Abstract

Liquid-crystal-filled polymer structure devices offer a very low cost switchable spatial phase modulator. The phase profile set by the polymer structure may be varied or switched on∕off with an applied field. Defects have been observed in some devices giving rise to spurious diffraction peaks. Computational modeling of the liquid-crystal director profile suggests that these defects might be suppressed if the dimensions of the liquid-crystal region are small. Experimental measurements confirm that this approach is effective in controlling the defects. This provides a route to fabrication of low-cost switchable complex diffractive devices.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. T. Gale, "Replication techniques for diffractive optical elements," Microelectron. Eng. 34, 321-339 (1997).
    [CrossRef]
  2. M. T. Gale, "Replication technology for holograms and diffractive optical elements," J. Imaging Sci. Technol. 41, 211-220 (1997).
  3. J. K. Nisper, "Injection-molded replication of binary optic structures," in Design, Fabrication and Applications of Precision Plastic Optics, X.H.Ning and R.T.Herbert, eds., Proc. SPIE 2600, 56-64 (1995).
    [CrossRef]
  4. H. P. Herzig, "Design of refractive and diffractive micro-optics," in Micro-optics: Elements, Systems and Applications (Taylor & Francis, London, 1997), pp. 1-29.
  5. Y. J. Liu, B. Zhang, Y. Jia, and K. S. Xu , "Improvement of the diffraction properties in holographic polymer dispersed liquid crystal Bragg gratings," Opt. Commun. 218, 27-32 (2003).
    [CrossRef]
  6. M. Stalder and M. Schadt, "Beam steering device based on switchable liquid crystal blazed gratings," in Proceedings of the Sixteenth International Display Research Conference (Society for Information Display, Birmingham, U.K., 1996), pp. 434-437.
  7. P. W. McOwen, M. S. Gordon, and W. J. Hossak, "A liquid crystal switchable Gabor lens," Opt. Commun. 103, 189-193 (1993).
    [CrossRef]
  8. Y. Mao, W. Bin, and S. Sato, "Liquid crystal lens with a focal length that is variable in a wide range," Appl. Opt. 43, 6407-6412 (2004).
    [CrossRef]
  9. A. M. Strudwick and G. A. Lester, "Electrically controlled phase grating for instrumentation applications," Electron. Lett. 35, 1374-1376 (1999).
    [CrossRef]
  10. G. A. Lester and A. M. Strudwick, "Liquid crystal switchable optical elements," in Optics in Computing, OSA Technical Digest (Optical Society of America, Washington, D.C., 2001) pp. 99-101.
  11. G. A. Lester, S. J. Coulston, and A. M. Strudwick, "Liquid crystal filled polymer structure SLM devices," in XV Conference on Liquid Crystals, J.Zmija, ed., Proc. SPIE 5565, 383-388 (2002).
    [CrossRef]
  12. G. A. Lester and A. M. Strudwick, "Liquid crystal phase grating for instrumentation applications," J. Mod. Opt. 47, 1959-1967 (2000).
    [CrossRef]
  13. G. A. Lester, "Optoelectronic devices for reconfigurable imaging and optical systems," in Recent Research Developments in Electronics, 1, S.G.Pandalai, ed. (Trans World Research Network, Trivandrum, India, 2002), pp. 165-175.
  14. G. Lester, A. Strudwick, and S. Coulston, "Electronically switchable diffractive optical elements," Opto-Electron. Rev. 12, 313-316 (2004).
  15. G. Williams, N. J. Powell, A. Purvis, and M. G. Clark, "Electrically controllable liquid crystal Fresnel lens," in Current Developments in Optical Engineering and Commercial Optics, R.E.Fischer, H.M.Pollocove, and W.J. Smith, eds., Proc. SPIE 1168, 352-357 (1989).
  16. C. Slinger, P. Brett, V. Hui, G. Monnington, D. Pain, and I. Sage, "Electrically controllable multiple, active, computer-generated hologram," Opt. Lett. 22, 1113-1115 (1997).
    [CrossRef] [PubMed]
  17. Z. He, T. Nose, and S. Sato, "Polarization properties of a liquid crystal phase grating," Mol Cryst. Liq. Cryst. Sci. Technol. Sect. A 301, 295-300 (1997).
    [CrossRef]
  18. W. Y. Li and S. H. Chen, "Simluation of normal anchoring nematic droplets under electrical fields," Jpn. J. Appl. Phys. 38, 1482-1487 (1999).
    [CrossRef]
  19. H. Mori, E. C. Gartland, J. R. Kelly, and P. J. Bos, "Multidimensional director modelling using the Q tensor vector representation in a liquid crystal cell and its applications to the pi cell with patterned electrodes," Jpn. J. Appl. Phys. Part 1 38, 135-146 (1999).
    [CrossRef]
  20. L. Pohl and U. Finkenzeller, "Physical properties of liquid crystals," in Liquid Crystals: Applications and Uses, Vol. 1, B.Bahadur, ed. (World Scientific, London, 1995), pp. 140-169.
  21. C. J. Newton, M. Iovane, O. Duhem, R. Barberi, G. Lombardo, and T. P. Spiller, "Anchoring energy measurements: a practical approach," HPL Technical Reports HPL-2000-113 (HP Labs, 2000).
  22. S. A. Hovaressian and L. A. Pipes, Digital Computer Methods in Engineering (McGraw-Hill, 1969).
  23. C. S. Desai, Elementary Finite Element Methods (Prentice-Hall, 1979).
  24. S. J. Coulston and G. A. Lester, "Switching in liquid crystal filled polymer structures," Mol. Cryst. Liq. Cryst. 413, 291-303 (2004).
    [CrossRef]
  25. A. G. Kirk and T. J. Hall, "Design of computer generated holograms by simulated annealing," J. Mod. Opt. 39, 2531-2539 (1992).
    [CrossRef]

