Abstract

We describe an instrument for measuring the particle extinction coefficient at ambient conditions in the spectral range from 270 to 1000 nm. It is based on a differential optical absorption spectroscopy (DOAS) system, which was originally used for measuring trace-gas concentrations of atmospheric absorbers in the ultraviolet–visible wavelength range. One obtains the particle extinction spectrum by measuring the total atmospheric extinction and subtracting trace-gas absorption and Rayleigh scattering. The instrument consists of two nested Newton-type telescopes, which are simultaneously used for emitting and detecting light, and two arrays of retroreflectors at the ends of the two light paths. The design of this new instrument solves crucial problems usually encountered in the design of such instruments. The telescope is actively repositioned during the measurement cycle. Particle extinction is simultaneously measured at several wavelengths by the use of two grating spectrometers. Optical turbulence causes lateral movement of the spot of light in the receiver telescope. Monitoring of the return signals with a diode permits correction for this effect. Phase-sensitive detection efficiently suppresses background signals from the atmosphere as well as from the instrument itself. The performance of the instrument was tested during a measurement period of 3 months from January to March 2000. The instrument ran without significant interruption during that period. A mean accuracy of 0.032 km−1 was found for the extinction coefficient for an 11-day period in March.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Heintzenberg, R. J. Charlson, A. D. Clarke, C. Liousse, C. V. Ramaswamy, K. P. Shine, M. Wendisch, “Measurements and modelling of aerosol single-scattering albedo: progress, problems and prospects,” Contrib. Atmos. Phys. 70, 249–264 (1997).
  2. R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, D. J. Hofmann, “Climate forcing by anthropogenic aerosols,” Science 256, 423–430 (1992).
    [CrossRef]
  3. R. J. Charlson, T. L. Anderson, H. Rodhe, “Direct climate forcing by anthropogenic aerosols: quantifying the link between atmospheric sulfate and radiation,” Contrib. Atmos. Phys. 27, 79–94 (1999).
  4. D. J. Delene, J. A. Ogren, “Variability of aerosol optical properties at four North American surface monitoring sites,” J. Atmos. Sci. 59, 1136–1150 (2002).
  5. B. Y. H. Liu, D. Y. H. Pui, K. T. Whitby, D. B. Kittelson, Y. Kousaka, R. L. McKenzie, “The aerosol mobility chromatograph: a new detector for sulfuric acid aerosols,” Atmos. Environ. 12, 99–104 (1978).
    [CrossRef]
  6. M. H. Bergin, S. E. Schwartz, R. N. Halthore, J. A. Ogren, D. L. Hlavka, “Comparison of aerosol optical depth inferred from surface measurements with that determined by sun photometry for cloud-free conditions at a continental U.S. site,” J. Geophys. Res. 105, 6807–6816 (2000).
    [CrossRef]
  7. U. Leiterer, A. Naebert, T. Naebert, G. Alekseeva, “A new star photometer developed for spectral aerosol optical thickness measurements in Lindenberg,” Beitr. Phys. Atmosph. 68, 133–141 (1995).
  8. H. Horvath, “The University of Vienna telephotometer,” Atmos. Environ. 15, 2537–2546 (1981).
    [CrossRef]
  9. A. Ansmann, M. Riebesell, C. Weitkamp, “Measurements of atmospheric aerosol extinction profiles with a Raman lidar,” Opt. Lett. 15, 746–748 (1990).
    [CrossRef] [PubMed]
  10. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosols extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
    [CrossRef]
  11. E. Paganini, F. Trespidi, F. Ferri, “Instrument for long-path spectral extinction measurements in air: application to sizing of airborne particles,” Appl. Opt. 40, 4261–4274 (2001).
    [CrossRef]
  12. J. Notholt, F. Raes, “Test of in situ measurements of atmospheric aerosols and trace gases by long path transmission spectroscopy,” J. Aerosol Sci. 21, 193–196 (1990).
    [CrossRef]
  13. H. Flentje, R. Dubois, J. Heintzenberg, H.-J. Karbach, “Retrieval of aerosol properties from boundary layer extinction measurements with a DOAS system,” Geophys. Res. Lett. 24, 2019–2022 (1997).
    [CrossRef]
  14. J. Lee, Y. J. Kim, “Extinction measurements using a differential optical absorption spectrometer,” J. Korean Phys. Soc. 42, 732–724 (2003).
  15. U. Platt, D. Perner, H. Pätz, “Simultaneous measuremenof atmospheric CH2O, O3, and NO2by differential optical absorption,” J. Geophys. Res. D 84, 6329–6335 (1979).
    [CrossRef]
  16. M. D. King, D. M. Byrne, B. M. Herman, J. A. Reagan, “Aerosol size distribution obtained by inversion of spectral optical depth measurements,” J. Atmos. Sci. 35, 2153–2167 (1978).
    [CrossRef]
  17. J. Heintzenberg, H. Müller, H. Quenzel, E. Thomalla, “Information content of optical data with respect to aerosol properties: numerical studies with a randomized minimization-search-technique inversion algorithm,” Appl. Opt. 20, 1308–1315 (1981).
    [CrossRef] [PubMed]
  18. D. Müller, U. Wandinger, A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory,” Appl. Opt. 38, 2346–2357 (1999).
    [CrossRef]
  19. D. Müller, U. Wandinger, A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: simulation,” Appl. Opt. 38, 2358–2368 (1999).
    [CrossRef]
  20. O. Dubovik, M. D. King, “A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements,” J. Geophys. Res. D105(D16), 20,673–20,696 (2000).
    [CrossRef]
  21. F. Ferri, A. Bassini, E. Paganini, “Modified version of the Chahine algorithm to invert spectral extinction data for particle sizing,” Appl. Opt. 34, 5829–5839 (1995).
    [CrossRef] [PubMed]
  22. H. Axelsson, B. Galle, K. Gustavsson, P. Ragnarsson, M. Rudin, “A transmitting/receiving telescope for DOAS-measurements using retroreflector technique,” in Optical Remote Sensing of the Atmosphere, Vol. 4 of OSA 1990 Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 641–644.
  23. L. S. Rothman, “The HITRAN molecular database—editions of 1991 and 1992,” J. Quant. Spectros. Radiat. Transfer 48, 469–507 (1992).
    [CrossRef]
  24. E. Vigroux, “Contribution à l’étude expérimentale de l’absorption de l’ozone,” Ann. Phys. 8, 709–762 (1953).
  25. E. C. Y. Inn, Y. Tanaka, “Absorption coefficient of ozone in the ultraviolet and visible regions,” J. Opt. Soc. Am. 43, 870–873 (1953).
    [CrossRef]
  26. M. Griggs, “Absorption coefficient of ozone in the ultraviolet and visible regions,” J. Chem. Phys. 49, 857–859 (1968).
    [CrossRef]
  27. L. T. Molina, M. J. Molina, “Absolute absorption coefficient of ozone in the 185 to 350 nm wavelength range,” J. Geophys. Res. 91, 14,501–14,508 (1986).
    [CrossRef]
  28. M. Cacciani, A. di Sarra, G. Fiocco, A. Amoruso, “Absolute determination of the absorption cross sections of ozone in the wavelength region 339–355 nm,” J. Geophys. Res. 94, 8485–8490 (1989).
    [CrossRef]
  29. A. Amoruso, M. Cacciani, A. di Sarra, G. Fiocco, “Absorption cross sections of ozone in the 590 to 610 region at T= 230 K and T= 299 K,” J. Geophys. Res. 95, 20,565–20,568 (1990).
    [CrossRef]
  30. W. Schneider, G. K. Moortgat, G. S. Tyndall, J. P. Burrows, “Absorption cross-sections of NO2in the UV and visible region (200–700 nm) at 298 K,” J. Photochem. Photobiol. 40, 195–217 (1987).
    [CrossRef]
  31. G. D. Greenblatt, J. J. Orlando, J. B. Burkholder, A. R. Ravishankara, “Absorption measurements of oxygen between 330 and 1140 nm,” J. Geophys. Res. 49, 18,577–18,582 (1990).
    [CrossRef]
  32. R. W. Ditchburn, P. A. Young, “The absorption of molecular oxygen between 1850 and 2500 Å,” J. Atmos. Terr. Phys. 24, 127–139 (1962).
    [CrossRef]
  33. A. C. Vandaele, P. C. Simon, J. M. Guilmot, M. Carleer, R. Colin, “SO2absorption cross section measurements in the UV using a Fourier transform spectrometer,” J. Geophys. Res. 99, 25,599–25,605 (1994).
    [CrossRef]
  34. D. E. Freeman, K. Yoshino, J. R. Esmond, W. H. Parkinson, “High resolution cross section measurements of SO2at 213 K in the wavelength region 172–240 nm,” Planet. Space Sci. 32, 1125–1134 (1994).
    [CrossRef]
  35. A. Buchholtz, “Rayleigh-scattering calculations for the terrestrial atmosphere,” Appl. Opt. 34, 2765–2773 (1995).
    [CrossRef]
  36. T. Müller, D. Müller, R. Dubois, “Measurements of optical particle properties at ambient conditions using a DOAS-extinction telescope. 2. Validation study,” submitted to Appl. Opt.
  37. H. Koschmieder, “Theorie der horizontalen Sichtweite,” Beitr. Phys. Atm. 12, 33–53 (1924).
  38. A. Ångström, “Techniques of determining the turbidity of the atmosphere,” Tellus 13, 214–223 (1961).
    [CrossRef]
  39. O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590–608 (2002).
    [CrossRef]
  40. D. Müller, A. Ansmann, F. Wagner, K. Franke, D. Althausen, “European pollution outbreaks during ACE 2: microphysical particle properties and single-scattering albedo inferred from multiwavelength lidar observations,” J. Geophys. Res. 107(D15), 4248, (2002).
    [CrossRef]
  41. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  42. C. Böckmann, “Hybrid regularization method for ill-posed inversion of multiwavelength lidar data in the retrieval of aerosol size distributions,” Appl. Opt. 40, 1329–1342 (2001).
    [CrossRef]
  43. I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, U. Wandinger, D. N. Whiteman, “Inversion with regularization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding,” Appl. Opt. 41, 3685–3699 (2002).
    [CrossRef] [PubMed]
  44. I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, K. Franke, D. N. Whiteman, “Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution,” Appl. Opt. 43, 1180–1195 (2004).
    [CrossRef] [PubMed]
  45. D. Müller, K. Franke, A. Ansmann, D. Althausen, F. Wagner, “Indo-Asian pollution during INDOEX: microphysical particle properties and single-scattering albedo inferred from multiwavelength lidar observations,” J. Geophys. Res. 108(D19), 4600, (2003).
    [CrossRef]
  46. D. Müller, I. Mattis, A. Ansmann, B. Wehner, D. Althausen, O. Dubovik, “Closure study on optical and microphysical properties of an urban and Arctic haze air mass observed with Raman lidar and Sun photometer,” J. Geophys. Res. 109(D13), 13206, (2004).
    [CrossRef]
  47. W. C. Hinds, Aerosol Technology (Wiley, New York, 1982).
  48. M. Pahlow, D. Müller, G. Feingold, W. Eberhard, R. Steward, “Retrieval of aerosol properties from combined multiwavelength lidar and sunphotometer data: simulations,” Appl. Opt. (to be published).

