Abstract

A lateral shearing interferometer designed and built for the study of the precorneal tear film topography dynamics and its effect on visual performance is presented. Simple data processing algorithms are discussed and tested on data illustrating different tear topography features: postblink tear undulation, tear breakup, eyelid-produced bumps and ridges, bubbles, and rough precontact lens tear surfaces.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Oliveira-Soto, W. N. Charman, “Some possible longer-term ocular changes following excimer laser refractive surgery,” Ophthalmic Physiol. Opt. 22, 274–288 (2002).
    [CrossRef] [PubMed]
  2. J. Schwiegerling, “Wavefront guided lasik,” Opt. Photon. News 15, 26–29 (2000).
  3. J. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
    [CrossRef]
  4. J.-F. Le Gargasson, M. Glanc, P. Léna, “Retinal imaging with adaptive optics,” C. R. Acad. Sci. Paris 2, 1131–1138 (2001).
  5. H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamamuchi, D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” Opt. Express8, 631–643 (2001), www.opticsexpress.org .
    [CrossRef]
  6. I. Iglesias, P. Artal, “High-resolution retinal images obtained by deconvolution from wave-front sensing,” Opt. Lett. 25, 1804–1806 (2000).
    [CrossRef]
  7. D. Catlin, C. Dainty, “High-resolution imaging of the human retina with a Fourier deconvolution technique,” J. Opt. Soc. Am. A 19, 1515–1523 (2002).
    [CrossRef]
  8. A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express10, 405–412 (2002), www.opticsexpress.org .
    [CrossRef]
  9. G. Walsh, W. N. Charman, H. C. Howland, “Objective technique for the determination of monochromatic aberrations of the human eye,” J. Opt. Soc. Am. A 1, 987–992 (1984).
    [CrossRef] [PubMed]
  10. R. H. Webb, C. M. Penney, K. P. Thompson, “Measurement of ocular local wavefront distortion with a spatially resolved refractometer,” Appl. Opt. 31, 3678–3686 (1992).
    [CrossRef] [PubMed]
  11. R. Navarro, M. A. Losada, “Aberrations and relative efficiency of light pencils in the living human eye,” Optom. Vision Sci. 74, 540–547 (1997).
    [CrossRef]
  12. I. Iglesias, E. Berrio, P. Artal, “Estimates of the ocular wave aberration from pairs of double-pass retinal images,” J. Opt. Soc. Am. A 15, 2466–2476 (1998).
    [CrossRef]
  13. I. Iglesias, R. Ragazzoni, Y. Julien, P. Artal, “Extended source pyramid wave-front sensor for the human eye,” Opt. Express10, 419–428 (2002), www.opticsexpress.org .
    [CrossRef]
  14. H. S. Smirnov, “Measurement of wave aberration in the human eye,” Biophysics 6, 52–66 (1961).
  15. J. Liang, D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
    [CrossRef]
  16. T. O. Salmon, L. N. Thibos, A. Bradley, “Comparison of the eye’s wave-front aberration measured psycophysically and with the Shack–Hartmann wave-front sensor,” J. Opt. Soc. Am. A 15, 2457–2465 (1998).
    [CrossRef]
  17. L. Diaz-Santana, Applied Vision Research Centre, Department of Optometry and Visual Science, City University, London, UK (personal communication, 2004).
  18. W. N. Charman, G. Heron, “Fluctuations in accommodation: a review,” Ophthalmic Physiol. Opt. 8, 153–164 (1988).
    [CrossRef] [PubMed]
  19. L. S. Gray, B. Winn, B. Gilmartin, “Effect of target luminance on microfluctuations of accommodation,” Ophthalmic Physiol. Opt. 13, 258–265 (1993).
    [CrossRef] [PubMed]
  20. H. Hofer, P. Artal, B. Singer, J. L. Aragón, D. R. Williams, “Dynamics of the eye’s aberration,” J. Opt. Soc. Am. A 18, 497–506 (2001).
    [CrossRef]
  21. E. Moreno-Barriuso, R. Navarro, “Laser ray tracing versus Hartmann–Shack sensor for measuring optical aberrations in the human eye,” J. Opt. Soc. Am. A 17, 974–985 (2000).
    [CrossRef]
  22. R. Tutt, A. Bradley, C. Begley, L. N. Thibos, “Optical and visual impact of tear break-up in human eyes,” Invest. Ophthalmol. Visual Sci. 41, 4117–4123 (2000).
  23. L. F. Schmetterer, F. Lexer, C. J. Unfried, H. Sattmann, A. F. Fercher, “Topical measurement of fundus pulsations,” Opt. Eng. 34, 711–716 (1995).
    [CrossRef]
  24. W. H. Hart, Adler’s Physiology of the Eye: Clinical Application, 9th ed. (Mosby, St. Louis, Mo., 1992).
  25. F. Vargas-Martin, P. M. Prieto, P. Artal, “Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to its performance,” J. Opt. Soc. Am. A 15, 2552–2562 (1998).
    [CrossRef]
  26. S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134, 115–117 (2002).
    [CrossRef] [PubMed]
  27. L. Diaz-Santana, C. Torti, I. Munro, P. Gasson, C. Dainty, “Benefit of higher closed-loop bandwidths in ocular adaptive optics,” Opt. Express11, 2597–2605 (2003), www.opticsexpress.org .
    [CrossRef]
  28. N. L. Himebaugh, A. R. Wright, A. Bradley, C. G. Begley, L. Thibos, “Use of retroillumination to visualize optical aberrations caused by tear film break-up,” Optom. Vision Sci. 80, 69–78 (2003).
    [CrossRef]
  29. X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, A. Bradley, “Test-retest reliability of clinical Shack–Hartmann measurements,” Invest. Ophthalmol. Visual Sci. 45, 351–360 (2004).
    [CrossRef]
  30. M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. Le Gargasson, P. Léna, “Towards wide-field retinal imaging with adaptive optics,” Opt. Commun. 230, 225–238 (2004).
    [CrossRef]
  31. T. J. Licznerski, H. T. Kasprzak, W. Kowalik, “Two interference techniques for in vivo assessment of the tear film stability on a cornea and contact lens,” in Tenth Polish–Czech–Slovak Optical Conference: Wave and Quantum Aspects of Contemporary Optics, J. Nowak, M. Zajac, eds., Proc. SPIE3320, 183–186 (1998).
    [CrossRef]
  32. M. Born, E. Wolf, Principle of Optics, 6th ed. (Pergamon, Oxford, UK, 1980).
  33. M. Takeda, H. Ina, S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982).
    [CrossRef]
  34. D. C. Ghiglia, M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms and Software (Wiley, New York, 1998).
  35. L. A. Poyneer, D. T. Gavel, J. M. Brase, “Fast wave-front reconstruction in large adaptive optics systems with use of the Fourier transform,” J. Opt. Soc. Am. A 19, 2100–2111 (2002).
    [CrossRef]
  36. A. Dubra, C. Paterson, J. C. Dainty, “Wave-front reconstruction from shear phase maps by use of the discrete Fourier transform,” Appl. Opt. 43, 1108–1113 (2004).
    [CrossRef] [PubMed]
  37. A. Dubra, “A shearing interferometer for the evaluation of human tear film topography,” Ph.D. dissertation (Imperial College London, London, 2004).

