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, "Origin of thermal fixing in photorefractive lithium niobate crystals,"Phys. Rev. B 56, 1225-1235 (1997).
[CrossRef]

Garrett, M. H.

Z. Chen, M. Mitchell, M. Shih, M. Segev, M. H. Garrett, and G. C. Valley, "Steady-state dark photorefractive screening solitons," Opt. Lett. 21, 629-631 (1996).
[CrossRef] [PubMed]

M. Shih, P. Leach, M. Segev, M. H. Garrett, G. J. Salamo, and G. C. Valley, "Two-dimensional steady-state photorefractive screening solitons," Opt. Lett. 21, 324-326 (1996).
[CrossRef] [PubMed]

Gaylord, T. K.

Hecking, B.

H. A. Eggert, B. Hecking, and K. Buse, "Electrical fixing in near-stoichiometric lithium niobate crystals," Opt. Lett. 29, 2476-2478 (2004).
[CrossRef] [PubMed]

Ichioka, Y.

Itoh, K.

Kaplan, A. E.

G. A. Swartzlander, Jr., D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, "Spatial dark-soliton stripes and grids in self-defocusing materials," Phys. Rev. Lett. 66, 1583-1586 (1991).
[CrossRef] [PubMed]

Kapphan, S.

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, "Origin of thermal fixing in photorefractive lithium niobate crystals,"Phys. Rev. B 56, 1225-1235 (1997).
[CrossRef]

Krätzig, E.

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, "Origin of thermal fixing in photorefractive lithium niobate crystals,"Phys. Rev. B 56, 1225-1235 (1997).
[CrossRef]

Leach, P.

M. Shih, P. Leach, M. Segev, M. H. Garrett, G. J. Salamo, and G. C. Valley, "Two-dimensional steady-state photorefractive screening solitons," Opt. Lett. 21, 324-326 (1996).
[CrossRef] [PubMed]

Lee, H.

M. Shih, Z. Chen, M. Mitchell, M. Segev, H. Lee, R. S. Feigelson, and J. P. Wilde, "Waveguides induced by photorefractive screening solitons," J. Opt. Soc. Am. B 14, 3091-3101 (1997).
[CrossRef]

Lee, K. K.

W. L. She, K. K. Lee, and W. K. Lee, "Observation of two-dimensional bright photovoltaic spatial solitons," Phys. Rev. Lett. 83, 3182-3185 (1999).
[CrossRef]

Lee, W. K.

W. L. She, K. K. Lee, and W. K. Lee, "Observation of two-dimensional bright photovoltaic spatial solitons," Phys. Rev. Lett. 83, 3182-3185 (1999).
[CrossRef]

Li, B.

P. Zhang, D. Yang, J. Zhao, K. Su, J. Zhou, B. Li, and D. S. Yang, "Light-induced array of three-dimensional waveguides in lithium niobate by employing two-beam interference field."Chin. Phys. Lett. 21, 1558-1561 (2004).
[CrossRef]

Liu, J.

J. Liu, "Universal theory of steady-state one-dimensional photorefractive solitons,"Chin. Phys. 10, 1037-1042 (2001).
[CrossRef]

J. Liu and K. Lu, "Screening-photovoltaic spatial solitons in biased photovoltaic photorefractive crystals and their self-deflection," J. Opt. Soc. Am. B 16, 550-555 (1999).
[CrossRef]

Liu, S.

S. Liu, G. Zhang, G. Tian, Q. Sun, J. Xu, G. Zhang, and T. Yicheng, "(1+1)-Dimensional and (2+1)-dimensional waveguides induced by self-focused dark notches and crosses in LiNbO3:Fe crystal,"Appl. Opt. 36, 8982-8986 (1997).
[CrossRef]

S. Liu, G. Zhang, Q. Sun, J. Xu, and G. Zhang, "Waveguides written and stored by photovoltaic dark spatial solitons in LiNbO3:Fe crystals,"Chin. Phys. Lett. 13, 737-740 (1996).
[CrossRef]

Lu, K.