2004 (3)

Y. Mao, W. Bin, and S. Sato, "Liquid crystal lens with a focal length that is variable in a wide range," Appl. Opt. 43, 6407-6412 (2004).
[CrossRef]

G. Lester, A. Strudwick, and S. Coulston, "Electronically switchable diffractive optical elements," Opto-Electron. Rev. 12, 313-316 (2004).

S. J. Coulston and G. A. Lester, "Switching in liquid crystal filled polymer structures," Mol. Cryst. Liq. Cryst. 413, 291-303 (2004).
[CrossRef]

2003 (1)

Y. J. Liu, B. Zhang, Y. Jia, and K. S. Xu , "Improvement of the diffraction properties in holographic polymer dispersed liquid crystal Bragg gratings," Opt. Commun. 218, 27-32 (2003).
[CrossRef]

2000 (1)

G. A. Lester and A. M. Strudwick, "Liquid crystal phase grating for instrumentation applications," J. Mod. Opt. 47, 1959-1967 (2000).
[CrossRef]

1999 (3)

W. Y. Li and S. H. Chen, "Simluation of normal anchoring nematic droplets under electrical fields," Jpn. J. Appl. Phys. 38, 1482-1487 (1999).
[CrossRef]

H. Mori, E. C. Gartland, J. R. Kelly, and P. J. Bos, "Multidimensional director modelling using the Q tensor vector representation in a liquid crystal cell and its applications to the pi cell with patterned electrodes," Jpn. J. Appl. Phys. Part 1 38, 135-146 (1999).
[CrossRef]

A. M. Strudwick and G. A. Lester, "Electrically controlled phase grating for instrumentation applications," Electron. Lett. 35, 1374-1376 (1999).
[CrossRef]

1997 (4)

C. Slinger, P. Brett, V. Hui, G. Monnington, D. Pain, and I. Sage, "Electrically controllable multiple, active, computer-generated hologram," Opt. Lett. 22, 1113-1115 (1997).
[CrossRef] [PubMed]

Z. He, T. Nose, and S. Sato, "Polarization properties of a liquid crystal phase grating," Mol Cryst. Liq. Cryst. Sci. Technol. Sect. A 301, 295-300 (1997).
[CrossRef]

M. T. Gale, "Replication techniques for diffractive optical elements," Microelectron. Eng. 34, 321-339 (1997).
[CrossRef]

M. T. Gale, "Replication technology for holograms and diffractive optical elements," J. Imaging Sci. Technol. 41, 211-220 (1997).

1993 (1)

P. W. McOwen, M. S. Gordon, and W. J. Hossak, "A liquid crystal switchable Gabor lens," Opt. Commun. 103, 189-193 (1993).
[CrossRef]

1992 (1)

A. G. Kirk and T. J. Hall, "Design of computer generated holograms by simulated annealing," J. Mod. Opt. 39, 2531-2539 (1992).
[CrossRef]

Barberi, R.