2004 (3)

X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, A. Bradley, “Test-retest reliability of clinical Shack–Hartmann measurements,” Invest. Ophthalmol. Visual Sci. 45, 351–360 (2004).
[CrossRef]

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. Le Gargasson, P. Léna, “Towards wide-field retinal imaging with adaptive optics,” Opt. Commun. 230, 225–238 (2004).
[CrossRef]

A. Dubra, C. Paterson, J. C. Dainty, “Wave-front reconstruction from shear phase maps by use of the discrete Fourier transform,” Appl. Opt. 43, 1108–1113 (2004).
[CrossRef] [PubMed]

2003 (1)

N. L. Himebaugh, A. R. Wright, A. Bradley, C. G. Begley, L. Thibos, “Use of retroillumination to visualize optical aberrations caused by tear film break-up,” Optom. Vision Sci. 80, 69–78 (2003).
[CrossRef]

2002 (4)

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134, 115–117 (2002).
[CrossRef] [PubMed]

D. Catlin, C. Dainty, “High-resolution imaging of the human retina with a Fourier deconvolution technique,” J. Opt. Soc. Am. A 19, 1515–1523 (2002).
[CrossRef]

L. A. Poyneer, D. T. Gavel, J. M. Brase, “Fast wave-front reconstruction in large adaptive optics systems with use of the Fourier transform,” J. Opt. Soc. Am. A 19, 2100–2111 (2002).
[CrossRef]

L. Oliveira-Soto, W. N. Charman, “Some possible longer-term ocular changes following excimer laser refractive surgery,” Ophthalmic Physiol. Opt. 22, 274–288 (2002).
[CrossRef] [PubMed]

2001 (2)

J.-F. Le Gargasson, M. Glanc, P. Léna, “Retinal imaging with adaptive optics,” C. R. Acad. Sci. Paris 2, 1131–1138 (2001).