2004 (2)

I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, K. Franke, D. N. Whiteman, “Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution,” Appl. Opt. 43, 1180–1195 (2004).
[CrossRef] [PubMed]

D. Müller, I. Mattis, A. Ansmann, B. Wehner, D. Althausen, O. Dubovik, “Closure study on optical and microphysical properties of an urban and Arctic haze air mass observed with Raman lidar and Sun photometer,” J. Geophys. Res. 109(D13), 13206, (2004).
[CrossRef]

2003 (2)

D. Müller, K. Franke, A. Ansmann, D. Althausen, F. Wagner, “Indo-Asian pollution during INDOEX: microphysical particle properties and single-scattering albedo inferred from multiwavelength lidar observations,” J. Geophys. Res. 108(D19), 4600, (2003).
[CrossRef]

J. Lee, Y. J. Kim, “Extinction measurements using a differential optical absorption spectrometer,” J. Korean Phys. Soc. 42, 732–724 (2003).

2002 (4)

O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590–608 (2002).
[CrossRef]

D. Müller, A. Ansmann, F. Wagner, K. Franke, D. Althausen, “European pollution outbreaks during ACE 2: microphysical particle properties and single-scattering albedo inferred from multiwavelength lidar observations,” J. Geophys. Res. 107(D15), 4248, (2002).
[CrossRef]

D. J. Delene, J. A. Ogren, “Variability of aerosol optical properties at four North American surface monitoring sites,” J. Atmos. Sci. 59, 1136–1150 (2002).

I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, U. Wandinger, D. N. Whiteman, “Inversion with regularization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding,” Appl. Opt. 41, 3685–3699 (2002).
[CrossRef] [PubMed]

2001 (2)

2000 (1)

M. H. Bergin, S. E. Schwartz, R. N. Halthore, J. A. Ogren, D. L. Hlavka, “Comparison of aerosol optical depth inferred from surface measurements with that determined by sun photometry for cloud-free conditions at a continental U.S. site,” J. Geophys. Res. 105, 6807–6816 (2000).
[CrossRef]

1999 (3)

1997 (2)

H. Flentje, R. Dubois, J. Heintzenberg, H.-J. Karbach, “Retrieval of aerosol properties from boundary layer extinction measurements with a DOAS system,” Geophys. Res. Lett. 24, 2019–2022 (1997).
[CrossRef]

J. Heintzenberg, R. J. Charlson, A. D. Clarke, C. Liousse, C. V. Ramaswamy, K. P. Shine, M. Wendisch, “Measurements and modelling of aerosol single-scattering albedo: progress, problems and prospects,” Contrib. Atmos. Phys. 70, 249–264 (1997).

1995 (3)

1994 (2)

A. C. Vandaele, P. C. Simon, J. M. Guilmot, M. Carleer, R. Colin, “SO2absorption cross section measurements in the UV using a Fourier transform spectrometer,” J. Geophys. Res. 99, 25,599–25,605 (1994).
[CrossRef]

D. E. Freeman, K. Yoshino, J. R. Esmond, W. H. Parkinson, “High resolution cross section measurements of SO2at 213 K in the wavelength region 172–240 nm,” Planet. Space Sci. 32, 1125–1134 (1994).
[CrossRef]

1992 (3)

L. S. Rothman, “The HITRAN molecular database—editions of 1991 and 1992,” J. Quant. Spectros. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosols extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, D. J. Hofmann, “Climate forcing by anthropogenic aerosols,” Science 256, 423–430 (1992).
[CrossRef]

1990 (4)

A. Ansmann, M. Riebesell, C. Weitkamp, “Measurements of atmospheric aerosol extinction profiles with a Raman lidar,” Opt. Lett. 15, 746–748 (1990).
[CrossRef] [PubMed]

J. Notholt, F. Raes, “Test of in situ measurements of atmospheric aerosols and trace gases by long path transmission spectroscopy,” J. Aerosol Sci. 21, 193–196 (1990).
[CrossRef]

G. D. Greenblatt, J. J. Orlando, J. B. Burkholder, A. R. Ravishankara, “Absorption measurements of oxygen between 330 and 1140 nm,” J. Geophys. Res. 49, 18,577–18,582 (1990).
[CrossRef]

A. Amoruso, M. Cacciani, A. di Sarra, G. Fiocco, “Absorption cross sections of ozone in the 590 to 610 region at T= 230 K and T= 299 K,” J. Geophys. Res. 95, 20,565–20,568 (1990).
[CrossRef]

1989 (1)

M. Cacciani, A. di Sarra, G. Fiocco, A. Amoruso, “Absolute determination of the absorption cross sections of ozone in the wavelength region 339–355 nm,” J. Geophys. Res. 94, 8485–8490 (1989).
[CrossRef]

1987 (1)

W. Schneider, G. K. Moortgat, G. S. Tyndall, J. P. Burrows, “Absorption cross-sections of NO2in the UV and visible region (200–700 nm) at 298 K,” J. Photochem. Photobiol. 40, 195–217 (1987).
[CrossRef]