J. Liu and K. Lu, "Screening-photovoltaic spatial solitons in biased photovoltaic photorefractive crystals and their self-deflection," J. Opt. Soc. Am. B 16, 550-555 (1999).
[CrossRef]

Maker, P. D.

Z. Chen, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, "Self-trapping of an optical vortex by use of the bulk photovoltaic effect," Phys. Rev. Lett. 78, 2948-2951 (1997).
[CrossRef]

Maldonado, T. A.

Matoba, O.

Mitchell, M.

M. Shih, Z. Chen, M. Mitchell, M. Segev, H. Lee, R. S. Feigelson, and J. P. Wilde, "Waveguides induced by photorefractive screening solitons," J. Opt. Soc. Am. B 14, 3091-3101 (1997).
[CrossRef]

Z. Chen, M. Mitchell, M. Shih, M. Segev, M. H. Garrett, and G. C. Valley, "Steady-state dark photorefractive screening solitons," Opt. Lett. 21, 629-631 (1996).
[CrossRef] [PubMed]

Muller, R. E.

Z. Chen, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, "Self-trapping of an optical vortex by use of the bulk photovoltaic effect," Phys. Rev. Lett. 78, 2948-2951 (1997).
[CrossRef]

Peithmann, K.

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, "Origin of thermal fixing in photorefractive lithium niobate crystals,"Phys. Rev. B 56, 1225-1235 (1997).
[CrossRef]

Petris, A.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, "Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,"Appl. Phys. Lett. 85, 2193-2195 (2004).
[CrossRef]

Ramadan, W.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, "Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,"Appl. Phys. Lett. 85, 2193-2195 (2004).
[CrossRef]

Regan, J. J.

G. A. Swartzlander, Jr., D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, "Spatial dark-soliton stripes and grids in self-defocusing materials," Phys. Rev. Lett. 66, 1583-1586 (1991).
[CrossRef] [PubMed]

Renzi, F.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, "Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,"Appl. Phys. Lett. 85, 2193-2195 (2004).
[CrossRef]

Rinaldi, R.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, "Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,"Appl. Phys. Lett. 85, 2193-2195 (2004).
[CrossRef]

Salamo, G.

M. Shih, P. Leach, M. Segev, M. H. Garrett, G. J. Salamo, and G. C. Valley, "Two-dimensional steady-state photorefractive screening solitons," Opt. Lett. 21, 324-326 (1996).
[CrossRef] [PubMed]

G. Duree, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, and E. Sharp, "Dimensionality and size of photorefractive spatial solitons," Opt. Lett. 19, 1195-1197 (1994).
[CrossRef] [PubMed]

Segev, M.

G. I. Stegeman and M. Segev, "Optical spatial solitons and their interactions: universality and diversity," Science 286, 1518-1523 (1999).
[CrossRef] [PubMed]

M. Shih, Z. Chen, M. Mitchell, M. Segev, H. Lee, R. S. Feigelson, and J. P. Wilde, "Waveguides induced by photorefractive screening solitons," J. Opt. Soc. Am. B 14, 3091-3101 (1997).
[CrossRef]

Z. Chen, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, "Self-trapping of an optical vortex by use of the bulk photovoltaic effect," Phys. Rev. Lett. 78, 2948-2951 (1997).
[CrossRef]

M. Segev, G. C. Valley, M. C. Bashaw, M. Taya, and M. M. Fejer, "Photovoltaic spatial solitons," J. Opt. Soc. Am. B 14, 1772-1781 (1997).
[CrossRef]

M. Shih, P. Leach, M. Segev, M. H. Garrett, G. J. Salamo, and G. C. Valley, "Two-dimensional steady-state photorefractive screening solitons," Opt. Lett. 21, 324-326 (1996).
[CrossRef] [PubMed]

Z. Chen, M. Mitchell, M. Shih, M. Segev, M. H. Garrett, and G. C. Valley, "Steady-state dark photorefractive screening solitons," Opt. Lett. 21, 629-631 (1996).
[CrossRef] [PubMed]

M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, "Observation of dark photovoltaic spatial solitons." Phys. Rev. A 52, 3095-3100 (1995).
[CrossRef] [PubMed]

G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. Fejer, and M. C. Bashaw, "Dark and bright photovoltaic spatial solitons," Phys. Rev. A 50, R4457-R4460 (1994).
[CrossRef] [PubMed]

G. Duree, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, and E. Sharp, "Dimensionality and size of photorefractive spatial solitons," Opt. Lett. 19, 1195-1197 (1994).
[CrossRef] [PubMed]

Sharp, E.