H. Hofer, P. Artal, B. Singer, J. L. Aragón, D. R. Williams, “Dynamics of the eye’s aberration,” J. Opt. Soc. Am. A 18, 497–506 (2001).
[CrossRef]

2000 (4)

I. Iglesias, P. Artal, “High-resolution retinal images obtained by deconvolution from wave-front sensing,” Opt. Lett. 25, 1804–1806 (2000).
[CrossRef]

J. Schwiegerling, “Wavefront guided lasik,” Opt. Photon. News 15, 26–29 (2000).

R. Tutt, A. Bradley, C. Begley, L. N. Thibos, “Optical and visual impact of tear break-up in human eyes,” Invest. Ophthalmol. Visual Sci. 41, 4117–4123 (2000).

E. Moreno-Barriuso, R. Navarro, “Laser ray tracing versus Hartmann–Shack sensor for measuring optical aberrations in the human eye,” J. Opt. Soc. Am. A 17, 974–985 (2000).
[CrossRef]

1998 (3)

1997 (3)

1995 (1)

L. F. Schmetterer, F. Lexer, C. J. Unfried, H. Sattmann, A. F. Fercher, “Topical measurement of fundus pulsations,” Opt. Eng. 34, 711–716 (1995).
[CrossRef]

1993 (1)

L. S. Gray, B. Winn, B. Gilmartin, “Effect of target luminance on microfluctuations of accommodation,” Ophthalmic Physiol. Opt. 13, 258–265 (1993).
[CrossRef] [PubMed]

1992 (1)

1988 (1)

W. N. Charman, G. Heron, “Fluctuations in accommodation: a review,” Ophthalmic Physiol. Opt. 8, 153–164 (1988).
[CrossRef] [PubMed]

1984 (1)

1982 (1)

1961 (1)

H. S. Smirnov, “Measurement of wave aberration in the human eye,” Biophysics 6, 52–66 (1961).

Aragón, J. L.

Artal, P.

Begley, C.

R. Tutt, A. Bradley, C. Begley, L. N. Thibos, “Optical and visual impact of tear break-up in human eyes,” Invest. Ophthalmol. Visual Sci. 41, 4117–4123 (2000).

Begley, C. G.

N. L. Himebaugh, A. R. Wright, A. Bradley, C. G. Begley, L. Thibos, “Use of retroillumination to visualize optical aberrations caused by tear film break-up,” Optom. Vision Sci. 80, 69–78 (2003).
[CrossRef]

Berrio, E.

Born, M.

M. Born, E. Wolf, Principle of Optics, 6th ed. (Pergamon, Oxford, UK, 1980).

Bradley, A.

X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, A. Bradley, “Test-retest reliability of clinical Shack–Hartmann measurements,” Invest. Ophthalmol. Visual Sci. 45, 351–360 (2004).
[CrossRef]

N. L. Himebaugh, A. R. Wright, A. Bradley, C. G. Begley, L. Thibos, “Use of retroillumination to visualize optical aberrations caused by tear film break-up,” Optom. Vision Sci. 80, 69–78 (2003).
[CrossRef]

R. Tutt, A. Bradley, C. Begley, L. N. Thibos, “Optical and visual impact of tear break-up in human eyes,” Invest. Ophthalmol. Visual Sci. 41, 4117–4123 (2000).

T. O. Salmon, L. N. Thibos, A. Bradley, “Comparison of the eye’s wave-front aberration measured psycophysically and with the Shack–Hartmann wave-front sensor,” J. Opt. Soc. Am. A 15, 2457–2465 (1998).
[CrossRef]

Brase, J. M.

Catlin, D.

Charman, W. N.

L. Oliveira-Soto, W. N. Charman, “Some possible longer-term ocular changes following excimer laser refractive surgery,” Ophthalmic Physiol. Opt. 22, 274–288 (2002).
[CrossRef] [PubMed]

W. N. Charman, G. Heron, “Fluctuations in accommodation: a review,” Ophthalmic Physiol. Opt. 8, 153–164 (1988).
[CrossRef] [PubMed]

G. Walsh, W. N. Charman, H. C. Howland, “Objective technique for the determination of monochromatic aberrations of the human eye,” J. Opt. Soc. Am. A 1, 987–992 (1984).
[CrossRef] [PubMed]

Cheng, X.

