Abstract

We propose a new method, to our knowledge, for noninvasive scattering measurements of tissues by the use of a pyroelectric polymer transducer, poly(vinylidene fluoride trifluoroethylene) film. In this method, samples are irradiated with nanosecond, low-energy light pulses delivered from an optical fiber, and the pyroelectric signal induced by the diffuse reflectance is measured with a transducer. The signal is then converted into diffuse reflectance by use of a calibration factor. The validity of this method was confirmed by our measuring the scattering coefficient of a white acrylic resin within an accuracy of ±15%. We attempted to apply this method to the estimation of scattering coefficients of normal and burned skins in rats in vivo.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. C. Dassel, R. Graaf, M. Sikkema, A. Meijer, W. G. Zijlstra, J. G. Aarnoudse, “Reflectance pulse oximetry at the forehead improves by pressure on the probe,” J. Clin. Monit. 11, 237–244 (1995).
    [CrossRef] [PubMed]
  2. O. Cohen, I. Fine, E. Monashkin, A. Karasik, “Glucose correlation with light scattering patterns—a novel method for non-invasive glucose measurements,” Diabetes Technol. Ther. 5, 11–17 (2003).
    [CrossRef]
  3. H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, K. D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging,” Appl. Opt. 42, 3117–3128 (2003).
    [CrossRef] [PubMed]
  4. S. L. Jacques, “Light distributions from point, line and plane sources for photochemical reactions and fluorescence in turbid biological tissues,” Photochem. Photobiol. 67, 23–62 (1998).
    [CrossRef] [PubMed]
  5. L. Wang, S. L. Jacques, L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
    [CrossRef] [PubMed]
  6. S. Flock, S. Jacques, B. Wilson, W. Star, M. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
    [CrossRef] [PubMed]
  7. H. Staveren, C. Moes, J. Marle, S. Prahl, M. van Gemert, “Light scattering in Intralipid—10% in the wavelength range of 400–1100 nanometers,” Appl. Opt. 30, 4507–4514 (1991).
    [CrossRef] [PubMed]
  8. H. Ohigashi, K. Omote, T. Gomyo, “Formation of ‘single crystalline films’ of ferroelectric copolymers of vinylidene fluoride and trifluoroethylene,” Appl. Phys. Lett. 66, 3281–3283 (1995).
    [CrossRef]
  9. A. J. Welch, M. J. C. Gemert, Optical-Thermal Response of Laser-Irradiated Tissue (Plenum, New York, 1995).
    [CrossRef]
  10. H. L. Walker, A. D. Mason, C. Raulston, “Surface infection with Pseudomonas aeruginosa,” Ann. Surg. 160, 297–302 (1964).
    [CrossRef] [PubMed]
  11. G. Muller, A. Roggan, Laser-Induced Interstitial Thermo-therapy (SPIE, Bellingham, Wash., 1995).

2003 (2)

O. Cohen, I. Fine, E. Monashkin, A. Karasik, “Glucose correlation with light scattering patterns—a novel method for non-invasive glucose measurements,” Diabetes Technol. Ther. 5, 11–17 (2003).
[CrossRef]

H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, K. D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging,” Appl. Opt. 42, 3117–3128 (2003).
[CrossRef] [PubMed]

1998 (1)

S. L. Jacques, “Light distributions from point, line and plane sources for photochemical reactions and fluorescence in turbid biological tissues,” Photochem. Photobiol. 67, 23–62 (1998).
[CrossRef] [PubMed]

1995 (3)

L. Wang, S. L. Jacques, L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

H. Ohigashi, K. Omote, T. Gomyo, “Formation of ‘single crystalline films’ of ferroelectric copolymers of vinylidene fluoride and trifluoroethylene,” Appl. Phys. Lett. 66, 3281–3283 (1995).
[CrossRef]

A. C. Dassel, R. Graaf, M. Sikkema, A. Meijer, W. G. Zijlstra, J. G. Aarnoudse, “Reflectance pulse oximetry at the forehead improves by pressure on the probe,” J. Clin. Monit. 11, 237–244 (1995).
[CrossRef] [PubMed]

1992 (1)

S. Flock, S. Jacques, B. Wilson, W. Star, M. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef] [PubMed]

1991 (1)

1964 (1)

H. L. Walker, A. D. Mason, C. Raulston, “Surface infection with Pseudomonas aeruginosa,” Ann. Surg. 160, 297–302 (1964).
[CrossRef] [PubMed]

Aarnoudse, J. G.

A. C. Dassel, R. Graaf, M. Sikkema, A. Meijer, W. G. Zijlstra, J. G. Aarnoudse, “Reflectance pulse oximetry at the forehead improves by pressure on the probe,” J. Clin. Monit. 11, 237–244 (1995).
[CrossRef] [PubMed]

Brooksby, B.