1986 (1)

L. T. Molina, M. J. Molina, “Absolute absorption coefficient of ozone in the 185 to 350 nm wavelength range,” J. Geophys. Res. 91, 14,501–14,508 (1986).
[CrossRef]

1981 (2)

1979 (1)

U. Platt, D. Perner, H. Pätz, “Simultaneous measuremenof atmospheric CH2O, O3, and NO2by differential optical absorption,” J. Geophys. Res. D 84, 6329–6335 (1979).
[CrossRef]

1978 (2)

M. D. King, D. M. Byrne, B. M. Herman, J. A. Reagan, “Aerosol size distribution obtained by inversion of spectral optical depth measurements,” J. Atmos. Sci. 35, 2153–2167 (1978).
[CrossRef]

B. Y. H. Liu, D. Y. H. Pui, K. T. Whitby, D. B. Kittelson, Y. Kousaka, R. L. McKenzie, “The aerosol mobility chromatograph: a new detector for sulfuric acid aerosols,” Atmos. Environ. 12, 99–104 (1978).
[CrossRef]

1968 (1)

M. Griggs, “Absorption coefficient of ozone in the ultraviolet and visible regions,” J. Chem. Phys. 49, 857–859 (1968).
[CrossRef]

1962 (1)

R. W. Ditchburn, P. A. Young, “The absorption of molecular oxygen between 1850 and 2500 Å,” J. Atmos. Terr. Phys. 24, 127–139 (1962).
[CrossRef]

1961 (1)

A. Ångström, “Techniques of determining the turbidity of the atmosphere,” Tellus 13, 214–223 (1961).
[CrossRef]

1953 (2)

E. Vigroux, “Contribution à l’étude expérimentale de l’absorption de l’ozone,” Ann. Phys. 8, 709–762 (1953).

E. C. Y. Inn, Y. Tanaka, “Absorption coefficient of ozone in the ultraviolet and visible regions,” J. Opt. Soc. Am. 43, 870–873 (1953).
[CrossRef]

1924 (1)

H. Koschmieder, “Theorie der horizontalen Sichtweite,” Beitr. Phys. Atm. 12, 33–53 (1924).

Alekseeva, G.

U. Leiterer, A. Naebert, T. Naebert, G. Alekseeva, “A new star photometer developed for spectral aerosol optical thickness measurements in Lindenberg,” Beitr. Phys. Atmosph. 68, 133–141 (1995).

Althausen, D.

D. Müller, I. Mattis, A. Ansmann, B. Wehner, D. Althausen, O. Dubovik, “Closure study on optical and microphysical properties of an urban and Arctic haze air mass observed with Raman lidar and Sun photometer,” J. Geophys. Res. 109(D13), 13206, (2004).
[CrossRef]

D. Müller, K. Franke, A. Ansmann, D. Althausen, F. Wagner, “Indo-Asian pollution during INDOEX: microphysical particle properties and single-scattering albedo inferred from multiwavelength lidar observations,” J. Geophys. Res. 108(D19), 4600, (2003).
[CrossRef]

D. Müller, A. Ansmann, F. Wagner, K. Franke, D. Althausen, “European pollution outbreaks during ACE 2: microphysical particle properties and single-scattering albedo inferred from multiwavelength lidar observations,” J. Geophys. Res. 107(D15), 4248, (2002).
[CrossRef]

Amoruso, A.

A. Amoruso, M. Cacciani, A. di Sarra, G. Fiocco, “Absorption cross sections of ozone in the 590 to 610 region at T= 230 K and T= 299 K,” J. Geophys. Res. 95, 20,565–20,568 (1990).
[CrossRef]

M. Cacciani, A. di Sarra, G. Fiocco, A. Amoruso, “Absolute determination of the absorption cross sections of ozone in the wavelength region 339–355 nm,” J. Geophys. Res. 94, 8485–8490 (1989).
[CrossRef]

Anderson, T. L.

R. J. Charlson, T. L. Anderson, H. Rodhe, “Direct climate forcing by anthropogenic aerosols: quantifying the link between atmospheric sulfate and radiation,” Contrib. Atmos. Phys. 27, 79–94 (1999).

Ångström, A.

A. Ångström, “Techniques of determining the turbidity of the atmosphere,” Tellus 13, 214–223 (1961).
[CrossRef]

Ansmann, A.

D. Müller, I. Mattis, A. Ansmann, B. Wehner, D. Althausen, O. Dubovik, “Closure study on optical and microphysical properties of an urban and Arctic haze air mass observed with Raman lidar and Sun photometer,” J. Geophys. Res. 109(D13), 13206, (2004).
[CrossRef]

D. Müller, K. Franke, A. Ansmann, D. Althausen, F. Wagner, “Indo-Asian pollution during INDOEX: microphysical particle properties and single-scattering albedo inferred from multiwavelength lidar observations,” J. Geophys. Res. 108(D19), 4600, (2003).
[CrossRef]

D. Müller, A. Ansmann, F. Wagner, K. Franke, D. Althausen, “European pollution outbreaks during ACE 2: microphysical particle properties and single-scattering albedo inferred from multiwavelength lidar observations,” J. Geophys. Res. 107(D15), 4248, (2002).
[CrossRef]

D. Müller, U. Wandinger, A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: simulation,” Appl. Opt. 38, 2358–2368 (1999).
[CrossRef]

D. Müller, U. Wandinger, A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory,” Appl. Opt. 38, 2346–2357 (1999).
[CrossRef]

A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosols extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

A. Ansmann, M. Riebesell, C. Weitkamp, “Measurements of atmospheric aerosol extinction profiles with a Raman lidar,” Opt. Lett. 15, 746–748 (1990).
[CrossRef] [PubMed]

Axelsson, H.

H. Axelsson, B. Galle, K. Gustavsson, P. Ragnarsson, M. Rudin, “A transmitting/receiving telescope for DOAS-measurements using retroreflector technique,” in Optical Remote Sensing of the Atmosphere, Vol. 4 of OSA 1990 Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 641–644.

Bassini, A.

Bergin, M. H.

M. H. Bergin, S. E. Schwartz, R. N. Halthore, J. A. Ogren, D. L. Hlavka, “Comparison of aerosol optical depth inferred from surface measurements with that determined by sun photometry for cloud-free conditions at a continental U.S. site,” J. Geophys. Res. 105, 6807–6816 (2000).
[CrossRef]

Böckmann, C.

Bohren, C. F.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Buchholtz, A.

Burkholder, J. B.

G. D. Greenblatt, J. J. Orlando, J. B. Burkholder, A. R. Ravishankara, “Absorption measurements of oxygen between 330 and 1140 nm,” J. Geophys. Res. 49, 18,577–18,582 (1990).
[CrossRef]

Burrows, J. P.

W. Schneider, G. K. Moortgat, G. S. Tyndall, J. P. Burrows, “Absorption cross-sections of NO2in the UV and visible region (200–700 nm) at 298 K,” J. Photochem. Photobiol. 40, 195–217 (1987).
[CrossRef]

Byrne, D. M.

M. D. King, D. M. Byrne, B. M. Herman, J. A. Reagan, “Aerosol size distribution obtained by inversion of spectral optical depth measurements,” J. Atmos. Sci. 35, 2153–2167 (1978).
[CrossRef]

Cacciani, M.

A. Amoruso, M. Cacciani, A. di Sarra, G. Fiocco, “Absorption cross sections of ozone in the 590 to 610 region at T= 230 K and T= 299 K,” J. Geophys. Res. 95, 20,565–20,568 (1990).
[CrossRef]

M. Cacciani, A. di Sarra, G. Fiocco, A. Amoruso, “Absolute determination of the absorption cross sections of ozone in the wavelength region 339–355 nm,” J. Geophys. Res. 94, 8485–8490 (1989).
[CrossRef]

Carleer, M.

A. C. Vandaele, P. C. Simon, J. M. Guilmot, M. Carleer, R. Colin, “SO2absorption cross section measurements in the UV using a Fourier transform spectrometer,” J. Geophys. Res. 99, 25,599–25,605 (1994).
[CrossRef]

Cess, R. D.