X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, A. Bradley, “Test-retest reliability of clinical Shack–Hartmann measurements,” Invest. Ophthalmol. Visual Sci. 45, 351–360 (2004).
[CrossRef]

Dainty, C.

Dainty, J. C.

Diaz-Santana, L.

L. Diaz-Santana, Applied Vision Research Centre, Department of Optometry and Visual Science, City University, London, UK (personal communication, 2004).

Dubra, A.

A. Dubra, C. Paterson, J. C. Dainty, “Wave-front reconstruction from shear phase maps by use of the discrete Fourier transform,” Appl. Opt. 43, 1108–1113 (2004).
[CrossRef] [PubMed]

A. Dubra, “A shearing interferometer for the evaluation of human tear film topography,” Ph.D. dissertation (Imperial College London, London, 2004).

Fercher, A. F.

L. F. Schmetterer, F. Lexer, C. J. Unfried, H. Sattmann, A. F. Fercher, “Topical measurement of fundus pulsations,” Opt. Eng. 34, 711–716 (1995).
[CrossRef]

Fujikado, T.

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134, 115–117 (2002).
[CrossRef] [PubMed]

Gavel, D. T.

Gendron, E.

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. Le Gargasson, P. Léna, “Towards wide-field retinal imaging with adaptive optics,” Opt. Commun. 230, 225–238 (2004).
[CrossRef]

Ghiglia, D. C.

D. C. Ghiglia, M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms and Software (Wiley, New York, 1998).

Gilmartin, B.

L. S. Gray, B. Winn, B. Gilmartin, “Effect of target luminance on microfluctuations of accommodation,” Ophthalmic Physiol. Opt. 13, 258–265 (1993).
[CrossRef] [PubMed]

Glanc, M.

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. Le Gargasson, P. Léna, “Towards wide-field retinal imaging with adaptive optics,” Opt. Commun. 230, 225–238 (2004).
[CrossRef]

J.-F. Le Gargasson, M. Glanc, P. Léna, “Retinal imaging with adaptive optics,” C. R. Acad. Sci. Paris 2, 1131–1138 (2001).

Gray, L. S.

L. S. Gray, B. Winn, B. Gilmartin, “Effect of target luminance on microfluctuations of accommodation,” Ophthalmic Physiol. Opt. 13, 258–265 (1993).
[CrossRef] [PubMed]

Hart, W. H.

W. H. Hart, Adler’s Physiology of the Eye: Clinical Application, 9th ed. (Mosby, St. Louis, Mo., 1992).

Heron, G.

W. N. Charman, G. Heron, “Fluctuations in accommodation: a review,” Ophthalmic Physiol. Opt. 8, 153–164 (1988).
[CrossRef] [PubMed]

Himebaugh, N. L.

X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, A. Bradley, “Test-retest reliability of clinical Shack–Hartmann measurements,” Invest. Ophthalmol. Visual Sci. 45, 351–360 (2004).
[CrossRef]

N. L. Himebaugh, A. R. Wright, A. Bradley, C. G. Begley, L. Thibos, “Use of retroillumination to visualize optical aberrations caused by tear film break-up,” Optom. Vision Sci. 80, 69–78 (2003).
[CrossRef]

Hirohara, Y.

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134, 115–117 (2002).
[CrossRef] [PubMed]

Hofer, H.

Hori, Y.

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134, 115–117 (2002).
[CrossRef] [PubMed]

Howland, H. C.

Iglesias, I.

Ina, H.

Kasprzak, H. T.

T. J. Licznerski, H. T. Kasprzak, W. Kowalik, “Two interference techniques for in vivo assessment of the tear film stability on a cornea and contact lens,” in Tenth Polish–Czech–Slovak Optical Conference: Wave and Quantum Aspects of Contemporary Optics, J. Nowak, M. Zajac, eds., Proc. SPIE3320, 183–186 (1998).
[CrossRef]

Kobayashi, S.

Koh, S.

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134, 115–117 (2002).
[CrossRef] [PubMed]

Kollbaum, P. S.

X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, A. Bradley, “Test-retest reliability of clinical Shack–Hartmann measurements,” Invest. Ophthalmol. Visual Sci. 45, 351–360 (2004).
[CrossRef]

Kowalik, W.