G. Duree, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, and E. Sharp, "Dimensionality and size of photorefractive spatial solitons," Opt. Lett. 19, 1195-1197 (1994).
[CrossRef] [PubMed]

She, W. L.

W. L. She, K. K. Lee, and W. K. Lee, "Observation of two-dimensional bright photovoltaic spatial solitons," Phys. Rev. Lett. 83, 3182-3185 (1999).
[CrossRef]

Shih, M.

M. Shih, Z. Chen, M. Mitchell, M. Segev, H. Lee, R. S. Feigelson, and J. P. Wilde, "Waveguides induced by photorefractive screening solitons," J. Opt. Soc. Am. B 14, 3091-3101 (1997).
[CrossRef]

Z. Chen, M. Mitchell, M. Shih, M. Segev, M. H. Garrett, and G. C. Valley, "Steady-state dark photorefractive screening solitons," Opt. Lett. 21, 629-631 (1996).
[CrossRef] [PubMed]

M. Shih, P. Leach, M. Segev, M. H. Garrett, G. J. Salamo, and G. C. Valley, "Two-dimensional steady-state photorefractive screening solitons," Opt. Lett. 21, 324-326 (1996).
[CrossRef] [PubMed]

Stegeman, G. I.

G. I. Stegeman and M. Segev, "Optical spatial solitons and their interactions: universality and diversity," Science 286, 1518-1523 (1999).
[CrossRef] [PubMed]

Su, K.

P. Zhang, D. Yang, J. Zhao, K. Su, J. Zhou, B. Li, and D. S. Yang, "Light-induced array of three-dimensional waveguides in lithium niobate by employing two-beam interference field."Chin. Phys. Lett. 21, 1558-1561 (2004).
[CrossRef]

Sun, Q.

S. Liu, G. Zhang, G. Tian, Q. Sun, J. Xu, G. Zhang, and T. Yicheng, "(1+1)-Dimensional and (2+1)-dimensional waveguides induced by self-focused dark notches and crosses in LiNbO3:Fe crystal,"Appl. Opt. 36, 8982-8986 (1997).
[CrossRef]

S. Liu, G. Zhang, Q. Sun, J. Xu, and G. Zhang, "Waveguides written and stored by photovoltaic dark spatial solitons in LiNbO3:Fe crystals,"Chin. Phys. Lett. 13, 737-740 (1996).
[CrossRef]

Swartzlander, G. A.

G. A. Swartzlander, Jr., D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, "Spatial dark-soliton stripes and grids in self-defocusing materials," Phys. Rev. Lett. 66, 1583-1586 (1991).
[CrossRef] [PubMed]

Taya, M.

M. Segev, G. C. Valley, M. C. Bashaw, M. Taya, and M. M. Fejer, "Photovoltaic spatial solitons," J. Opt. Soc. Am. B 14, 1772-1781 (1997).
[CrossRef]

M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, "Observation of dark photovoltaic spatial solitons." Phys. Rev. A 52, 3095-3100 (1995).
[CrossRef] [PubMed]

Tian, G.

Valley, G. C.

M. Segev, G. C. Valley, M. C. Bashaw, M. Taya, and M. M. Fejer, "Photovoltaic spatial solitons," J. Opt. Soc. Am. B 14, 1772-1781 (1997).
[CrossRef]

Z. Chen, M. Mitchell, M. Shih, M. Segev, M. H. Garrett, and G. C. Valley, "Steady-state dark photorefractive screening solitons," Opt. Lett. 21, 629-631 (1996).
[CrossRef] [PubMed]

M. Shih, P. Leach, M. Segev, M. H. Garrett, G. J. Salamo, and G. C. Valley, "Two-dimensional steady-state photorefractive screening solitons," Opt. Lett. 21, 324-326 (1996).
[CrossRef] [PubMed]

M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, "Observation of dark photovoltaic spatial solitons." Phys. Rev. A 52, 3095-3100 (1995).
[CrossRef] [PubMed]

G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. Fejer, and M. C. Bashaw, "Dark and bright photovoltaic spatial solitons," Phys. Rev. A 50, R4457-R4460 (1994).
[CrossRef] [PubMed]

Vlad, V. I.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, "Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,"Appl. Phys. Lett. 85, 2193-2195 (2004).
[CrossRef]

Wilde, J. P.