R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, D. J. Hofmann, “Climate forcing by anthropogenic aerosols,” Science 256, 423–430 (1992).
[CrossRef]

Charlson, R. J.

R. J. Charlson, T. L. Anderson, H. Rodhe, “Direct climate forcing by anthropogenic aerosols: quantifying the link between atmospheric sulfate and radiation,” Contrib. Atmos. Phys. 27, 79–94 (1999).

J. Heintzenberg, R. J. Charlson, A. D. Clarke, C. Liousse, C. V. Ramaswamy, K. P. Shine, M. Wendisch, “Measurements and modelling of aerosol single-scattering albedo: progress, problems and prospects,” Contrib. Atmos. Phys. 70, 249–264 (1997).

R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, D. J. Hofmann, “Climate forcing by anthropogenic aerosols,” Science 256, 423–430 (1992).
[CrossRef]

Clarke, A. D.

J. Heintzenberg, R. J. Charlson, A. D. Clarke, C. Liousse, C. V. Ramaswamy, K. P. Shine, M. Wendisch, “Measurements and modelling of aerosol single-scattering albedo: progress, problems and prospects,” Contrib. Atmos. Phys. 70, 249–264 (1997).

Coakley, J. A.

R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, D. J. Hofmann, “Climate forcing by anthropogenic aerosols,” Science 256, 423–430 (1992).
[CrossRef]

Colin, R.

A. C. Vandaele, P. C. Simon, J. M. Guilmot, M. Carleer, R. Colin, “SO2absorption cross section measurements in the UV using a Fourier transform spectrometer,” J. Geophys. Res. 99, 25,599–25,605 (1994).
[CrossRef]

Delene, D. J.

D. J. Delene, J. A. Ogren, “Variability of aerosol optical properties at four North American surface monitoring sites,” J. Atmos. Sci. 59, 1136–1150 (2002).

di Sarra, A.

A. Amoruso, M. Cacciani, A. di Sarra, G. Fiocco, “Absorption cross sections of ozone in the 590 to 610 region at T= 230 K and T= 299 K,” J. Geophys. Res. 95, 20,565–20,568 (1990).
[CrossRef]

M. Cacciani, A. di Sarra, G. Fiocco, A. Amoruso, “Absolute determination of the absorption cross sections of ozone in the wavelength region 339–355 nm,” J. Geophys. Res. 94, 8485–8490 (1989).
[CrossRef]

Ditchburn, R. W.

R. W. Ditchburn, P. A. Young, “The absorption of molecular oxygen between 1850 and 2500 Å,” J. Atmos. Terr. Phys. 24, 127–139 (1962).
[CrossRef]

Dubois, R.

H. Flentje, R. Dubois, J. Heintzenberg, H.-J. Karbach, “Retrieval of aerosol properties from boundary layer extinction measurements with a DOAS system,” Geophys. Res. Lett. 24, 2019–2022 (1997).
[CrossRef]

T. Müller, D. Müller, R. Dubois, “Measurements of optical particle properties at ambient conditions using a DOAS-extinction telescope. 2. Validation study,” submitted to Appl. Opt.

Dubovik, O.

D. Müller, I. Mattis, A. Ansmann, B. Wehner, D. Althausen, O. Dubovik, “Closure study on optical and microphysical properties of an urban and Arctic haze air mass observed with Raman lidar and Sun photometer,” J. Geophys. Res. 109(D13), 13206, (2004).
[CrossRef]

O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590–608 (2002).
[CrossRef]

O. Dubovik, M. D. King, “A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements,” J. Geophys. Res. D105(D16), 20,673–20,696 (2000).
[CrossRef]

Eberhard, W.

M. Pahlow, D. Müller, G. Feingold, W. Eberhard, R. Steward, “Retrieval of aerosol properties from combined multiwavelength lidar and sunphotometer data: simulations,” Appl. Opt. (to be published).

Eck, T. F.

O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590–608 (2002).
[CrossRef]

Esmond, J. R.

D. E. Freeman, K. Yoshino, J. R. Esmond, W. H. Parkinson, “High resolution cross section measurements of SO2at 213 K in the wavelength region 172–240 nm,” Planet. Space Sci. 32, 1125–1134 (1994).
[CrossRef]

Feingold, G.

M. Pahlow, D. Müller, G. Feingold, W. Eberhard, R. Steward, “Retrieval of aerosol properties from combined multiwavelength lidar and sunphotometer data: simulations,” Appl. Opt. (to be published).

Ferri, F.

Fiocco, G.

A. Amoruso, M. Cacciani, A. di Sarra, G. Fiocco, “Absorption cross sections of ozone in the 590 to 610 region at T= 230 K and T= 299 K,” J. Geophys. Res. 95, 20,565–20,568 (1990).
[CrossRef]

M. Cacciani, A. di Sarra, G. Fiocco, A. Amoruso, “Absolute determination of the absorption cross sections of ozone in the wavelength region 339–355 nm,” J. Geophys. Res. 94, 8485–8490 (1989).
[CrossRef]

Flentje, H.

H. Flentje, R. Dubois, J. Heintzenberg, H.-J. Karbach, “Retrieval of aerosol properties from boundary layer extinction measurements with a DOAS system,” Geophys. Res. Lett. 24, 2019–2022 (1997).
[CrossRef]

Franke, K.

I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, K. Franke, D. N. Whiteman, “Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution,” Appl. Opt. 43, 1180–1195 (2004).
[CrossRef] [PubMed]

D. Müller, K. Franke, A. Ansmann, D. Althausen, F. Wagner, “Indo-Asian pollution during INDOEX: microphysical particle properties and single-scattering albedo inferred from multiwavelength lidar observations,” J. Geophys. Res. 108(D19), 4600, (2003).
[CrossRef]

D. Müller, A. Ansmann, F. Wagner, K. Franke, D. Althausen, “European pollution outbreaks during ACE 2: microphysical particle properties and single-scattering albedo inferred from multiwavelength lidar observations,” J. Geophys. Res. 107(D15), 4248, (2002).
[CrossRef]

Freeman, D. E.

D. E. Freeman, K. Yoshino, J. R. Esmond, W. H. Parkinson, “High resolution cross section measurements of SO2at 213 K in the wavelength region 172–240 nm,” Planet. Space Sci. 32, 1125–1134 (1994).
[CrossRef]

Galle, B.

H. Axelsson, B. Galle, K. Gustavsson, P. Ragnarsson, M. Rudin, “A transmitting/receiving telescope for DOAS-measurements using retroreflector technique,” in Optical Remote Sensing of the Atmosphere, Vol. 4 of OSA 1990 Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 641–644.

Greenblatt, G. D.

G. D. Greenblatt, J. J. Orlando, J. B. Burkholder, A. R. Ravishankara, “Absorption measurements of oxygen between 330 and 1140 nm,” J. Geophys. Res. 49, 18,577–18,582 (1990).
[CrossRef]

Griaznov, V.

Griggs, M.

M. Griggs, “Absorption coefficient of ozone in the ultraviolet and visible regions,” J. Chem. Phys. 49, 857–859 (1968).
[CrossRef]

Guilmot, J. M.

A. C. Vandaele, P. C. Simon, J. M. Guilmot, M. Carleer, R. Colin, “SO2absorption cross section measurements in the UV using a Fourier transform spectrometer,” J. Geophys. Res. 99, 25,599–25,605 (1994).
[CrossRef]

Gustavsson, K.

H. Axelsson, B. Galle, K. Gustavsson, P. Ragnarsson, M. Rudin, “A transmitting/receiving telescope for DOAS-measurements using retroreflector technique,” in Optical Remote Sensing of the Atmosphere, Vol. 4 of OSA 1990 Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 641–644.

Hales, J. M.

R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, D. J. Hofmann, “Climate forcing by anthropogenic aerosols,” Science 256, 423–430 (1992).
[CrossRef]

Halthore, R. N.

M. H. Bergin, S. E. Schwartz, R. N. Halthore, J. A. Ogren, D. L. Hlavka, “Comparison of aerosol optical depth inferred from surface measurements with that determined by sun photometry for cloud-free conditions at a continental U.S. site,” J. Geophys. Res. 105, 6807–6816 (2000).
[CrossRef]

Hansen, J. E.