T. J. Licznerski, H. T. Kasprzak, W. Kowalik, “Two interference techniques for in vivo assessment of the tear film stability on a cornea and contact lens,” in Tenth Polish–Czech–Slovak Optical Conference: Wave and Quantum Aspects of Contemporary Optics, J. Nowak, M. Zajac, eds., Proc. SPIE3320, 183–186 (1998).
[CrossRef]

Kuroda, T.

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134, 115–117 (2002).
[CrossRef] [PubMed]

Lacombe, F.

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. Le Gargasson, P. Léna, “Towards wide-field retinal imaging with adaptive optics,” Opt. Commun. 230, 225–238 (2004).
[CrossRef]

Lafaille, D.

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. Le Gargasson, P. Léna, “Towards wide-field retinal imaging with adaptive optics,” Opt. Commun. 230, 225–238 (2004).
[CrossRef]

Le Gargasson, J.-F.

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. Le Gargasson, P. Léna, “Towards wide-field retinal imaging with adaptive optics,” Opt. Commun. 230, 225–238 (2004).
[CrossRef]

J.-F. Le Gargasson, M. Glanc, P. Léna, “Retinal imaging with adaptive optics,” C. R. Acad. Sci. Paris 2, 1131–1138 (2001).

Léna, P.

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. Le Gargasson, P. Léna, “Towards wide-field retinal imaging with adaptive optics,” Opt. Commun. 230, 225–238 (2004).
[CrossRef]

J.-F. Le Gargasson, M. Glanc, P. Léna, “Retinal imaging with adaptive optics,” C. R. Acad. Sci. Paris 2, 1131–1138 (2001).

Lexer, F.

L. F. Schmetterer, F. Lexer, C. J. Unfried, H. Sattmann, A. F. Fercher, “Topical measurement of fundus pulsations,” Opt. Eng. 34, 711–716 (1995).
[CrossRef]

Liang, J.

Licznerski, T. J.

T. J. Licznerski, H. T. Kasprzak, W. Kowalik, “Two interference techniques for in vivo assessment of the tear film stability on a cornea and contact lens,” in Tenth Polish–Czech–Slovak Optical Conference: Wave and Quantum Aspects of Contemporary Optics, J. Nowak, M. Zajac, eds., Proc. SPIE3320, 183–186 (1998).
[CrossRef]

Losada, M. A.

R. Navarro, M. A. Losada, “Aberrations and relative efficiency of light pencils in the living human eye,” Optom. Vision Sci. 74, 540–547 (1997).
[CrossRef]

Maeda, N.

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134, 115–117 (2002).
[CrossRef] [PubMed]

Mihashi, T.

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134, 115–117 (2002).
[CrossRef] [PubMed]

Miller, D. T.

Moreno-Barriuso, E.

Navarro, R.

E. Moreno-Barriuso, R. Navarro, “Laser ray tracing versus Hartmann–Shack sensor for measuring optical aberrations in the human eye,” J. Opt. Soc. Am. A 17, 974–985 (2000).
[CrossRef]

R. Navarro, M. A. Losada, “Aberrations and relative efficiency of light pencils in the living human eye,” Optom. Vision Sci. 74, 540–547 (1997).
[CrossRef]

Oliveira-Soto, L.

L. Oliveira-Soto, W. N. Charman, “Some possible longer-term ocular changes following excimer laser refractive surgery,” Ophthalmic Physiol. Opt. 22, 274–288 (2002).
[CrossRef] [PubMed]

Paterson, C.

Penney, C. M.

Poyneer, L. A.

Prieto, P. M.

Pritt, M. D.

D. C. Ghiglia, M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms and Software (Wiley, New York, 1998).

Salmon, T. O.

Sattmann, H.

L. F. Schmetterer, F. Lexer, C. J. Unfried, H. Sattmann, A. F. Fercher, “Topical measurement of fundus pulsations,” Opt. Eng. 34, 711–716 (1995).
[CrossRef]

Schmetterer, L. F.

L. F. Schmetterer, F. Lexer, C. J. Unfried, H. Sattmann, A. F. Fercher, “Topical measurement of fundus pulsations,” Opt. Eng. 34, 711–716 (1995).
[CrossRef]

Schwiegerling, J.

J. Schwiegerling, “Wavefront guided lasik,” Opt. Photon. News 15, 26–29 (2000).

Singer, B.

