Abstract

We propose, for the first time to our knowledge, a new feedback fabrication technique for rugate filters with sinusoidal refractive index distribution. The technique uses an in situ optical monitoring system, in contrast to conventional techniques for rugate filters that are based on time control, which is generally unsuitable for accurate fabrication of a continuous index distribution. We employed a-SiOx:H thin film as the material for the rugate filters because its refractive index can be successively controlled. Using the proposed technique and material, we fabricated near-infrared rugate minus filters having multiple and continuous refractive index distributions. The experimental and calculated spectra were well correlated as a result of applying the proposed feedback fabrication technique.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Dobrowolski and D. Lowe, "Optical thin film synthesis program based on the use of Fourier transforms," Appl. Opt. 17, 3039-3050 (1978).
  2. H. Fabricius, "Gradient-index filters: designing filters with steep skirts, high reflection, and quintic matching layers," Appl. Opt. 31, 5191-5196 (1992).
  3. P. G. Verly, "Fourier transform technique with frequency filtering for optical thin-film design," Appl. Opt. 34, 688-694 (1995).
  4. T. D. Rahmlow, Jr. and J. E. Lazo-Wasem, "Rugate and discrete hybrid filter designs," in Optical Thin Films V: New Developments, R. L. Hall, ed., Proc. SPIE 3133, 25-35 (1997).
    [CrossRef]
  5. E. P. Donovan, D. V. Vechten, A. D. F. Kahn, C. A. Carosella, and G. K. Hubler, "Near infrared rugate filter fabrication by ion beam assisted deposition of Si(1−x)Nx films," Appl. Opt. 28, 2940-2944 (1989).
  6. P. L. Swart, P. B. Bulkin, and B. M. Lacquet, "Rugate filter manufacturing by electron cyclotron resonance plasma-enhanced chemical vapor deposition of SiNx," Opt. Eng. 36, 1214-1219 (1997).
  7. P. L. Swart, B. M. Lacquet, A. A. Chtcherbakov, and P. V. Bulkin, "Automated electron cyclotron resonance plasma enhanced chemical vapor deposition system for the growth of rugate filters," J. Vac. Sci. Technol. A 18, 74-78 (2000).
    [CrossRef]
  8. W. J. Gunning, R. L. Hall, F. J. Woodberry, W. H. Southwell, and N. S. Gluck, "Codeposition of continuous composition rugate filters," Appl. Opt. 28, 2945-2948 (1989).
  9. X. Wang, H. Masumoto, Y. Someno, and T. Hirai, "Helicon plasma deposition of a TiO2/SiO2 multilayer optical filter with graded refractive index profiles," Appl. Phys. Lett. 72, 3264-3266 (1998).
    [CrossRef]
  10. Q. Tang, H. Matsuda, K. Kikuchi, and S. Ogura, "Fabrication and characteristics of rugate filters deposited by the TSH reactive sputtering method," J. Vac. Sci. Technol. A 16, 3384-3388 (1998).
    [CrossRef]
  11. K. Kaminska, T. Brown, G. Beydaghyan, and K. Robbie, "Rugate filters grown by glancing angle deposition," in Applications of Photonic Technology 5, R. A. Lessard, G. A. Lampropoulos, and G. W. Schinn, eds., Proc. SPIE 4833, 633-639 (2002).
  12. H. Yoda, K. Shiraishi, Y. Hiratani, and O. Hanaizumi, "a-Si:H/SiO2 multilayer films fabricated by radio-frequency magnetron sputtering for optical filters," Appl. Opt. 43, 3548-3554 (2004).
    [CrossRef]
  13. P. V. Bulkin, P. L. Swart, and B. M. Lacquet, "Electron cyclotron resonance plasma enhanced chemical vapor deposition and optical properties of SiOx thin films," J. Non-Cryst. Solids 226, 58-66 (1998).
    [CrossRef]
  14. H. A. Macleod and E. Pelletier, "Error compensation mechanisms in some thin film monitoring systems," Opt. Acta 24, 907-930 (1977).
  15. H. Yoda and K. Shiraishi, "A novel fabrication method for functional thin film filters having continuous refractive-index distributions with high contrast," presented at the Seventh International Symposium on Contemporary Photonics Technology, Tokyo, Japan, 14-15 January 2004.
  16. S. D. Smith, "Design of multilayer filters by considering two effective interfaces," J. Opt. Soc. Am 48, 43-50 (1958).

2004 (1)

2002 (1)

K. Kaminska, T. Brown, G. Beydaghyan, and K. Robbie, "Rugate filters grown by glancing angle deposition," in Applications of Photonic Technology 5, R. A. Lessard, G. A. Lampropoulos, and G. W. Schinn, eds., Proc. SPIE 4833, 633-639 (2002).