Cohen, O.

O. Cohen, I. Fine, E. Monashkin, A. Karasik, “Glucose correlation with light scattering patterns—a novel method for non-invasive glucose measurements,” Diabetes Technol. Ther. 5, 11–17 (2003).
[CrossRef]

Dassel, A. C.

A. C. Dassel, R. Graaf, M. Sikkema, A. Meijer, W. G. Zijlstra, J. G. Aarnoudse, “Reflectance pulse oximetry at the forehead improves by pressure on the probe,” J. Clin. Monit. 11, 237–244 (1995).
[CrossRef] [PubMed]

Dehghani, H.

Fine, I.

O. Cohen, I. Fine, E. Monashkin, A. Karasik, “Glucose correlation with light scattering patterns—a novel method for non-invasive glucose measurements,” Diabetes Technol. Ther. 5, 11–17 (2003).
[CrossRef]

Flock, S.

S. Flock, S. Jacques, B. Wilson, W. Star, M. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef] [PubMed]

Gemert, M. J. C.

A. J. Welch, M. J. C. Gemert, Optical-Thermal Response of Laser-Irradiated Tissue (Plenum, New York, 1995).
[CrossRef]

Gomyo, T.

H. Ohigashi, K. Omote, T. Gomyo, “Formation of ‘single crystalline films’ of ferroelectric copolymers of vinylidene fluoride and trifluoroethylene,” Appl. Phys. Lett. 66, 3281–3283 (1995).
[CrossRef]

Graaf, R.

A. C. Dassel, R. Graaf, M. Sikkema, A. Meijer, W. G. Zijlstra, J. G. Aarnoudse, “Reflectance pulse oximetry at the forehead improves by pressure on the probe,” J. Clin. Monit. 11, 237–244 (1995).
[CrossRef] [PubMed]

Jacques, S.

S. Flock, S. Jacques, B. Wilson, W. Star, M. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef] [PubMed]

Jacques, S. L.

S. L. Jacques, “Light distributions from point, line and plane sources for photochemical reactions and fluorescence in turbid biological tissues,” Photochem. Photobiol. 67, 23–62 (1998).
[CrossRef] [PubMed]

L. Wang, S. L. Jacques, L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

Karasik, A.

O. Cohen, I. Fine, E. Monashkin, A. Karasik, “Glucose correlation with light scattering patterns—a novel method for non-invasive glucose measurements,” Diabetes Technol. Ther. 5, 11–17 (2003).
[CrossRef]

Marle, J.

Mason, A. D.

H. L. Walker, A. D. Mason, C. Raulston, “Surface infection with Pseudomonas aeruginosa,” Ann. Surg. 160, 297–302 (1964).
[CrossRef] [PubMed]

Meijer, A.

A. C. Dassel, R. Graaf, M. Sikkema, A. Meijer, W. G. Zijlstra, J. G. Aarnoudse, “Reflectance pulse oximetry at the forehead improves by pressure on the probe,” J. Clin. Monit. 11, 237–244 (1995).
[CrossRef] [PubMed]

Moes, C.

Monashkin, E.

O. Cohen, I. Fine, E. Monashkin, A. Karasik, “Glucose correlation with light scattering patterns—a novel method for non-invasive glucose measurements,” Diabetes Technol. Ther. 5, 11–17 (2003).
[CrossRef]

Muller, G.

G. Muller, A. Roggan, Laser-Induced Interstitial Thermo-therapy (SPIE, Bellingham, Wash., 1995).

Ohigashi, H.

H. Ohigashi, K. Omote, T. Gomyo, “Formation of ‘single crystalline films’ of ferroelectric copolymers of vinylidene fluoride and trifluoroethylene,” Appl. Phys. Lett. 66, 3281–3283 (1995).
[CrossRef]

Omote, K.

H. Ohigashi, K. Omote, T. Gomyo, “Formation of ‘single crystalline films’ of ferroelectric copolymers of vinylidene fluoride and trifluoroethylene,” Appl. Phys. Lett. 66, 3281–3283 (1995).
[CrossRef]

Paulsen, K. D.

Pogue, B. W.

Prahl, S.

Raulston, C.

H. L. Walker, A. D. Mason, C. Raulston, “Surface infection with Pseudomonas aeruginosa,” Ann. Surg. 160, 297–302 (1964).
[CrossRef] [PubMed]

Roggan, A.

G. Muller, A. Roggan, Laser-Induced Interstitial Thermo-therapy (SPIE, Bellingham, Wash., 1995).

Shudong, J.

Sikkema, M.