Smirnov, H. S.

H. S. Smirnov, “Measurement of wave aberration in the human eye,” Biophysics 6, 52–66 (1961).

Takeda, M.

Tano, Y.

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134, 115–117 (2002).
[CrossRef] [PubMed]

Thibos, L.

N. L. Himebaugh, A. R. Wright, A. Bradley, C. G. Begley, L. Thibos, “Use of retroillumination to visualize optical aberrations caused by tear film break-up,” Optom. Vision Sci. 80, 69–78 (2003).
[CrossRef]

Thibos, L. N.

X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, A. Bradley, “Test-retest reliability of clinical Shack–Hartmann measurements,” Invest. Ophthalmol. Visual Sci. 45, 351–360 (2004).
[CrossRef]

R. Tutt, A. Bradley, C. Begley, L. N. Thibos, “Optical and visual impact of tear break-up in human eyes,” Invest. Ophthalmol. Visual Sci. 41, 4117–4123 (2000).

T. O. Salmon, L. N. Thibos, A. Bradley, “Comparison of the eye’s wave-front aberration measured psycophysically and with the Shack–Hartmann wave-front sensor,” J. Opt. Soc. Am. A 15, 2457–2465 (1998).
[CrossRef]

Thompson, K. P.

Tutt, R.

R. Tutt, A. Bradley, C. Begley, L. N. Thibos, “Optical and visual impact of tear break-up in human eyes,” Invest. Ophthalmol. Visual Sci. 41, 4117–4123 (2000).

Unfried, C. J.

L. F. Schmetterer, F. Lexer, C. J. Unfried, H. Sattmann, A. F. Fercher, “Topical measurement of fundus pulsations,” Opt. Eng. 34, 711–716 (1995).
[CrossRef]

Vargas-Martin, F.

Walsh, G.

Watanabe, H.

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134, 115–117 (2002).
[CrossRef] [PubMed]

Webb, R. H.

Williams, D. R.

Winn, B.

L. S. Gray, B. Winn, B. Gilmartin, “Effect of target luminance on microfluctuations of accommodation,” Ophthalmic Physiol. Opt. 13, 258–265 (1993).
[CrossRef] [PubMed]

Wolf, E.

M. Born, E. Wolf, Principle of Optics, 6th ed. (Pergamon, Oxford, UK, 1980).

Wright, A. R.

N. L. Himebaugh, A. R. Wright, A. Bradley, C. G. Begley, L. Thibos, “Use of retroillumination to visualize optical aberrations caused by tear film break-up,” Optom. Vision Sci. 80, 69–78 (2003).
[CrossRef]

Am. J. Ophthalmol. (1)

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134, 115–117 (2002).
[CrossRef] [PubMed]

Appl. Opt. (2)

Biophysics (1)

H. S. Smirnov, “Measurement of wave aberration in the human eye,” Biophysics 6, 52–66 (1961).

C. R. Acad. Sci. Paris (1)

J.-F. Le Gargasson, M. Glanc, P. Léna, “Retinal imaging with adaptive optics,” C. R. Acad. Sci. Paris 2, 1131–1138 (2001).

Invest. Ophthalmol. Visual Sci. (2)

X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, A. Bradley, “Test-retest reliability of clinical Shack–Hartmann measurements,” Invest. Ophthalmol. Visual Sci. 45, 351–360 (2004).
[CrossRef]

R. Tutt, A. Bradley, C. Begley, L. N. Thibos, “Optical and visual impact of tear break-up in human eyes,” Invest. Ophthalmol. Visual Sci. 41, 4117–4123 (2000).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (10)

H. Hofer, P. Artal, B. Singer, J. L. Aragón, D. R. Williams, “Dynamics of the eye’s aberration,” J. Opt. Soc. Am. A 18, 497–506 (2001).
[CrossRef]

D. Catlin, C. Dainty, “High-resolution imaging of the human retina with a Fourier deconvolution technique,” J. Opt. Soc. Am. A 19, 1515–1523 (2002).
[CrossRef]

L. A. Poyneer, D. T. Gavel, J. M. Brase, “Fast wave-front reconstruction in large adaptive optics systems with use of the Fourier transform,” J. Opt. Soc. Am. A 19, 2100–2111 (2002).
[CrossRef]

E. Moreno-Barriuso, R. Navarro, “Laser ray tracing versus Hartmann–Shack sensor for measuring optical aberrations in the human eye,” J. Opt. Soc. Am. A 17, 974–985 (2000).
[CrossRef]