2000 (1)

P. L. Swart, B. M. Lacquet, A. A. Chtcherbakov, and P. V. Bulkin, "Automated electron cyclotron resonance plasma enhanced chemical vapor deposition system for the growth of rugate filters," J. Vac. Sci. Technol. A 18, 74-78 (2000).
[CrossRef]

1998 (3)

X. Wang, H. Masumoto, Y. Someno, and T. Hirai, "Helicon plasma deposition of a TiO2/SiO2 multilayer optical filter with graded refractive index profiles," Appl. Phys. Lett. 72, 3264-3266 (1998).
[CrossRef]

Q. Tang, H. Matsuda, K. Kikuchi, and S. Ogura, "Fabrication and characteristics of rugate filters deposited by the TSH reactive sputtering method," J. Vac. Sci. Technol. A 16, 3384-3388 (1998).
[CrossRef]

P. V. Bulkin, P. L. Swart, and B. M. Lacquet, "Electron cyclotron resonance plasma enhanced chemical vapor deposition and optical properties of SiOx thin films," J. Non-Cryst. Solids 226, 58-66 (1998).
[CrossRef]

1997 (2)

P. L. Swart, P. B. Bulkin, and B. M. Lacquet, "Rugate filter manufacturing by electron cyclotron resonance plasma-enhanced chemical vapor deposition of SiNx," Opt. Eng. 36, 1214-1219 (1997).

T. D. Rahmlow, Jr. and J. E. Lazo-Wasem, "Rugate and discrete hybrid filter designs," in Optical Thin Films V: New Developments, R. L. Hall, ed., Proc. SPIE 3133, 25-35 (1997).
[CrossRef]

1995 (1)

1992 (1)

1989 (2)

1978 (1)

1977 (1)

H. A. Macleod and E. Pelletier, "Error compensation mechanisms in some thin film monitoring systems," Opt. Acta 24, 907-930 (1977).

1958 (1)

S. D. Smith, "Design of multilayer filters by considering two effective interfaces," J. Opt. Soc. Am 48, 43-50 (1958).

Beydaghyan, G.

K. Kaminska, T. Brown, G. Beydaghyan, and K. Robbie, "Rugate filters grown by glancing angle deposition," in Applications of Photonic Technology 5, R. A. Lessard, G. A. Lampropoulos, and G. W. Schinn, eds., Proc. SPIE 4833, 633-639 (2002).

Brown, T.

K. Kaminska, T. Brown, G. Beydaghyan, and K. Robbie, "Rugate filters grown by glancing angle deposition," in Applications of Photonic Technology 5, R. A. Lessard, G. A. Lampropoulos, and G. W. Schinn, eds., Proc. SPIE 4833, 633-639 (2002).

Bulkin, P. B.

P. L. Swart, P. B. Bulkin, and B. M. Lacquet, "Rugate filter manufacturing by electron cyclotron resonance plasma-enhanced chemical vapor deposition of SiNx," Opt. Eng. 36, 1214-1219 (1997).

Bulkin, P. V.

P. L. Swart, B. M. Lacquet, A. A. Chtcherbakov, and P. V. Bulkin, "Automated electron cyclotron resonance plasma enhanced chemical vapor deposition system for the growth of rugate filters," J. Vac. Sci. Technol. A 18, 74-78 (2000).
[CrossRef]

P. V. Bulkin, P. L. Swart, and B. M. Lacquet, "Electron cyclotron resonance plasma enhanced chemical vapor deposition and optical properties of SiOx thin films," J. Non-Cryst. Solids 226, 58-66 (1998).
[CrossRef]

Carosella, C. A.

Chtcherbakov, A. A.

P. L. Swart, B. M. Lacquet, A. A. Chtcherbakov, and P. V. Bulkin, "Automated electron cyclotron resonance plasma enhanced chemical vapor deposition system for the growth of rugate filters," J. Vac. Sci. Technol. A 18, 74-78 (2000).
[CrossRef]

Dobrowolski, J. A.

Donovan, E. P.

Fabricius, H.

Gluck, N. S.

Gunning, W. J.

Hall, R. L.

Hanaizumi, O.

Hirai, T.

X. Wang, H. Masumoto, Y. Someno, and T. Hirai, "Helicon plasma deposition of a TiO2/SiO2 multilayer optical filter with graded refractive index profiles," Appl. Phys. Lett. 72, 3264-3266 (1998).
[CrossRef]

Hiratani, Y.