M. Shih, Z. Chen, M. Mitchell, M. Segev, H. Lee, R. S. Feigelson, and J. P. Wilde, "Waveguides induced by photorefractive screening solitons," J. Opt. Soc. Am. B 14, 3091-3101 (1997).
[CrossRef]

Wilson, D. W.

Z. Chen, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, "Self-trapping of an optical vortex by use of the bulk photovoltaic effect," Phys. Rev. Lett. 78, 2948-2951 (1997).
[CrossRef]

Xu, J.

S. Liu, G. Zhang, G. Tian, Q. Sun, J. Xu, G. Zhang, and T. Yicheng, "(1+1)-Dimensional and (2+1)-dimensional waveguides induced by self-focused dark notches and crosses in LiNbO3:Fe crystal,"Appl. Opt. 36, 8982-8986 (1997).
[CrossRef]

S. Liu, G. Zhang, Q. Sun, J. Xu, and G. Zhang, "Waveguides written and stored by photovoltaic dark spatial solitons in LiNbO3:Fe crystals,"Chin. Phys. Lett. 13, 737-740 (1996).
[CrossRef]

Yang, D.

P. Zhang, D. Yang, J. Zhao, K. Su, J. Zhou, B. Li, and D. S. Yang, "Light-induced array of three-dimensional waveguides in lithium niobate by employing two-beam interference field."Chin. Phys. Lett. 21, 1558-1561 (2004).
[CrossRef]

Yang, D. S.

P. Zhang, D. Yang, J. Zhao, K. Su, J. Zhou, B. Li, and D. S. Yang, "Light-induced array of three-dimensional waveguides in lithium niobate by employing two-beam interference field."Chin. Phys. Lett. 21, 1558-1561 (2004).
[CrossRef]

Yariv, A.

G. Duree, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, and E. Sharp, "Dimensionality and size of photorefractive spatial solitons," Opt. Lett. 19, 1195-1197 (1994).
[CrossRef] [PubMed]

G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. Fejer, and M. C. Bashaw, "Dark and bright photovoltaic spatial solitons," Phys. Rev. A 50, R4457-R4460 (1994).
[CrossRef] [PubMed]

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).

Yeh, P.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).

Yicheng, T.

Yin, H.

G. A. Swartzlander, Jr., D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, "Spatial dark-soliton stripes and grids in self-defocusing materials," Phys. Rev. Lett. 66, 1583-1586 (1991).
[CrossRef] [PubMed]

Zhang, G.

S. Liu, G. Zhang, G. Tian, Q. Sun, J. Xu, G. Zhang, and T. Yicheng, "(1+1)-Dimensional and (2+1)-dimensional waveguides induced by self-focused dark notches and crosses in LiNbO3:Fe crystal,"Appl. Opt. 36, 8982-8986 (1997).
[CrossRef]

S. Liu, G. Zhang, G. Tian, Q. Sun, J. Xu, G. Zhang, and T. Yicheng, "(1+1)-Dimensional and (2+1)-dimensional waveguides induced by self-focused dark notches and crosses in LiNbO3:Fe crystal,"Appl. Opt. 36, 8982-8986 (1997).
[CrossRef]

S. Liu, G. Zhang, Q. Sun, J. Xu, and G. Zhang, "Waveguides written and stored by photovoltaic dark spatial solitons in LiNbO3:Fe crystals,"Chin. Phys. Lett. 13, 737-740 (1996).
[CrossRef]

S. Liu, G. Zhang, Q. Sun, J. Xu, and G. Zhang, "Waveguides written and stored by photovoltaic dark spatial solitons in LiNbO3:Fe crystals,"Chin. Phys. Lett. 13, 737-740 (1996).
[CrossRef]

Zhang, P.