R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, D. J. Hofmann, “Climate forcing by anthropogenic aerosols,” Science 256, 423–430 (1992).
[CrossRef]

Heintzenberg, J.

J. Heintzenberg, R. J. Charlson, A. D. Clarke, C. Liousse, C. V. Ramaswamy, K. P. Shine, M. Wendisch, “Measurements and modelling of aerosol single-scattering albedo: progress, problems and prospects,” Contrib. Atmos. Phys. 70, 249–264 (1997).

H. Flentje, R. Dubois, J. Heintzenberg, H.-J. Karbach, “Retrieval of aerosol properties from boundary layer extinction measurements with a DOAS system,” Geophys. Res. Lett. 24, 2019–2022 (1997).
[CrossRef]

J. Heintzenberg, H. Müller, H. Quenzel, E. Thomalla, “Information content of optical data with respect to aerosol properties: numerical studies with a randomized minimization-search-technique inversion algorithm,” Appl. Opt. 20, 1308–1315 (1981).
[CrossRef] [PubMed]

Herman, B. M.

M. D. King, D. M. Byrne, B. M. Herman, J. A. Reagan, “Aerosol size distribution obtained by inversion of spectral optical depth measurements,” J. Atmos. Sci. 35, 2153–2167 (1978).
[CrossRef]

Hinds, W. C.

W. C. Hinds, Aerosol Technology (Wiley, New York, 1982).

Hlavka, D. L.

M. H. Bergin, S. E. Schwartz, R. N. Halthore, J. A. Ogren, D. L. Hlavka, “Comparison of aerosol optical depth inferred from surface measurements with that determined by sun photometry for cloud-free conditions at a continental U.S. site,” J. Geophys. Res. 105, 6807–6816 (2000).
[CrossRef]

Hofmann, D. J.

R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, D. J. Hofmann, “Climate forcing by anthropogenic aerosols,” Science 256, 423–430 (1992).
[CrossRef]

Holben, B.

O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590–608 (2002).
[CrossRef]

Horvath, H.

H. Horvath, “The University of Vienna telephotometer,” Atmos. Environ. 15, 2537–2546 (1981).
[CrossRef]

Huffman, D. R.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Inn, E. C. Y.

Karbach, H.-J.

H. Flentje, R. Dubois, J. Heintzenberg, H.-J. Karbach, “Retrieval of aerosol properties from boundary layer extinction measurements with a DOAS system,” Geophys. Res. Lett. 24, 2019–2022 (1997).
[CrossRef]

Kaufman, Y. J.

O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590–608 (2002).
[CrossRef]

Kim, Y. J.

J. Lee, Y. J. Kim, “Extinction measurements using a differential optical absorption spectrometer,” J. Korean Phys. Soc. 42, 732–724 (2003).

King, M. D.

O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590–608 (2002).
[CrossRef]

M. D. King, D. M. Byrne, B. M. Herman, J. A. Reagan, “Aerosol size distribution obtained by inversion of spectral optical depth measurements,” J. Atmos. Sci. 35, 2153–2167 (1978).
[CrossRef]

O. Dubovik, M. D. King, “A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements,” J. Geophys. Res. D105(D16), 20,673–20,696 (2000).
[CrossRef]

Kittelson, D. B.

B. Y. H. Liu, D. Y. H. Pui, K. T. Whitby, D. B. Kittelson, Y. Kousaka, R. L. McKenzie, “The aerosol mobility chromatograph: a new detector for sulfuric acid aerosols,” Atmos. Environ. 12, 99–104 (1978).
[CrossRef]

Kolgotin, A.

Koschmieder, H.

H. Koschmieder, “Theorie der horizontalen Sichtweite,” Beitr. Phys. Atm. 12, 33–53 (1924).

Kousaka, Y.

B. Y. H. Liu, D. Y. H. Pui, K. T. Whitby, D. B. Kittelson, Y. Kousaka, R. L. McKenzie, “The aerosol mobility chromatograph: a new detector for sulfuric acid aerosols,” Atmos. Environ. 12, 99–104 (1978).
[CrossRef]

Lahmann, W.

A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosols extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

Lee, J.

J. Lee, Y. J. Kim, “Extinction measurements using a differential optical absorption spectrometer,” J. Korean Phys. Soc. 42, 732–724 (2003).

Leiterer, U.

U. Leiterer, A. Naebert, T. Naebert, G. Alekseeva, “A new star photometer developed for spectral aerosol optical thickness measurements in Lindenberg,” Beitr. Phys. Atmosph. 68, 133–141 (1995).

Liousse, C.

J. Heintzenberg, R. J. Charlson, A. D. Clarke, C. Liousse, C. V. Ramaswamy, K. P. Shine, M. Wendisch, “Measurements and modelling of aerosol single-scattering albedo: progress, problems and prospects,” Contrib. Atmos. Phys. 70, 249–264 (1997).

Liu, B. Y. H.

B. Y. H. Liu, D. Y. H. Pui, K. T. Whitby, D. B. Kittelson, Y. Kousaka, R. L. McKenzie, “The aerosol mobility chromatograph: a new detector for sulfuric acid aerosols,” Atmos. Environ. 12, 99–104 (1978).
[CrossRef]

Mattis, I.

D. Müller, I. Mattis, A. Ansmann, B. Wehner, D. Althausen, O. Dubovik, “Closure study on optical and microphysical properties of an urban and Arctic haze air mass observed with Raman lidar and Sun photometer,” J. Geophys. Res. 109(D13), 13206, (2004).
[CrossRef]

McKenzie, R. L.

B. Y. H. Liu, D. Y. H. Pui, K. T. Whitby, D. B. Kittelson, Y. Kousaka, R. L. McKenzie, “The aerosol mobility chromatograph: a new detector for sulfuric acid aerosols,” Atmos. Environ. 12, 99–104 (1978).
[CrossRef]

Michaelis, W.

A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosols extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

Molina, L. T.

L. T. Molina, M. J. Molina, “Absolute absorption coefficient of ozone in the 185 to 350 nm wavelength range,” J. Geophys. Res. 91, 14,501–14,508 (1986).
[CrossRef]

Molina, M. J.

L. T. Molina, M. J. Molina, “Absolute absorption coefficient of ozone in the 185 to 350 nm wavelength range,” J. Geophys. Res. 91, 14,501–14,508 (1986).
[CrossRef]

Moortgat, G. K.

W. Schneider, G. K. Moortgat, G. S. Tyndall, J. P. Burrows, “Absorption cross-sections of NO2in the UV and visible region (200–700 nm) at 298 K,” J. Photochem. Photobiol. 40, 195–217 (1987).
[CrossRef]

Müller, D.

I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, K. Franke, D. N. Whiteman, “Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution,” Appl. Opt. 43, 1180–1195 (2004).
[CrossRef] [PubMed]

D. Müller, I. Mattis, A. Ansmann, B. Wehner, D. Althausen, O. Dubovik, “Closure study on optical and microphysical properties of an urban and Arctic haze air mass observed with Raman lidar and Sun photometer,” J. Geophys. Res. 109(D13), 13206, (2004).
[CrossRef]

D. Müller, K. Franke, A. Ansmann, D. Althausen, F. Wagner, “Indo-Asian pollution during INDOEX: microphysical particle properties and single-scattering albedo inferred from multiwavelength lidar observations,” J. Geophys. Res. 108(D19), 4600, (2003).
[CrossRef]

I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, U. Wandinger, D. N. Whiteman, “Inversion with regularization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding,” Appl. Opt. 41, 3685–3699 (2002).
[CrossRef] [PubMed]

D. Müller, A. Ansmann, F. Wagner, K. Franke, D. Althausen, “European pollution outbreaks during ACE 2: microphysical particle properties and single-scattering albedo inferred from multiwavelength lidar observations,” J. Geophys. Res. 107(D15), 4248, (2002).
[CrossRef]

D. Müller, U. Wandinger, A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: simulation,” Appl. Opt. 38, 2358–2368 (1999).
[CrossRef]

D. Müller, U. Wandinger, A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory,” Appl. Opt. 38, 2346–2357 (1999).
[CrossRef]

T. Müller, D. Müller, R. Dubois, “Measurements of optical particle properties at ambient conditions using a DOAS-extinction telescope. 2. Validation study,” submitted to Appl. Opt.