Hubler, G. K.

Kahn, A. D. F.

Kaminska, K.

K. Kaminska, T. Brown, G. Beydaghyan, and K. Robbie, "Rugate filters grown by glancing angle deposition," in Applications of Photonic Technology 5, R. A. Lessard, G. A. Lampropoulos, and G. W. Schinn, eds., Proc. SPIE 4833, 633-639 (2002).

Kikuchi, K.

Q. Tang, H. Matsuda, K. Kikuchi, and S. Ogura, "Fabrication and characteristics of rugate filters deposited by the TSH reactive sputtering method," J. Vac. Sci. Technol. A 16, 3384-3388 (1998).
[CrossRef]

Lacquet, B. M.

P. L. Swart, B. M. Lacquet, A. A. Chtcherbakov, and P. V. Bulkin, "Automated electron cyclotron resonance plasma enhanced chemical vapor deposition system for the growth of rugate filters," J. Vac. Sci. Technol. A 18, 74-78 (2000).
[CrossRef]

P. V. Bulkin, P. L. Swart, and B. M. Lacquet, "Electron cyclotron resonance plasma enhanced chemical vapor deposition and optical properties of SiOx thin films," J. Non-Cryst. Solids 226, 58-66 (1998).
[CrossRef]

P. L. Swart, P. B. Bulkin, and B. M. Lacquet, "Rugate filter manufacturing by electron cyclotron resonance plasma-enhanced chemical vapor deposition of SiNx," Opt. Eng. 36, 1214-1219 (1997).

Lazo-Wasem, J. E.

T. D. Rahmlow, Jr. and J. E. Lazo-Wasem, "Rugate and discrete hybrid filter designs," in Optical Thin Films V: New Developments, R. L. Hall, ed., Proc. SPIE 3133, 25-35 (1997).
[CrossRef]

Lowe, D.

Macleod, H. A.

H. A. Macleod and E. Pelletier, "Error compensation mechanisms in some thin film monitoring systems," Opt. Acta 24, 907-930 (1977).

Masumoto, H.

X. Wang, H. Masumoto, Y. Someno, and T. Hirai, "Helicon plasma deposition of a TiO2/SiO2 multilayer optical filter with graded refractive index profiles," Appl. Phys. Lett. 72, 3264-3266 (1998).
[CrossRef]

Matsuda, H.

Q. Tang, H. Matsuda, K. Kikuchi, and S. Ogura, "Fabrication and characteristics of rugate filters deposited by the TSH reactive sputtering method," J. Vac. Sci. Technol. A 16, 3384-3388 (1998).
[CrossRef]

Ogura, S.

Q. Tang, H. Matsuda, K. Kikuchi, and S. Ogura, "Fabrication and characteristics of rugate filters deposited by the TSH reactive sputtering method," J. Vac. Sci. Technol. A 16, 3384-3388 (1998).
[CrossRef]

Pelletier, E.

H. A. Macleod and E. Pelletier, "Error compensation mechanisms in some thin film monitoring systems," Opt. Acta 24, 907-930 (1977).

Rahmlow, T. D.

T. D. Rahmlow, Jr. and J. E. Lazo-Wasem, "Rugate and discrete hybrid filter designs," in Optical Thin Films V: New Developments, R. L. Hall, ed., Proc. SPIE 3133, 25-35 (1997).
[CrossRef]

Robbie, K.

K. Kaminska, T. Brown, G. Beydaghyan, and K. Robbie, "Rugate filters grown by glancing angle deposition," in Applications of Photonic Technology 5, R. A. Lessard, G. A. Lampropoulos, and G. W. Schinn, eds., Proc. SPIE 4833, 633-639 (2002).

Shiraishi, K.

H. Yoda, K. Shiraishi, Y. Hiratani, and O. Hanaizumi, "a-Si:H/SiO2 multilayer films fabricated by radio-frequency magnetron sputtering for optical filters," Appl. Opt. 43, 3548-3554 (2004).
[CrossRef]

H. Yoda and K. Shiraishi, "A novel fabrication method for functional thin film filters having continuous refractive-index distributions with high contrast," presented at the Seventh International Symposium on Contemporary Photonics Technology, Tokyo, Japan, 14-15 January 2004.

Smith, S. D.

S. D. Smith, "Design of multilayer filters by considering two effective interfaces," J. Opt. Soc. Am 48, 43-50 (1958).

Someno, Y.

X. Wang, H. Masumoto, Y. Someno, and T. Hirai, "Helicon plasma deposition of a TiO2/SiO2 multilayer optical filter with graded refractive index profiles," Appl. Phys. Lett. 72, 3264-3266 (1998).
[CrossRef]

Southwell, W. H.