A. C. Dassel, R. Graaf, M. Sikkema, A. Meijer, W. G. Zijlstra, J. G. Aarnoudse, “Reflectance pulse oximetry at the forehead improves by pressure on the probe,” J. Clin. Monit. 11, 237–244 (1995).
[CrossRef] [PubMed]

Star, W.

S. Flock, S. Jacques, B. Wilson, W. Star, M. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef] [PubMed]

Staveren, H.

van Gemert, M.

S. Flock, S. Jacques, B. Wilson, W. Star, M. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef] [PubMed]

H. Staveren, C. Moes, J. Marle, S. Prahl, M. van Gemert, “Light scattering in Intralipid—10% in the wavelength range of 400–1100 nanometers,” Appl. Opt. 30, 4507–4514 (1991).
[CrossRef] [PubMed]

Walker, H. L.

H. L. Walker, A. D. Mason, C. Raulston, “Surface infection with Pseudomonas aeruginosa,” Ann. Surg. 160, 297–302 (1964).
[CrossRef] [PubMed]

Wang, L.

L. Wang, S. L. Jacques, L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

Welch, A. J.

A. J. Welch, M. J. C. Gemert, Optical-Thermal Response of Laser-Irradiated Tissue (Plenum, New York, 1995).
[CrossRef]

Wilson, B.

S. Flock, S. Jacques, B. Wilson, W. Star, M. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef] [PubMed]

Zheng, L.

L. Wang, S. L. Jacques, L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

Zijlstra, W. G.

A. C. Dassel, R. Graaf, M. Sikkema, A. Meijer, W. G. Zijlstra, J. G. Aarnoudse, “Reflectance pulse oximetry at the forehead improves by pressure on the probe,” J. Clin. Monit. 11, 237–244 (1995).
[CrossRef] [PubMed]

Ann. Surg. (1)

H. L. Walker, A. D. Mason, C. Raulston, “Surface infection with Pseudomonas aeruginosa,” Ann. Surg. 160, 297–302 (1964).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

H. Ohigashi, K. Omote, T. Gomyo, “Formation of ‘single crystalline films’ of ferroelectric copolymers of vinylidene fluoride and trifluoroethylene,” Appl. Phys. Lett. 66, 3281–3283 (1995).
[CrossRef]

Comput. Methods Programs Biomed. (1)

L. Wang, S. L. Jacques, L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

Diabetes Technol. Ther. (1)

O. Cohen, I. Fine, E. Monashkin, A. Karasik, “Glucose correlation with light scattering patterns—a novel method for non-invasive glucose measurements,” Diabetes Technol. Ther. 5, 11–17 (2003).
[CrossRef]

J. Clin. Monit. (1)

A. C. Dassel, R. Graaf, M. Sikkema, A. Meijer, W. G. Zijlstra, J. G. Aarnoudse, “Reflectance pulse oximetry at the forehead improves by pressure on the probe,” J. Clin. Monit. 11, 237–244 (1995).
[CrossRef] [PubMed]

Lasers Surg. Med. (1)

S. Flock, S. Jacques, B. Wilson, W. Star, M. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef] [PubMed]

Photochem. Photobiol. (1)

S. L. Jacques, “Light distributions from point, line and plane sources for photochemical reactions and fluorescence in turbid biological tissues,” Photochem. Photobiol. 67, 23–62 (1998).
[CrossRef] [PubMed]

Other (2)

A. J. Welch, M. J. C. Gemert, Optical-Thermal Response of Laser-Irradiated Tissue (Plenum, New York, 1995).
[CrossRef]

G. Muller, A. Roggan, Laser-Induced Interstitial Thermo-therapy (SPIE, Bellingham, Wash., 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Flowchart of the scattering measurement by use of a pyroelectric transducer. To determine the calibration factor, pyroelectric measurement and Monte Carlo simulation were performed for the medium whose optical properties were known.

Fig. 2
Fig. 2

Experimental setup for pyroelectric measurement. OPO, optical parametric oscillator; Amp, amplifier.

Fig. 3
Fig. 3

Typical temporal profile of the pyroelectric signal. An arrowhead indicates the photoacoustic signal caused by optical absorption of the sample.

Fig. 4
Fig. 4

Pyroelectricity (V) versus scattering coefficient μs(cm−1) for the Intralipid suspensions. The value of μs was obtained from the literature. This experiment was conducted to determine a correction factor.

Fig. 5
Fig. 5

Diffuse reflectance versus scattering coefficient for various absorption coefficients of 0–10 cm−1 by Monte Carlo simulation. This calculation was performed to investigate the influence of optical absorption on the pyroelectric measurement.

Fig. 6
Fig. 6

Pyroelectric signal versus scattering coefficient. Squares, the results of the experiment with Intralipid; curve, the result of Monte Carlo simulation.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

μ a = I ac - 1 Γ - 1 exp ( μ ac d ) ,

Metrics