M. Pahlow, D. Müller, G. Feingold, W. Eberhard, R. Steward, “Retrieval of aerosol properties from combined multiwavelength lidar and sunphotometer data: simulations,” Appl. Opt. (to be published).

Müller, H.

Müller, T.

T. Müller, D. Müller, R. Dubois, “Measurements of optical particle properties at ambient conditions using a DOAS-extinction telescope. 2. Validation study,” submitted to Appl. Opt.

Naebert, A.

U. Leiterer, A. Naebert, T. Naebert, G. Alekseeva, “A new star photometer developed for spectral aerosol optical thickness measurements in Lindenberg,” Beitr. Phys. Atmosph. 68, 133–141 (1995).

Naebert, T.

U. Leiterer, A. Naebert, T. Naebert, G. Alekseeva, “A new star photometer developed for spectral aerosol optical thickness measurements in Lindenberg,” Beitr. Phys. Atmosph. 68, 133–141 (1995).

Notholt, J.

J. Notholt, F. Raes, “Test of in situ measurements of atmospheric aerosols and trace gases by long path transmission spectroscopy,” J. Aerosol Sci. 21, 193–196 (1990).
[CrossRef]

Ogren, J. A.

D. J. Delene, J. A. Ogren, “Variability of aerosol optical properties at four North American surface monitoring sites,” J. Atmos. Sci. 59, 1136–1150 (2002).

M. H. Bergin, S. E. Schwartz, R. N. Halthore, J. A. Ogren, D. L. Hlavka, “Comparison of aerosol optical depth inferred from surface measurements with that determined by sun photometry for cloud-free conditions at a continental U.S. site,” J. Geophys. Res. 105, 6807–6816 (2000).
[CrossRef]

Orlando, J. J.

G. D. Greenblatt, J. J. Orlando, J. B. Burkholder, A. R. Ravishankara, “Absorption measurements of oxygen between 330 and 1140 nm,” J. Geophys. Res. 49, 18,577–18,582 (1990).
[CrossRef]

Paganini, E.

Pahlow, M.

M. Pahlow, D. Müller, G. Feingold, W. Eberhard, R. Steward, “Retrieval of aerosol properties from combined multiwavelength lidar and sunphotometer data: simulations,” Appl. Opt. (to be published).

Parkinson, W. H.

D. E. Freeman, K. Yoshino, J. R. Esmond, W. H. Parkinson, “High resolution cross section measurements of SO2at 213 K in the wavelength region 172–240 nm,” Planet. Space Sci. 32, 1125–1134 (1994).
[CrossRef]

Pätz, H.

U. Platt, D. Perner, H. Pätz, “Simultaneous measuremenof atmospheric CH2O, O3, and NO2by differential optical absorption,” J. Geophys. Res. D 84, 6329–6335 (1979).
[CrossRef]

Perner, D.

U. Platt, D. Perner, H. Pätz, “Simultaneous measuremenof atmospheric CH2O, O3, and NO2by differential optical absorption,” J. Geophys. Res. D 84, 6329–6335 (1979).
[CrossRef]

Platt, U.

U. Platt, D. Perner, H. Pätz, “Simultaneous measuremenof atmospheric CH2O, O3, and NO2by differential optical absorption,” J. Geophys. Res. D 84, 6329–6335 (1979).
[CrossRef]

Pui, D. Y. H.

B. Y. H. Liu, D. Y. H. Pui, K. T. Whitby, D. B. Kittelson, Y. Kousaka, R. L. McKenzie, “The aerosol mobility chromatograph: a new detector for sulfuric acid aerosols,” Atmos. Environ. 12, 99–104 (1978).
[CrossRef]

Quenzel, H.

Raes, F.

J. Notholt, F. Raes, “Test of in situ measurements of atmospheric aerosols and trace gases by long path transmission spectroscopy,” J. Aerosol Sci. 21, 193–196 (1990).
[CrossRef]

Ragnarsson, P.

H. Axelsson, B. Galle, K. Gustavsson, P. Ragnarsson, M. Rudin, “A transmitting/receiving telescope for DOAS-measurements using retroreflector technique,” in Optical Remote Sensing of the Atmosphere, Vol. 4 of OSA 1990 Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 641–644.

Ramaswamy, C. V.

J. Heintzenberg, R. J. Charlson, A. D. Clarke, C. Liousse, C. V. Ramaswamy, K. P. Shine, M. Wendisch, “Measurements and modelling of aerosol single-scattering albedo: progress, problems and prospects,” Contrib. Atmos. Phys. 70, 249–264 (1997).

Ravishankara, A. R.

G. D. Greenblatt, J. J. Orlando, J. B. Burkholder, A. R. Ravishankara, “Absorption measurements of oxygen between 330 and 1140 nm,” J. Geophys. Res. 49, 18,577–18,582 (1990).
[CrossRef]

Reagan, J. A.

M. D. King, D. M. Byrne, B. M. Herman, J. A. Reagan, “Aerosol size distribution obtained by inversion of spectral optical depth measurements,” J. Atmos. Sci. 35, 2153–2167 (1978).
[CrossRef]

Riebesell, M.

A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosols extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

A. Ansmann, M. Riebesell, C. Weitkamp, “Measurements of atmospheric aerosol extinction profiles with a Raman lidar,” Opt. Lett. 15, 746–748 (1990).
[CrossRef] [PubMed]

Rodhe, H.

R. J. Charlson, T. L. Anderson, H. Rodhe, “Direct climate forcing by anthropogenic aerosols: quantifying the link between atmospheric sulfate and radiation,” Contrib. Atmos. Phys. 27, 79–94 (1999).

Rothman, L. S.

L. S. Rothman, “The HITRAN molecular database—editions of 1991 and 1992,” J. Quant. Spectros. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Rudin, M.

H. Axelsson, B. Galle, K. Gustavsson, P. Ragnarsson, M. Rudin, “A transmitting/receiving telescope for DOAS-measurements using retroreflector technique,” in Optical Remote Sensing of the Atmosphere, Vol. 4 of OSA 1990 Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 641–644.

Schneider, W.

W. Schneider, G. K. Moortgat, G. S. Tyndall, J. P. Burrows, “Absorption cross-sections of NO2in the UV and visible region (200–700 nm) at 298 K,” J. Photochem. Photobiol. 40, 195–217 (1987).
[CrossRef]

Schwartz, S. E.

M. H. Bergin, S. E. Schwartz, R. N. Halthore, J. A. Ogren, D. L. Hlavka, “Comparison of aerosol optical depth inferred from surface measurements with that determined by sun photometry for cloud-free conditions at a continental U.S. site,” J. Geophys. Res. 105, 6807–6816 (2000).
[CrossRef]

R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, D. J. Hofmann, “Climate forcing by anthropogenic aerosols,” Science 256, 423–430 (1992).
[CrossRef]

Shine, K. P.

J. Heintzenberg, R. J. Charlson, A. D. Clarke, C. Liousse, C. V. Ramaswamy, K. P. Shine, M. Wendisch, “Measurements and modelling of aerosol single-scattering albedo: progress, problems and prospects,” Contrib. Atmos. Phys. 70, 249–264 (1997).

Simon, P. C.

A. C. Vandaele, P. C. Simon, J. M. Guilmot, M. Carleer, R. Colin, “SO2absorption cross section measurements in the UV using a Fourier transform spectrometer,” J. Geophys. Res. 99, 25,599–25,605 (1994).
[CrossRef]

Slutsker, I.

O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590–608 (2002).
[CrossRef]

Smirnov, A.

O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590–608 (2002).
[CrossRef]

Steward, R.

M. Pahlow, D. Müller, G. Feingold, W. Eberhard, R. Steward, “Retrieval of aerosol properties from combined multiwavelength lidar and sunphotometer data: simulations,” Appl. Opt. (to be published).

Tanaka, Y.

Tanré, D.

O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590–608 (2002).
[CrossRef]

Thomalla, E.

Trespidi, F.

Tyndall, G. S.