Swart, P. L.

P. L. Swart, B. M. Lacquet, A. A. Chtcherbakov, and P. V. Bulkin, "Automated electron cyclotron resonance plasma enhanced chemical vapor deposition system for the growth of rugate filters," J. Vac. Sci. Technol. A 18, 74-78 (2000).
[CrossRef]

P. V. Bulkin, P. L. Swart, and B. M. Lacquet, "Electron cyclotron resonance plasma enhanced chemical vapor deposition and optical properties of SiOx thin films," J. Non-Cryst. Solids 226, 58-66 (1998).
[CrossRef]

P. L. Swart, P. B. Bulkin, and B. M. Lacquet, "Rugate filter manufacturing by electron cyclotron resonance plasma-enhanced chemical vapor deposition of SiNx," Opt. Eng. 36, 1214-1219 (1997).

Tang, Q.

Q. Tang, H. Matsuda, K. Kikuchi, and S. Ogura, "Fabrication and characteristics of rugate filters deposited by the TSH reactive sputtering method," J. Vac. Sci. Technol. A 16, 3384-3388 (1998).
[CrossRef]

Vechten, D. V.

Verly, P. G.

Wang, X.

X. Wang, H. Masumoto, Y. Someno, and T. Hirai, "Helicon plasma deposition of a TiO2/SiO2 multilayer optical filter with graded refractive index profiles," Appl. Phys. Lett. 72, 3264-3266 (1998).
[CrossRef]

Woodberry, F. J.

Yoda, H.

H. Yoda, K. Shiraishi, Y. Hiratani, and O. Hanaizumi, "a-Si:H/SiO2 multilayer films fabricated by radio-frequency magnetron sputtering for optical filters," Appl. Opt. 43, 3548-3554 (2004).
[CrossRef]

H. Yoda and K. Shiraishi, "A novel fabrication method for functional thin film filters having continuous refractive-index distributions with high contrast," presented at the Seventh International Symposium on Contemporary Photonics Technology, Tokyo, Japan, 14-15 January 2004.

Appl. Opt. (6)

Appl. Phys. Lett. (1)

X. Wang, H. Masumoto, Y. Someno, and T. Hirai, "Helicon plasma deposition of a TiO2/SiO2 multilayer optical filter with graded refractive index profiles," Appl. Phys. Lett. 72, 3264-3266 (1998).
[CrossRef]

J. Non-Cryst. Solids (1)

P. V. Bulkin, P. L. Swart, and B. M. Lacquet, "Electron cyclotron resonance plasma enhanced chemical vapor deposition and optical properties of SiOx thin films," J. Non-Cryst. Solids 226, 58-66 (1998).
[CrossRef]

J. Opt. Soc. Am (1)

S. D. Smith, "Design of multilayer filters by considering two effective interfaces," J. Opt. Soc. Am 48, 43-50 (1958).

J. Vac. Sci. Technol. A (2)

P. L. Swart, B. M. Lacquet, A. A. Chtcherbakov, and P. V. Bulkin, "Automated electron cyclotron resonance plasma enhanced chemical vapor deposition system for the growth of rugate filters," J. Vac. Sci. Technol. A 18, 74-78 (2000).
[CrossRef]

Q. Tang, H. Matsuda, K. Kikuchi, and S. Ogura, "Fabrication and characteristics of rugate filters deposited by the TSH reactive sputtering method," J. Vac. Sci. Technol. A 16, 3384-3388 (1998).
[CrossRef]

Opt. Acta (1)

H. A. Macleod and E. Pelletier, "Error compensation mechanisms in some thin film monitoring systems," Opt. Acta 24, 907-930 (1977).

Opt. Eng. (1)

P. L. Swart, P. B. Bulkin, and B. M. Lacquet, "Rugate filter manufacturing by electron cyclotron resonance plasma-enhanced chemical vapor deposition of SiNx," Opt. Eng. 36, 1214-1219 (1997).

Proc. SPIE (1)

T. D. Rahmlow, Jr. and J. E. Lazo-Wasem, "Rugate and discrete hybrid filter designs," in Optical Thin Films V: New Developments, R. L. Hall, ed., Proc. SPIE 3133, 25-35 (1997).
[CrossRef]

Other (2)

K. Kaminska, T. Brown, G. Beydaghyan, and K. Robbie, "Rugate filters grown by glancing angle deposition," in Applications of Photonic Technology 5, R. A. Lessard, G. A. Lampropoulos, and G. W. Schinn, eds., Proc. SPIE 4833, 633-639 (2002).