C. J. Newton, M. Iovane, O. Duhem, R. Barberi, G. Lombardo, and T. P. Spiller, "Anchoring energy measurements: a practical approach," HPL Technical Reports HPL-2000-113 (HP Labs, 2000).

Bin, W.

Y. Mao, W. Bin, and S. Sato, "Liquid crystal lens with a focal length that is variable in a wide range," Appl. Opt. 43, 6407-6412 (2004).
[CrossRef]

Bos, P. J.

H. Mori, E. C. Gartland, J. R. Kelly, and P. J. Bos, "Multidimensional director modelling using the Q tensor vector representation in a liquid crystal cell and its applications to the pi cell with patterned electrodes," Jpn. J. Appl. Phys. Part 1 38, 135-146 (1999).
[CrossRef]

Brett, P.

Chen, S. H.

W. Y. Li and S. H. Chen, "Simluation of normal anchoring nematic droplets under electrical fields," Jpn. J. Appl. Phys. 38, 1482-1487 (1999).
[CrossRef]

Clark, M. G.

G. Williams, N. J. Powell, A. Purvis, and M. G. Clark, "Electrically controllable liquid crystal Fresnel lens," in Current Developments in Optical Engineering and Commercial Optics, R.E.Fischer, H.M.Pollocove, and W.J. Smith, eds., Proc. SPIE 1168, 352-357 (1989).

Coulston, S.

G. Lester, A. Strudwick, and S. Coulston, "Electronically switchable diffractive optical elements," Opto-Electron. Rev. 12, 313-316 (2004).

Coulston, S. J.

S. J. Coulston and G. A. Lester, "Switching in liquid crystal filled polymer structures," Mol. Cryst. Liq. Cryst. 413, 291-303 (2004).
[CrossRef]

G. A. Lester, S. J. Coulston, and A. M. Strudwick, "Liquid crystal filled polymer structure SLM devices," in XV Conference on Liquid Crystals, J.Zmija, ed., Proc. SPIE 5565, 383-388 (2002).
[CrossRef]

Desai, C. S.

C. S. Desai, Elementary Finite Element Methods (Prentice-Hall, 1979).

Duhem, O.

C. J. Newton, M. Iovane, O. Duhem, R. Barberi, G. Lombardo, and T. P. Spiller, "Anchoring energy measurements: a practical approach," HPL Technical Reports HPL-2000-113 (HP Labs, 2000).

Finkenzeller, U.

L. Pohl and U. Finkenzeller, "Physical properties of liquid crystals," in Liquid Crystals: Applications and Uses, Vol. 1, B.Bahadur, ed. (World Scientific, London, 1995), pp. 140-169.

Gale, M. T.

M. T. Gale, "Replication techniques for diffractive optical elements," Microelectron. Eng. 34, 321-339 (1997).
[CrossRef]

M. T. Gale, "Replication technology for holograms and diffractive optical elements," J. Imaging Sci. Technol. 41, 211-220 (1997).

Gartland, E. C.

H. Mori, E. C. Gartland, J. R. Kelly, and P. J. Bos, "Multidimensional director modelling using the Q tensor vector representation in a liquid crystal cell and its applications to the pi cell with patterned electrodes," Jpn. J. Appl. Phys. Part 1 38, 135-146 (1999).
[CrossRef]

Gordon, M. S.

P. W. McOwen, M. S. Gordon, and W. J. Hossak, "A liquid crystal switchable Gabor lens," Opt. Commun. 103, 189-193 (1993).
[CrossRef]

Hall, T. J.

A. G. Kirk and T. J. Hall, "Design of computer generated holograms by simulated annealing," J. Mod. Opt. 39, 2531-2539 (1992).
[CrossRef]

He, Z.

Z. He, T. Nose, and S. Sato, "Polarization properties of a liquid crystal phase grating," Mol Cryst. Liq. Cryst. Sci. Technol. Sect. A 301, 295-300 (1997).
[CrossRef]

Herzig, H. P.

H. P. Herzig, "Design of refractive and diffractive micro-optics," in Micro-optics: Elements, Systems and Applications (Taylor & Francis, London, 1997), pp. 1-29.