P. Zhang, D. Yang, J. Zhao, K. Su, J. Zhou, B. Li, and D. S. Yang, "Light-induced array of three-dimensional waveguides in lithium niobate by employing two-beam interference field."Chin. Phys. Lett. 21, 1558-1561 (2004).
[CrossRef]

Zhao, J.

P. Zhang, D. Yang, J. Zhao, K. Su, J. Zhou, B. Li, and D. S. Yang, "Light-induced array of three-dimensional waveguides in lithium niobate by employing two-beam interference field."Chin. Phys. Lett. 21, 1558-1561 (2004).
[CrossRef]

Zhou, J.

P. Zhang, D. Yang, J. Zhao, K. Su, J. Zhou, B. Li, and D. S. Yang, "Light-induced array of three-dimensional waveguides in lithium niobate by employing two-beam interference field."Chin. Phys. Lett. 21, 1558-1561 (2004).
[CrossRef]

Zozulya, A. A.

A. A. Zozulya and D. Z. Anderson, "Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field,"Phys. Rev. A 51, 1520-1531 (1995).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, "Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,"Appl. Phys. Lett. 85, 2193-2195 (2004).
[CrossRef]

Chin. Phys. Lett. (1)

P. Zhang, D. Yang, J. Zhao, K. Su, J. Zhou, B. Li, and D. S. Yang, "Light-induced array of three-dimensional waveguides in lithium niobate by employing two-beam interference field."Chin. Phys. Lett. 21, 1558-1561 (2004).
[CrossRef]

Chin. Phys. (1)

J. Liu, "Universal theory of steady-state one-dimensional photorefractive solitons,"Chin. Phys. 10, 1037-1042 (2001).
[CrossRef]

Chin. Phys. Lett. (1)

S. Liu, G. Zhang, Q. Sun, J. Xu, and G. Zhang, "Waveguides written and stored by photovoltaic dark spatial solitons in LiNbO3:Fe crystals,"Chin. Phys. Lett. 13, 737-740 (1996).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Liu and K. Lu, "Screening-photovoltaic spatial solitons in biased photovoltaic photorefractive crystals and their self-deflection," J. Opt. Soc. Am. B 16, 550-555 (1999).
[CrossRef]

M. Shih, Z. Chen, M. Mitchell, M. Segev, H. Lee, R. S. Feigelson, and J. P. Wilde, "Waveguides induced by photorefractive screening solitons," J. Opt. Soc. Am. B 14, 3091-3101 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

M. Segev, G. C. Valley, M. C. Bashaw, M. Taya, and M. M. Fejer, "Photovoltaic spatial solitons," J. Opt. Soc. Am. B 14, 1772-1781 (1997).
[CrossRef]

Opt. Lett. (4)

M. Shih, P. Leach, M. Segev, M. H. Garrett, G. J. Salamo, and G. C. Valley, "Two-dimensional steady-state photorefractive screening solitons," Opt. Lett. 21, 324-326 (1996).
[CrossRef] [PubMed]

G. Duree, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, and E. Sharp, "Dimensionality and size of photorefractive spatial solitons," Opt. Lett. 19, 1195-1197 (1994).
[CrossRef] [PubMed]

Z. Chen, M. Mitchell, M. Shih, M. Segev, M. H. Garrett, and G. C. Valley, "Steady-state dark photorefractive screening solitons," Opt. Lett. 21, 629-631 (1996).
[CrossRef] [PubMed]

H. A. Eggert, B. Hecking, and K. Buse, "Electrical fixing in near-stoichiometric lithium niobate crystals," Opt. Lett. 29, 2476-2478 (2004).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. A (3)

M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, "Observation of dark photovoltaic spatial solitons." Phys. Rev. A 52, 3095-3100 (1995).
[CrossRef] [PubMed]

G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. Fejer, and M. C. Bashaw, "Dark and bright photovoltaic spatial solitons," Phys. Rev. A 50, R4457-R4460 (1994).
[CrossRef] [PubMed]