G. Walsh, W. N. Charman, H. C. Howland, “Objective technique for the determination of monochromatic aberrations of the human eye,” J. Opt. Soc. Am. A 1, 987–992 (1984).
[CrossRef] [PubMed]

T. O. Salmon, L. N. Thibos, A. Bradley, “Comparison of the eye’s wave-front aberration measured psycophysically and with the Shack–Hartmann wave-front sensor,” J. Opt. Soc. Am. A 15, 2457–2465 (1998).
[CrossRef]

I. Iglesias, E. Berrio, P. Artal, “Estimates of the ocular wave aberration from pairs of double-pass retinal images,” J. Opt. Soc. Am. A 15, 2466–2476 (1998).
[CrossRef]

F. Vargas-Martin, P. M. Prieto, P. Artal, “Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to its performance,” J. Opt. Soc. Am. A 15, 2552–2562 (1998).
[CrossRef]

J. Liang, D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
[CrossRef]

J. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
[CrossRef]

Ophthalmic Physiol. Opt. (3)

W. N. Charman, G. Heron, “Fluctuations in accommodation: a review,” Ophthalmic Physiol. Opt. 8, 153–164 (1988).
[CrossRef] [PubMed]

L. S. Gray, B. Winn, B. Gilmartin, “Effect of target luminance on microfluctuations of accommodation,” Ophthalmic Physiol. Opt. 13, 258–265 (1993).
[CrossRef] [PubMed]

L. Oliveira-Soto, W. N. Charman, “Some possible longer-term ocular changes following excimer laser refractive surgery,” Ophthalmic Physiol. Opt. 22, 274–288 (2002).
[CrossRef] [PubMed]

Opt. Commun. (1)

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. Le Gargasson, P. Léna, “Towards wide-field retinal imaging with adaptive optics,” Opt. Commun. 230, 225–238 (2004).
[CrossRef]

Opt. Eng. (1)

L. F. Schmetterer, F. Lexer, C. J. Unfried, H. Sattmann, A. F. Fercher, “Topical measurement of fundus pulsations,” Opt. Eng. 34, 711–716 (1995).
[CrossRef]

Opt. Lett. (1)

Opt. Photon. News (1)

J. Schwiegerling, “Wavefront guided lasik,” Opt. Photon. News 15, 26–29 (2000).

Optom. Vision Sci. (2)

R. Navarro, M. A. Losada, “Aberrations and relative efficiency of light pencils in the living human eye,” Optom. Vision Sci. 74, 540–547 (1997).
[CrossRef]

N. L. Himebaugh, A. R. Wright, A. Bradley, C. G. Begley, L. Thibos, “Use of retroillumination to visualize optical aberrations caused by tear film break-up,” Optom. Vision Sci. 80, 69–78 (2003).
[CrossRef]

Other (10)

W. H. Hart, Adler’s Physiology of the Eye: Clinical Application, 9th ed. (Mosby, St. Louis, Mo., 1992).

D. C. Ghiglia, M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms and Software (Wiley, New York, 1998).

A. Dubra, “A shearing interferometer for the evaluation of human tear film topography,” Ph.D. dissertation (Imperial College London, London, 2004).

I. Iglesias, R. Ragazzoni, Y. Julien, P. Artal, “Extended source pyramid wave-front sensor for the human eye,” Opt. Express10, 419–428 (2002), www.opticsexpress.org .
[CrossRef]

L. Diaz-Santana, Applied Vision Research Centre, Department of Optometry and Visual Science, City University, London, UK (personal communication, 2004).

A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express10, 405–412 (2002), www.opticsexpress.org .
[CrossRef]

H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamamuchi, D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” Opt. Express8, 631–643 (2001), www.opticsexpress.org .
[CrossRef]

T. J. Licznerski, H. T. Kasprzak, W. Kowalik, “Two interference techniques for in vivo assessment of the tear film stability on a cornea and contact lens,” in Tenth Polish–Czech–Slovak Optical Conference: Wave and Quantum Aspects of Contemporary Optics, J. Nowak, M. Zajac, eds., Proc. SPIE3320, 183–186 (1998).
[CrossRef]

M. Born, E. Wolf, Principle of Optics, 6th ed. (Pergamon, Oxford, UK, 1980).

L. Diaz-Santana, C. Torti, I. Munro, P. Gasson, C. Dainty, “Benefit of higher closed-loop bandwidths in ocular adaptive optics,” Opt. Express11, 2597–2605 (2003), www.opticsexpress.org .
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Sketch of the three-dimensional lateral shearing interferometer. After the light is reflected back from the front surface of the tear, the first glass wedge produces two horizontally sheared and tilted copies of the incident beam by reflection and a third copy by transmission. The second wedge allows the first pair of copies of the beam to go through unchanged, while on reflection it produces a second pair of copies of the beam carrying information from the eye, sheared and tilted in the perpendicular direction. The superscript in the lenses indicates focal length in millimeters. ND, neutral-density; PBS, polarizing beam splitter.