Hossak, W. J.

P. W. McOwen, M. S. Gordon, and W. J. Hossak, "A liquid crystal switchable Gabor lens," Opt. Commun. 103, 189-193 (1993).
[CrossRef]

Hovaressian, S. A.

S. A. Hovaressian and L. A. Pipes, Digital Computer Methods in Engineering (McGraw-Hill, 1969).

Hui, V.

Iovane, M.

C. J. Newton, M. Iovane, O. Duhem, R. Barberi, G. Lombardo, and T. P. Spiller, "Anchoring energy measurements: a practical approach," HPL Technical Reports HPL-2000-113 (HP Labs, 2000).

Jia, Y.

Y. J. Liu, B. Zhang, Y. Jia, and K. S. Xu , "Improvement of the diffraction properties in holographic polymer dispersed liquid crystal Bragg gratings," Opt. Commun. 218, 27-32 (2003).
[CrossRef]

Kelly, J. R.

H. Mori, E. C. Gartland, J. R. Kelly, and P. J. Bos, "Multidimensional director modelling using the Q tensor vector representation in a liquid crystal cell and its applications to the pi cell with patterned electrodes," Jpn. J. Appl. Phys. Part 1 38, 135-146 (1999).
[CrossRef]

Kirk, A. G.

A. G. Kirk and T. J. Hall, "Design of computer generated holograms by simulated annealing," J. Mod. Opt. 39, 2531-2539 (1992).
[CrossRef]

Lester, G.

G. Lester, A. Strudwick, and S. Coulston, "Electronically switchable diffractive optical elements," Opto-Electron. Rev. 12, 313-316 (2004).

Lester, G. A.

S. J. Coulston and G. A. Lester, "Switching in liquid crystal filled polymer structures," Mol. Cryst. Liq. Cryst. 413, 291-303 (2004).
[CrossRef]

G. A. Lester and A. M. Strudwick, "Liquid crystal phase grating for instrumentation applications," J. Mod. Opt. 47, 1959-1967 (2000).
[CrossRef]

A. M. Strudwick and G. A. Lester, "Electrically controlled phase grating for instrumentation applications," Electron. Lett. 35, 1374-1376 (1999).
[CrossRef]

G. A. Lester and A. M. Strudwick, "Liquid crystal switchable optical elements," in Optics in Computing, OSA Technical Digest (Optical Society of America, Washington, D.C., 2001) pp. 99-101.

G. A. Lester, S. J. Coulston, and A. M. Strudwick, "Liquid crystal filled polymer structure SLM devices," in XV Conference on Liquid Crystals, J.Zmija, ed., Proc. SPIE 5565, 383-388 (2002).
[CrossRef]

G. A. Lester, "Optoelectronic devices for reconfigurable imaging and optical systems," in Recent Research Developments in Electronics, 1, S.G.Pandalai, ed. (Trans World Research Network, Trivandrum, India, 2002), pp. 165-175.

Li, W. Y.

W. Y. Li and S. H. Chen, "Simluation of normal anchoring nematic droplets under electrical fields," Jpn. J. Appl. Phys. 38, 1482-1487 (1999).
[CrossRef]

Liu, Y. J.

Y. J. Liu, B. Zhang, Y. Jia, and K. S. Xu , "Improvement of the diffraction properties in holographic polymer dispersed liquid crystal Bragg gratings," Opt. Commun. 218, 27-32 (2003).
[CrossRef]

Lombardo, G.

C. J. Newton, M. Iovane, O. Duhem, R. Barberi, G. Lombardo, and T. P. Spiller, "Anchoring energy measurements: a practical approach," HPL Technical Reports HPL-2000-113 (HP Labs, 2000).

Mao, Y.

Y. Mao, W. Bin, and S. Sato, "Liquid crystal lens with a focal length that is variable in a wide range," Appl. Opt. 43, 6407-6412 (2004).
[CrossRef]

McOwen, P. W.

P. W. McOwen, M. S. Gordon, and W. J. Hossak, "A liquid crystal switchable Gabor lens," Opt. Commun. 103, 189-193 (1993).
[CrossRef]

Monnington, G.

Mori, H.