A. A. Zozulya and D. Z. Anderson, "Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field,"Phys. Rev. A 51, 1520-1531 (1995).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

G. A. Swartzlander, Jr., D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, "Spatial dark-soliton stripes and grids in self-defocusing materials," Phys. Rev. Lett. 66, 1583-1586 (1991).
[CrossRef] [PubMed]

Phys. Rev. B (1)

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, "Origin of thermal fixing in photorefractive lithium niobate crystals,"Phys. Rev. B 56, 1225-1235 (1997).
[CrossRef]

Phys. Rev. Lett. (2)

W. L. She, K. K. Lee, and W. K. Lee, "Observation of two-dimensional bright photovoltaic spatial solitons," Phys. Rev. Lett. 83, 3182-3185 (1999).
[CrossRef]

Z. Chen, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, "Self-trapping of an optical vortex by use of the bulk photovoltaic effect," Phys. Rev. Lett. 78, 2948-2951 (1997).
[CrossRef]

Science (1)

G. I. Stegeman and M. Segev, "Optical spatial solitons and their interactions: universality and diversity," Science 286, 1518-1523 (1999).
[CrossRef] [PubMed]

Other (1)

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Diagram for analyses of the anisotropic dependence of the formation of 1-D spatial dark solitons on the orientation of intensity gradients.

Fig. 2
Fig. 2

Simulated results for the formation of 1-D spatial dark solitons with different orientations in a LiNbO3 crystal. From top to bottom, the curves correspond to θ = 0°, 30°, 45°, 60°, 75°, respectively. Inset, the FWHM of solitons versus angle θ.

Fig. 3
Fig. 3

Schematic diagram of the fabricating technique for channel waveguides. Insets 1 and 2 in (a), the intensity patterns impinge on the crystal faces. The index distributions of the channel waveguides are shown in (b)–(e). (b) and (c) W 1 = W 2, θ = 45°; (d) W 1 = W 2, θ = 60°; (e) W 1 = 2W 2, θ = 45°.

Fig. 4
Fig. 4

Experimental setup for fabricating a channel waveguide by use of 1-D dark spatial solitons in a LiNbO3:Fe crystal. RT, reverse telescope; LN: LiNbO3:Fe crystal.

Fig. 5
Fig. 5

Experimental results for fabricating a square channel waveguide by use of dark planar spatial solitons in a LiNbO3:Fe crystal: (a)–(c) input dark notch, diffracted dark notch, and self-trapped dark notch, respectively, for the first exposure; (d)–(f) those for the second exposure; (g) near-field pattern of the waveguide region; (h) and (i) an intensity pattern without and with guidance recorded in the guiding test.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E sc = E ph I / I d 1 + I / I d cos θ ,
( 1 n x       2 γ 22 E sc Y + γ 13 E sc Z ) x 2 + ( 1 n y     2 + γ 22 E sc Y + γ 13 E sc Z ) y 2 + ( 1 n z     2 + γ 33 E sc Z ) z 2 + 2 y z γ 51 E sc Y + 2 z x γ 51 E sc X 2 x y γ 22 E sc X = 1 ,
n x = n o + 1 2 n o     3 ( γ 22 E sc X + γ 22 E sc Y γ 13 E sc Z ) n y = n o 1 2 n o     3 ( γ 22 E sc X + γ 22 E sc Y + γ 13 E sc Z ) n z = n e 1 2 n e     3 γ 33 E sc Z .
Δ n e = 1 2 n e     3 γ 33 E sc z = 1 2 n e     3 γ 33 E ph I / I d 1 + I / I d cos 2 θ .
( Y i 2 k 2 Z 2 ) A ( Y , Z ) = i k Δ n e n e A ( Y , Z ) .
i U ξ + 1 2 U s s + β | U | 2 U 1 + | U | 2 = 0 ,
U = ρ 1 / 2 f ( s ) exp ( i γ ξ ) ,
( 2 β ) 1 / 2 s = ± 0 f d f {( f 2 1 )∕( 1 + ρ ) ( 1 / ρ )ln[( 1 + ρ f 2 )∕( 1 + ρ )]} 1 / 2 .

Metrics