W. Schneider, G. K. Moortgat, G. S. Tyndall, J. P. Burrows, “Absorption cross-sections of NO2in the UV and visible region (200–700 nm) at 298 K,” J. Photochem. Photobiol. 40, 195–217 (1987).
[CrossRef]

Vandaele, A. C.

A. C. Vandaele, P. C. Simon, J. M. Guilmot, M. Carleer, R. Colin, “SO2absorption cross section measurements in the UV using a Fourier transform spectrometer,” J. Geophys. Res. 99, 25,599–25,605 (1994).
[CrossRef]

Veselovskii, I.

Vigroux, E.

E. Vigroux, “Contribution à l’étude expérimentale de l’absorption de l’ozone,” Ann. Phys. 8, 709–762 (1953).

Voss, E.

A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosols extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

Wagner, F.

D. Müller, K. Franke, A. Ansmann, D. Althausen, F. Wagner, “Indo-Asian pollution during INDOEX: microphysical particle properties and single-scattering albedo inferred from multiwavelength lidar observations,” J. Geophys. Res. 108(D19), 4600, (2003).
[CrossRef]

D. Müller, A. Ansmann, F. Wagner, K. Franke, D. Althausen, “European pollution outbreaks during ACE 2: microphysical particle properties and single-scattering albedo inferred from multiwavelength lidar observations,” J. Geophys. Res. 107(D15), 4248, (2002).
[CrossRef]

Wandinger, U.

Wehner, B.

D. Müller, I. Mattis, A. Ansmann, B. Wehner, D. Althausen, O. Dubovik, “Closure study on optical and microphysical properties of an urban and Arctic haze air mass observed with Raman lidar and Sun photometer,” J. Geophys. Res. 109(D13), 13206, (2004).
[CrossRef]

Weitkamp, C.

A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosols extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

A. Ansmann, M. Riebesell, C. Weitkamp, “Measurements of atmospheric aerosol extinction profiles with a Raman lidar,” Opt. Lett. 15, 746–748 (1990).
[CrossRef] [PubMed]

Wendisch, M.

J. Heintzenberg, R. J. Charlson, A. D. Clarke, C. Liousse, C. V. Ramaswamy, K. P. Shine, M. Wendisch, “Measurements and modelling of aerosol single-scattering albedo: progress, problems and prospects,” Contrib. Atmos. Phys. 70, 249–264 (1997).

Whitby, K. T.

B. Y. H. Liu, D. Y. H. Pui, K. T. Whitby, D. B. Kittelson, Y. Kousaka, R. L. McKenzie, “The aerosol mobility chromatograph: a new detector for sulfuric acid aerosols,” Atmos. Environ. 12, 99–104 (1978).
[CrossRef]

Whiteman, D. N.

Yoshino, K.

D. E. Freeman, K. Yoshino, J. R. Esmond, W. H. Parkinson, “High resolution cross section measurements of SO2at 213 K in the wavelength region 172–240 nm,” Planet. Space Sci. 32, 1125–1134 (1994).
[CrossRef]

Young, P. A.

R. W. Ditchburn, P. A. Young, “The absorption of molecular oxygen between 1850 and 2500 Å,” J. Atmos. Terr. Phys. 24, 127–139 (1962).
[CrossRef]

Ann. Phys. (1)

E. Vigroux, “Contribution à l’étude expérimentale de l’absorption de l’ozone,” Ann. Phys. 8, 709–762 (1953).

Appl. Opt. (9)

F. Ferri, A. Bassini, E. Paganini, “Modified version of the Chahine algorithm to invert spectral extinction data for particle sizing,” Appl. Opt. 34, 5829–5839 (1995).
[CrossRef] [PubMed]

J. Heintzenberg, H. Müller, H. Quenzel, E. Thomalla, “Information content of optical data with respect to aerosol properties: numerical studies with a randomized minimization-search-technique inversion algorithm,” Appl. Opt. 20, 1308–1315 (1981).
[CrossRef] [PubMed]

D. Müller, U. Wandinger, A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory,” Appl. Opt. 38, 2346–2357 (1999).
[CrossRef]

D. Müller, U. Wandinger, A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: simulation,” Appl. Opt. 38, 2358–2368 (1999).
[CrossRef]

E. Paganini, F. Trespidi, F. Ferri, “Instrument for long-path spectral extinction measurements in air: application to sizing of airborne particles,” Appl. Opt. 40, 4261–4274 (2001).
[CrossRef]

A. Buchholtz, “Rayleigh-scattering calculations for the terrestrial atmosphere,” Appl. Opt. 34, 2765–2773 (1995).
[CrossRef]

C. Böckmann, “Hybrid regularization method for ill-posed inversion of multiwavelength lidar data in the retrieval of aerosol size distributions,” Appl. Opt. 40, 1329–1342 (2001).
[CrossRef]

I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, U. Wandinger, D. N. Whiteman, “Inversion with regularization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding,” Appl. Opt. 41, 3685–3699 (2002).
[CrossRef] [PubMed]

I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, K. Franke, D. N. Whiteman, “Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution,” Appl. Opt. 43, 1180–1195 (2004).
[CrossRef] [PubMed]

Appl. Phys. B (1)

A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosols extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

Atmos. Environ. (2)

B. Y. H. Liu, D. Y. H. Pui, K. T. Whitby, D. B. Kittelson, Y. Kousaka, R. L. McKenzie, “The aerosol mobility chromatograph: a new detector for sulfuric acid aerosols,” Atmos. Environ. 12, 99–104 (1978).
[CrossRef]

H. Horvath, “The University of Vienna telephotometer,” Atmos. Environ. 15, 2537–2546 (1981).
[CrossRef]

Beitr. Phys. Atm. (1)

H. Koschmieder, “Theorie der horizontalen Sichtweite,” Beitr. Phys. Atm. 12, 33–53 (1924).

Beitr. Phys. Atmosph. (1)

U. Leiterer, A. Naebert, T. Naebert, G. Alekseeva, “A new star photometer developed for spectral aerosol optical thickness measurements in Lindenberg,” Beitr. Phys. Atmosph. 68, 133–141 (1995).

Contrib. Atmos. Phys. (2)

J. Heintzenberg, R. J. Charlson, A. D. Clarke, C. Liousse, C. V. Ramaswamy, K. P. Shine, M. Wendisch, “Measurements and modelling of aerosol single-scattering albedo: progress, problems and prospects,” Contrib. Atmos. Phys. 70, 249–264 (1997).

R. J. Charlson, T. L. Anderson, H. Rodhe, “Direct climate forcing by anthropogenic aerosols: quantifying the link between atmospheric sulfate and radiation,” Contrib. Atmos. Phys. 27, 79–94 (1999).

Geophys. Res. Lett. (1)

H. Flentje, R. Dubois, J. Heintzenberg, H.-J. Karbach, “Retrieval of aerosol properties from boundary layer extinction measurements with a DOAS system,” Geophys. Res. Lett. 24, 2019–2022 (1997).
[CrossRef]

J. Aerosol Sci. (1)

J. Notholt, F. Raes, “Test of in situ measurements of atmospheric aerosols and trace gases by long path transmission spectroscopy,” J. Aerosol Sci. 21, 193–196 (1990).
[CrossRef]

J. Atmos. Sci. (3)

M. D. King, D. M. Byrne, B. M. Herman, J. A. Reagan, “Aerosol size distribution obtained by inversion of spectral optical depth measurements,” J. Atmos. Sci. 35, 2153–2167 (1978).
[CrossRef]

D. J. Delene, J. A. Ogren, “Variability of aerosol optical properties at four North American surface monitoring sites,” J. Atmos. Sci. 59, 1136–1150 (2002).