H. Mori, E. C. Gartland, J. R. Kelly, and P. J. Bos, "Multidimensional director modelling using the Q tensor vector representation in a liquid crystal cell and its applications to the pi cell with patterned electrodes," Jpn. J. Appl. Phys. Part 1 38, 135-146 (1999).
[CrossRef]

Newton, C. J.

C. J. Newton, M. Iovane, O. Duhem, R. Barberi, G. Lombardo, and T. P. Spiller, "Anchoring energy measurements: a practical approach," HPL Technical Reports HPL-2000-113 (HP Labs, 2000).

Nisper, J. K.

J. K. Nisper, "Injection-molded replication of binary optic structures," in Design, Fabrication and Applications of Precision Plastic Optics, X.H.Ning and R.T.Herbert, eds., Proc. SPIE 2600, 56-64 (1995).
[CrossRef]

Nose, T.

Z. He, T. Nose, and S. Sato, "Polarization properties of a liquid crystal phase grating," Mol Cryst. Liq. Cryst. Sci. Technol. Sect. A 301, 295-300 (1997).
[CrossRef]

Pain, D.

Pipes, L. A.

S. A. Hovaressian and L. A. Pipes, Digital Computer Methods in Engineering (McGraw-Hill, 1969).

Pohl, L.

L. Pohl and U. Finkenzeller, "Physical properties of liquid crystals," in Liquid Crystals: Applications and Uses, Vol. 1, B.Bahadur, ed. (World Scientific, London, 1995), pp. 140-169.

Powell, N. J.

G. Williams, N. J. Powell, A. Purvis, and M. G. Clark, "Electrically controllable liquid crystal Fresnel lens," in Current Developments in Optical Engineering and Commercial Optics, R.E.Fischer, H.M.Pollocove, and W.J. Smith, eds., Proc. SPIE 1168, 352-357 (1989).

Purvis, A.

G. Williams, N. J. Powell, A. Purvis, and M. G. Clark, "Electrically controllable liquid crystal Fresnel lens," in Current Developments in Optical Engineering and Commercial Optics, R.E.Fischer, H.M.Pollocove, and W.J. Smith, eds., Proc. SPIE 1168, 352-357 (1989).

Sage, I.

Sato, S.

Y. Mao, W. Bin, and S. Sato, "Liquid crystal lens with a focal length that is variable in a wide range," Appl. Opt. 43, 6407-6412 (2004).
[CrossRef]

Z. He, T. Nose, and S. Sato, "Polarization properties of a liquid crystal phase grating," Mol Cryst. Liq. Cryst. Sci. Technol. Sect. A 301, 295-300 (1997).
[CrossRef]

Schadt, M.

M. Stalder and M. Schadt, "Beam steering device based on switchable liquid crystal blazed gratings," in Proceedings of the Sixteenth International Display Research Conference (Society for Information Display, Birmingham, U.K., 1996), pp. 434-437.

Slinger, C.

Spiller, T. P.

C. J. Newton, M. Iovane, O. Duhem, R. Barberi, G. Lombardo, and T. P. Spiller, "Anchoring energy measurements: a practical approach," HPL Technical Reports HPL-2000-113 (HP Labs, 2000).

Stalder, M.

M. Stalder and M. Schadt, "Beam steering device based on switchable liquid crystal blazed gratings," in Proceedings of the Sixteenth International Display Research Conference (Society for Information Display, Birmingham, U.K., 1996), pp. 434-437.

Strudwick, A.

G. Lester, A. Strudwick, and S. Coulston, "Electronically switchable diffractive optical elements," Opto-Electron. Rev. 12, 313-316 (2004).

Strudwick, A. M.

G. A. Lester and A. M. Strudwick, "Liquid crystal phase grating for instrumentation applications," J. Mod. Opt. 47, 1959-1967 (2000).
[CrossRef]

A. M. Strudwick and G. A. Lester, "Electrically controlled phase grating for instrumentation applications," Electron. Lett. 35, 1374-1376 (1999).
[CrossRef]

G. A. Lester and A. M. Strudwick, "Liquid crystal switchable optical elements," in Optics in Computing, OSA Technical Digest (Optical Society of America, Washington, D.C., 2001) pp. 99-101.

G. A. Lester, S. J. Coulston, and A. M. Strudwick, "Liquid crystal filled polymer structure SLM devices," in XV Conference on Liquid Crystals, J.Zmija, ed., Proc. SPIE 5565, 383-388 (2002).
[CrossRef]

Williams, G.