Fig. 2
Fig. 2

Estimated normalized intensity and wrapped phase maps (third and fourth columns respectively) extracted from the raw lateral shearing interferograms on the left column. The second column shows a two-dimensional view of the corresponding interferogram spectra. From top to bottom: normal smooth front tear surface, typical postblink rough tear surface, surface with small bubbles, and eyelid-produced bumps on the tear topography.

Fig. 3
Fig. 3

As in Fig. 2. From top to bottom: undulated tear surface due to blink prevention, tear breakup, and two extremely rough precontact lens tear surfaces.

Fig. 4
Fig. 4

Estimated wave-front aberration maps from tear lateral shearing interferograms. The spacing between contours is λ/14 with λ = 632.8 nm, and the number in the bottom left corner of each map is the wave-front rms. Each column corresponds to a different subject, indicated on top. The bottom rows show the aberration maps that would be obtained if only one of the pair of interferograms was used (VS and HS for vertical and horizontal shearing, respectively) and the top row if both interferograms are used.

Fig. 5
Fig. 5

Glass wedge geometry and angle definition for reflected rays.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

ϕ = 2 π λ ( 2 t ) ,
I ( r ) = I 0 ( r ) + I 0 ( r + s ) + 2 [ I 0 ( r ) I 0 ( r + s ) ] 1 / 2 cos [ ϕ ( r + s ) - ϕ ( r ) ] ,
I ( r ) = I 0 ( r ) + I 0 ( r + s ) + 2 [ I 0 ( r ) I 0 ( r + s ) ] 1 / 2 cos [ ϕ ( r + s ) - ϕ ( r ) + 2 π f c · r ] .
I ( r ) filtered = 2 [ I 0 ( r ) I 0 ( r + s ) ] 1 / 2 exp { ± i [ ϕ ( r + s ) - ϕ ( r ) } ,
2 = i ,     j { [ Δ x ψ u ( i ,     j ) - Δ x ψ w ( i ,     j ) ] 2 + [ Δ y ψ u ( i ,     j ) - Δ y ψ w ( i ,     j ) ] 2 } ,
δ 2 = i ,     j { [ ϕ ( i + s x ,     j ) - ϕ ( i ,     j ) - ψ u x ( i ,     j ) ] 2 + [ ϕ ( i ,     j + s y ) - ϕ ( i ,     j ) - ψ u y ( i ,     j ) ] 2 } ,
t = | arcsin { n w sin [ 2 δ + arcsin ( sin α 1 n w ) ] } - α 1 | ,
s sin [ 2 arcsin ( sin α 1 n w ) ] cos - 2 [ arcsin ( sin α 1 n w ) ] δ A O ¯ ,
D s = 2 s max - s min s max + s min ,
D s = w A O ¯ mean
T > w A O ¯ mean
I ( r ) = E T ( r ) + E T ( r + s ) exp ( 2 π i f · s ) + E R ( r ) + E R ( r + s ) exp ( 2 π i f · s ) 2 ,
ϕ rec ( r ) = arctan ( I T , T sin ϕ T , T + I R , R sin ϕ R , R + I R , T sin ϕ R , T + I R , T sin ϕ T , R I T , T cos ϕ T , T + I R , R cos ϕ R , R + I R , T cos ϕ R , T + I R , T cos ϕ T , R ) ,
ϕ rec ( r ) ϕ T , T ( r ) + { [ sin ϕ R , T ( r ) + sin ϕ T , R ( r ) ] cos ϕ T , T ( r ) - [ cos ϕ R , T ( r ) + cos ϕ T , R ( r ) ] sin ϕ T , T ( r ) } [ I R , T ( r ) I T , T ( r ) ] .
max { ϕ error } 2 [ I R , R ( r ) I T , T ( r ) ] 1 / 2 .

Metrics