O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590–608 (2002).
[CrossRef]

J. Atmos. Terr. Phys. (1)

R. W. Ditchburn, P. A. Young, “The absorption of molecular oxygen between 1850 and 2500 Å,” J. Atmos. Terr. Phys. 24, 127–139 (1962).
[CrossRef]

J. Chem. Phys. (1)

M. Griggs, “Absorption coefficient of ozone in the ultraviolet and visible regions,” J. Chem. Phys. 49, 857–859 (1968).
[CrossRef]

J. Geophys. Res. (9)

L. T. Molina, M. J. Molina, “Absolute absorption coefficient of ozone in the 185 to 350 nm wavelength range,” J. Geophys. Res. 91, 14,501–14,508 (1986).
[CrossRef]

M. Cacciani, A. di Sarra, G. Fiocco, A. Amoruso, “Absolute determination of the absorption cross sections of ozone in the wavelength region 339–355 nm,” J. Geophys. Res. 94, 8485–8490 (1989).
[CrossRef]

A. Amoruso, M. Cacciani, A. di Sarra, G. Fiocco, “Absorption cross sections of ozone in the 590 to 610 region at T= 230 K and T= 299 K,” J. Geophys. Res. 95, 20,565–20,568 (1990).
[CrossRef]

A. C. Vandaele, P. C. Simon, J. M. Guilmot, M. Carleer, R. Colin, “SO2absorption cross section measurements in the UV using a Fourier transform spectrometer,” J. Geophys. Res. 99, 25,599–25,605 (1994).
[CrossRef]

G. D. Greenblatt, J. J. Orlando, J. B. Burkholder, A. R. Ravishankara, “Absorption measurements of oxygen between 330 and 1140 nm,” J. Geophys. Res. 49, 18,577–18,582 (1990).
[CrossRef]

M. H. Bergin, S. E. Schwartz, R. N. Halthore, J. A. Ogren, D. L. Hlavka, “Comparison of aerosol optical depth inferred from surface measurements with that determined by sun photometry for cloud-free conditions at a continental U.S. site,” J. Geophys. Res. 105, 6807–6816 (2000).
[CrossRef]

D. Müller, A. Ansmann, F. Wagner, K. Franke, D. Althausen, “European pollution outbreaks during ACE 2: microphysical particle properties and single-scattering albedo inferred from multiwavelength lidar observations,” J. Geophys. Res. 107(D15), 4248, (2002).
[CrossRef]

D. Müller, K. Franke, A. Ansmann, D. Althausen, F. Wagner, “Indo-Asian pollution during INDOEX: microphysical particle properties and single-scattering albedo inferred from multiwavelength lidar observations,” J. Geophys. Res. 108(D19), 4600, (2003).
[CrossRef]

D. Müller, I. Mattis, A. Ansmann, B. Wehner, D. Althausen, O. Dubovik, “Closure study on optical and microphysical properties of an urban and Arctic haze air mass observed with Raman lidar and Sun photometer,” J. Geophys. Res. 109(D13), 13206, (2004).
[CrossRef]

J. Geophys. Res. D (1)

U. Platt, D. Perner, H. Pätz, “Simultaneous measuremenof atmospheric CH2O, O3, and NO2by differential optical absorption,” J. Geophys. Res. D 84, 6329–6335 (1979).
[CrossRef]

J. Korean Phys. Soc. (1)

J. Lee, Y. J. Kim, “Extinction measurements using a differential optical absorption spectrometer,” J. Korean Phys. Soc. 42, 732–724 (2003).

J. Opt. Soc. Am. (1)

J. Photochem. Photobiol. (1)

W. Schneider, G. K. Moortgat, G. S. Tyndall, J. P. Burrows, “Absorption cross-sections of NO2in the UV and visible region (200–700 nm) at 298 K,” J. Photochem. Photobiol. 40, 195–217 (1987).
[CrossRef]

J. Quant. Spectros. Radiat. Transfer (1)

L. S. Rothman, “The HITRAN molecular database—editions of 1991 and 1992,” J. Quant. Spectros. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Opt. Lett. (1)

Planet. Space Sci. (1)

D. E. Freeman, K. Yoshino, J. R. Esmond, W. H. Parkinson, “High resolution cross section measurements of SO2at 213 K in the wavelength region 172–240 nm,” Planet. Space Sci. 32, 1125–1134 (1994).
[CrossRef]

Science (1)

R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, D. J. Hofmann, “Climate forcing by anthropogenic aerosols,” Science 256, 423–430 (1992).
[CrossRef]

Tellus (1)

A. Ångström, “Techniques of determining the turbidity of the atmosphere,” Tellus 13, 214–223 (1961).
[CrossRef]

Other (6)

T. Müller, D. Müller, R. Dubois, “Measurements of optical particle properties at ambient conditions using a DOAS-extinction telescope. 2. Validation study,” submitted to Appl. Opt.

W. C. Hinds, Aerosol Technology (Wiley, New York, 1982).

M. Pahlow, D. Müller, G. Feingold, W. Eberhard, R. Steward, “Retrieval of aerosol properties from combined multiwavelength lidar and sunphotometer data: simulations,” Appl. Opt. (to be published).

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

H. Axelsson, B. Galle, K. Gustavsson, P. Ragnarsson, M. Rudin, “A transmitting/receiving telescope for DOAS-measurements using retroreflector technique,” in Optical Remote Sensing of the Atmosphere, Vol. 4 of OSA 1990 Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 641–644.

O. Dubovik, M. D. King, “A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements,” J. Geophys. Res. D105(D16), 20,673–20,696 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Sketch of the system used for monitoring tropospheric extinction along a light path: PD, large-area photodiode; OB, movable optical bench; OF, optical fiber.

Fig. 2
Fig. 2

Spectral particle extinction coefficient bp,ext(λ) and the absorption coefficients of the various gas species bg,abs(λ) in the wavelength range 200–1200 nm. The concentrations of the gases were 20 ppb of SO2, 20 ppb of NO2, atmospheric O2 at 1013 hPa, and 50 ppb of O3, where ppb is parts in 109. The water absorption holds for a relative humidity of 50% and a temperature of 298 K. Rayleigh scattering bR,sca(λ) is also shown.

Fig. 3
Fig. 3

Measured intensity profiles of the light beam of light path Lm in the (a) zenith and (b) azimuth directions. Five scans were recorded for each measurement. The spread of the maximum signal intensity obtained from the different scans determines the uncertainty of the telescope alignment. The intensity variations within the spread determine the accuracy of the intensity alignment.

Fig. 4
Fig. 4

Relative intensity variations [%] for the two light paths in March 2000: measurement light path, Lm = 572 m; reference light path, Lr = 54 m.

Fig. 5
Fig. 5

(A) Measured extinction coefficient bext (550 nm) and respective error Δbext(550 nm). The dashed line indicates the detection limit. (B) Relative error Δbext (550 nm)/bext (550 nm). The dotted line indicates a change of the scale of the ordinate.

Fig. 6
Fig. 6

Histogram distribution of relative error Δbext (550 nm)/bext (550 nm) for the measurement period 21–27 March 2000.

Fig. 7
Fig. 7

Spectral particle extinction coefficient bp,ext(λ), measurement error, and detection limit. The relative humidities were (a) 92% on 21 March at 00:00 local time (lt); (b) 88% on 21 March at 21:00 lt; (c) 77% on 21 March at 09:00 lt; and (d) 87% on 20 March at 21:00 lt.

Tables (1)

Tables Icon

Table 1 Effective Radius, Volume, and Surface-Area Concentration of Particles Determined by in situ Instrumentation and Inversion of DOAS Data

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I m ( λ ) = I 0 ( λ ) κ m γ m ( λ ) exp [ - b ext ( λ ) L m ] .
b ext ( λ ) = b p , sca ( λ ) + b p , abs ( λ ) + b g , sca ( λ ) + b g , abs ( λ ) ,
b g , abs , i ( λ ) = σ i ( λ ) c i ,             i = O 3 , NO 2 , SO 2 .
b ext ( λ ) = ln { [ I r ( λ ) / I m ( λ ) ] κ } L m - L r .
Δ b ext = [ ( b ext I m Δ I m ) 2 + ( b ext I r Δ I r ) 2 ] 1 / 2 .
Δ b ext = { [ Δ I m 2 ( L m - L r ) ] 2 + [ Δ I r 2 ( L m - L r ) ] 2 } 1 / 2 .
b ext ( 550 nm ) = 3.9 / R s .
I N I 0 [ 1 - exp ( - b sca L ) ] N .
b p , ext ( λ ) = b p , sca ( λ ) + b p , abs ( λ )

Metrics