G. Williams, N. J. Powell, A. Purvis, and M. G. Clark, "Electrically controllable liquid crystal Fresnel lens," in Current Developments in Optical Engineering and Commercial Optics, R.E.Fischer, H.M.Pollocove, and W.J. Smith, eds., Proc. SPIE 1168, 352-357 (1989).

Xu, K. S.

Y. J. Liu, B. Zhang, Y. Jia, and K. S. Xu , "Improvement of the diffraction properties in holographic polymer dispersed liquid crystal Bragg gratings," Opt. Commun. 218, 27-32 (2003).
[CrossRef]

Zhang, B.

Y. J. Liu, B. Zhang, Y. Jia, and K. S. Xu , "Improvement of the diffraction properties in holographic polymer dispersed liquid crystal Bragg gratings," Opt. Commun. 218, 27-32 (2003).
[CrossRef]

Appl. Opt. (1)

Y. Mao, W. Bin, and S. Sato, "Liquid crystal lens with a focal length that is variable in a wide range," Appl. Opt. 43, 6407-6412 (2004).
[CrossRef]

Electron. Lett. (1)

A. M. Strudwick and G. A. Lester, "Electrically controlled phase grating for instrumentation applications," Electron. Lett. 35, 1374-1376 (1999).
[CrossRef]

J. Mod. Opt. (2)

G. A. Lester and A. M. Strudwick, "Liquid crystal phase grating for instrumentation applications," J. Mod. Opt. 47, 1959-1967 (2000).
[CrossRef]

A. G. Kirk and T. J. Hall, "Design of computer generated holograms by simulated annealing," J. Mod. Opt. 39, 2531-2539 (1992).
[CrossRef]

J. Imaging Sci. Technol. (1)

M. T. Gale, "Replication technology for holograms and diffractive optical elements," J. Imaging Sci. Technol. 41, 211-220 (1997).

Jpn. J. Appl. Phys. (1)

W. Y. Li and S. H. Chen, "Simluation of normal anchoring nematic droplets under electrical fields," Jpn. J. Appl. Phys. 38, 1482-1487 (1999).
[CrossRef]

Jpn. J. Appl. Phys. (1)

H. Mori, E. C. Gartland, J. R. Kelly, and P. J. Bos, "Multidimensional director modelling using the Q tensor vector representation in a liquid crystal cell and its applications to the pi cell with patterned electrodes," Jpn. J. Appl. Phys. Part 1 38, 135-146 (1999).
[CrossRef]

Microelectron. Eng. (1)

M. T. Gale, "Replication techniques for diffractive optical elements," Microelectron. Eng. 34, 321-339 (1997).
[CrossRef]

Mol Cryst. Liq. Cryst. Sci. Technol. Sect. A (1)

Z. He, T. Nose, and S. Sato, "Polarization properties of a liquid crystal phase grating," Mol Cryst. Liq. Cryst. Sci. Technol. Sect. A 301, 295-300 (1997).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

S. J. Coulston and G. A. Lester, "Switching in liquid crystal filled polymer structures," Mol. Cryst. Liq. Cryst. 413, 291-303 (2004).
[CrossRef]

Opt. Commun. (2)

P. W. McOwen, M. S. Gordon, and W. J. Hossak, "A liquid crystal switchable Gabor lens," Opt. Commun. 103, 189-193 (1993).
[CrossRef]

Y. J. Liu, B. Zhang, Y. Jia, and K. S. Xu , "Improvement of the diffraction properties in holographic polymer dispersed liquid crystal Bragg gratings," Opt. Commun. 218, 27-32 (2003).
[CrossRef]

Opt. Lett. (1)

Opto-Electron. Rev. (1)

G. Lester, A. Strudwick, and S. Coulston, "Electronically switchable diffractive optical elements," Opto-Electron. Rev. 12, 313-316 (2004).

Other (11)

G. Williams, N. J. Powell, A. Purvis, and M. G. Clark, "Electrically controllable liquid crystal Fresnel lens," in Current Developments in Optical Engineering and Commercial Optics, R.E.Fischer, H.M.Pollocove, and W.J. Smith, eds., Proc. SPIE 1168, 352-357 (1989).