H. Yoda and K. Shiraishi, "A novel fabrication method for functional thin film filters having continuous refractive-index distributions with high contrast," presented at the Seventh International Symposium on Contemporary Photonics Technology, Tokyo, Japan, 14-15 January 2004.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Refractive index at the wavelength of 1550 nm and deposition rate under different deposition conditions: (i) substrate temperature was kept constant (T = 160 °C) and total gas flow was 20 SCCM, and (ii) substrate was not heated (T = RT) and total gas flow was 30 SCCM. Common deposition conditions were a gas pressure of 0.7 Pa, which was actively controlled to be constant, and rf power of 300 W. SCCM denotes cubic centimeters per minute at STP.

Fig. 2
Fig. 2

Experimental results of absorption of a-SiO x :H films for each O2 gas flow ratio: T, substrate temperature. Any film with a thickness of approximately 700 nm was deposited on a silica substrate.

Fig. 3
Fig. 3

Refractive index dispersion of a-SiO x :H films for each O2 gas flow ratio. Circles indicate experimental results, and solid curves are approximated values using Cauchy's dispersion formula.

Fig. 4
Fig. 4

Designed refractive index profile of the minus filter with an apodized multilayer: λ0 is the monitoring wavelength of 1532 nm.

Fig. 5
Fig. 5

Spectrum of the minus filter with an apodized multilayer. The experimental spectrum resulted from measurement data, which were corrected by taking into account the presence of AR coatings.

Fig. 6
Fig. 6

Designed refractive index profile of rugate minus filter.

Fig. 7
Fig. 7

Calculated spectra for the sinusoidal refractive index distribution shown in Fig. 10 as a parameter of the deposition-rate error.

Fig. 8
Fig. 8

Calculated spectra as a parameter of the monitoring reflectance error.

Fig. 9
Fig. 9

Spectrum of the rugate minus filter. The experimental spectrum resulted from measurement data, which were corrected by taking into account the presence of AR coatings.

Fig. 10
Fig. 10

An example of sinusoidal refractive index distribution (O0 → P1 → O1 → P2 → …). The distribution has seven high-index layers (O0P1O1, O2P3O3, …) and six low-index layers (O1P2O2, O3P4O4, …). Each layer has a normalized optical thickness of 0.25.

Fig. 11
Fig. 11

Monitoring reflectance as a function of deposition time or optical thickness. This includes symbols (O1, O2, … , P1, P2, …), which correspond to the points (O1, O2, … , P1, P2, …) in Fig. 10. The experimental monitoring reflectance was almost consistent with the theoretical one at the points P i (i = 1, 2, …).

Fig. 12
Fig. 12

Calculated results of B as a function of optical thickness with the monitoring reflectance error. This includes local extrema (P1, P2, …), which corresponds to the local extrema in Fig. 10.

Fig. 13
Fig. 13

Experimental results of B as a function of deposition time.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

n ( D ) = n a + Δ n i 2 sin ( 4 π D ) | sin ( 4 π D ) | ( i = 1 , 2 , )
n ( D ) = n a + C Δ n i 2 · sin ( 4 π D )     ( i = 1 , 2 , )
R ( D ) = 1 A i 1 + ( 1 ) i + 1 F i sin 2 [ 2 π D π ( i 1 ) 2 ] ,
d R d D = 2 π F i A i ( 1 R ) 2 sin ( 4 π D ) .
sin ( 4 π D ) B A i 2 π F i 1 ( 1 R ) 2 d R d D = λ 0 A i 2 π n ν F i 1 ( 1 R ) 2 d R d t ,
n ( D ) = n a + C Δ n i 2 B ,
F i = 4 ( n i     2 1 ) | r i 1 , 0 | [ 1 + n i + ( 1 n i ) r i 1 , 0 ] 2 ,
A i = 4 n i ( 1 r i 1 , 0 2 ) [ 1 + n i + ( 1 n i ) r i 1 , 0 ] 2 ,
r i = n i + 1 n i n i + 1 + n i          ( i 0 ) ,
r i , 0 = r i r i 1 , 0 1 r i r i 1 , 0          ( i 1 , r 0 , 0 r 0 )
= ( 1 ) i ( 1 Π k = 1 i n f 0 ( k , k 1 ) n f 1 ( k , k 1 ) ) ( 1 + Π k = 1 i n f 0 ( k , k 1 ) n f 1 ( k , k 1 ) ) ,
r i , 0 = ( 1 ) i [ 1 n 0 n H ( n L n H ) i ] [ 1 + n 0 n H ( n L n H ) i ]

Metrics