G. A. Lester, "Optoelectronic devices for reconfigurable imaging and optical systems," in Recent Research Developments in Electronics, 1, S.G.Pandalai, ed. (Trans World Research Network, Trivandrum, India, 2002), pp. 165-175.

M. Stalder and M. Schadt, "Beam steering device based on switchable liquid crystal blazed gratings," in Proceedings of the Sixteenth International Display Research Conference (Society for Information Display, Birmingham, U.K., 1996), pp. 434-437.

J. K. Nisper, "Injection-molded replication of binary optic structures," in Design, Fabrication and Applications of Precision Plastic Optics, X.H.Ning and R.T.Herbert, eds., Proc. SPIE 2600, 56-64 (1995).
[CrossRef]

H. P. Herzig, "Design of refractive and diffractive micro-optics," in Micro-optics: Elements, Systems and Applications (Taylor & Francis, London, 1997), pp. 1-29.

G. A. Lester and A. M. Strudwick, "Liquid crystal switchable optical elements," in Optics in Computing, OSA Technical Digest (Optical Society of America, Washington, D.C., 2001) pp. 99-101.

G. A. Lester, S. J. Coulston, and A. M. Strudwick, "Liquid crystal filled polymer structure SLM devices," in XV Conference on Liquid Crystals, J.Zmija, ed., Proc. SPIE 5565, 383-388 (2002).
[CrossRef]

L. Pohl and U. Finkenzeller, "Physical properties of liquid crystals," in Liquid Crystals: Applications and Uses, Vol. 1, B.Bahadur, ed. (World Scientific, London, 1995), pp. 140-169.

C. J. Newton, M. Iovane, O. Duhem, R. Barberi, G. Lombardo, and T. P. Spiller, "Anchoring energy measurements: a practical approach," HPL Technical Reports HPL-2000-113 (HP Labs, 2000).

S. A. Hovaressian and L. A. Pipes, Digital Computer Methods in Engineering (McGraw-Hill, 1969).

C. S. Desai, Elementary Finite Element Methods (Prentice-Hall, 1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Geometry and construction of a liquid-crystal-filled polymer switchable device.

Fig. 2
Fig. 2

Computed director profiles in LiCFiPS devices with a rubbing direction (a) along the liquid-crystal channel and (b) perpendicular to the liquid-crystal channel (with 1 V∕μm electric field applied).

Fig. 3
Fig. 3

Computed component of the director along the liquid-crystal channel (out of the plane of the page) with channel widths of 5 (top) and 30 μm (bottom). Pinning of the defect in the smaller devices is clearly shown.

Fig. 4
Fig. 4

Far-field diffraction pattern from a 100 μm period grating with the liquid crystal aligned along the ruling direction with a field of 1 V / μm applied. Displacement axis is ± 36 mrad .

Fig. 5
Fig. 5

Far-field diffraction pattern from a 100 μm period grating with the liquid crystal aligned across the ruling direction with a field of 1 V / μm applied. Displacement axis is ± 25 mrad .

Fig. 6
Fig. 6

Far-field diffraction pattern from a 30 μm period grating with the liquid crystal aligned across the ruling direction with a field of 0.8 V / μm applied. Diplacement axis is ± 122 mrad .

Fig. 7
Fig. 7

Far-field diffraction pattern from a 10 μm period grating with the liquid crystal aligned across the ruling direction with a field of 0.8 V / μm applied. Displacement axis is ± 370 mrad .

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

f b = k 33 k 11 + 3 k 22 27 ( Q j k , l Q j k , l ) + 2 ( k 11 k 22 ) 27 ( Q j k , l Q j k , l ) + 2 ( k 33 k 11 ) 27 ( Q j k , l Q j k , l ) ,
Q = S 2 ( 3 [ n x n x n x n y n z n x n y n x n y n y n z n y n z n x n z n y n z n z ] | 1 0 0 0 1 0 0 0 1 | ) .
f = 1 2 k L s ( 1 ( n n s ) 2 ) ( P i ) ,
f = 1 2 k L s ( n n s ) 2 ( P i ) .
V p = ε x ( V x p + V x m ) + ε y ( V y p + V y m ) + ε z ( V z p + V z m ) 2 ( ε x + ε y + ε z ) ,
f e = ε 0 ( Δ ε ( n ¯ E ¯ ) 2 + ε E ¯ E ¯ ) .

Metrics