Abstract

The possibility of multiple reductions of the distortion of high-resolution monochromats that consist of diffractive and radial gradient-index lenses is shown. The desirable effect is achieved by mutual compensation of various order members. Design parameters and the field performances of objectives that confirm the effectiveness of a method, are presented.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. I. Greisukh, E. G. Ezhov, S. A. Stepanov, “Aberration properties and performance of a new diffractive-gradient-index high-resolution objective,” Appl. Opt. 40, 2730–2735 (2001).
    [CrossRef]
  2. G. I. Greisukh, E. G. Ezhov, S. A. Stepanov, “High-resolution diffraction-gradient objective,” J. Opt. Technol. 68, 212–214 (2001).
    [CrossRef]
  3. G. I. Greisukh, E. G. Ezhov, S. A. Stepanov, “Computer-aided design for gradient-index and diffractive-gradient-index high-resolution objectives,” in Automation, Control, and Information Technology, M. N. Hamza, O. I. Potaturkin, Yu. I. Shokin, eds., proceedings of the IASTED international conference (ACTA Press, Calgary, Canada, 2002), pp. 1–4.
  4. G. I. Greisukh, S. T. Bobrov, S. A. Stepanov, Optics of Diffractive and Gradient-Index Elements and Systems (SPIE Press, Bellingham, Wash., 1997).
  5. P. J. Sands, “Third-order aberrations of inhomogeneous lenses,” J. Opt. Soc. Am. 60, 1436–1443 (1970).
    [CrossRef]
  6. D. T. Moore, P. J. Sands, “Third-order aberrations of inhomogeneous lenses with cylindrical index distributions,” J. Opt. Soc. Am. 61, 1195–1201 (1971).
    [CrossRef]
  7. S. D. Fantone, “Fifth-order aberration theory of gradient-index optics,” J. Opt. Soc. Am. 73, 1149–1161 (1983).
    [CrossRef]
  8. A. Gupta, K. Thyagarjan, I. C. Goyal, A. K. Ghatak, “Theory of fifth-order aberration of graded-index media,” J. Opt. Soc. Am. 66, 1320–1325 (1976).
    [CrossRef]
  9. E. W. Marchand, “Fifth-order analysis of GRIN lenses,” Appl. Opt. 24, 4371–4374 (1985).
    [CrossRef] [PubMed]
  10. E. W. Marchand, “Rapid ray tracing in radial gradients,” Appl. Opt. 27, 465–467 (1988).
    [CrossRef] [PubMed]
  11. F. Bociort, J. Kross, “New ray-tracing method for radial gradient-index lenses,” in Lens and Optical Systems Design, H. Zuegge, ed., Proc. SPIE1780, 216–225 (1993).

2001 (2)

1988 (1)

1985 (1)

1983 (1)

1976 (1)

1971 (1)

1970 (1)

Bobrov, S. T.

G. I. Greisukh, S. T. Bobrov, S. A. Stepanov, Optics of Diffractive and Gradient-Index Elements and Systems (SPIE Press, Bellingham, Wash., 1997).

Bociort, F.

F. Bociort, J. Kross, “New ray-tracing method for radial gradient-index lenses,” in Lens and Optical Systems Design, H. Zuegge, ed., Proc. SPIE1780, 216–225 (1993).

Ezhov, E. G.

G. I. Greisukh, E. G. Ezhov, S. A. Stepanov, “Aberration properties and performance of a new diffractive-gradient-index high-resolution objective,” Appl. Opt. 40, 2730–2735 (2001).
[CrossRef]

G. I. Greisukh, E. G. Ezhov, S. A. Stepanov, “High-resolution diffraction-gradient objective,” J. Opt. Technol. 68, 212–214 (2001).
[CrossRef]

G. I. Greisukh, E. G. Ezhov, S. A. Stepanov, “Computer-aided design for gradient-index and diffractive-gradient-index high-resolution objectives,” in Automation, Control, and Information Technology, M. N. Hamza, O. I. Potaturkin, Yu. I. Shokin, eds., proceedings of the IASTED international conference (ACTA Press, Calgary, Canada, 2002), pp. 1–4.

Fantone, S. D.

Ghatak, A. K.

Goyal, I. C.

Greisukh, G. I.

G. I. Greisukh, E. G. Ezhov, S. A. Stepanov, “Aberration properties and performance of a new diffractive-gradient-index high-resolution objective,” Appl. Opt. 40, 2730–2735 (2001).
[CrossRef]

G. I. Greisukh, E. G. Ezhov, S. A. Stepanov, “High-resolution diffraction-gradient objective,” J. Opt. Technol. 68, 212–214 (2001).
[CrossRef]

G. I. Greisukh, E. G. Ezhov, S. A. Stepanov, “Computer-aided design for gradient-index and diffractive-gradient-index high-resolution objectives,” in Automation, Control, and Information Technology, M. N. Hamza, O. I. Potaturkin, Yu. I. Shokin, eds., proceedings of the IASTED international conference (ACTA Press, Calgary, Canada, 2002), pp. 1–4.

G. I. Greisukh, S. T. Bobrov, S. A. Stepanov, Optics of Diffractive and Gradient-Index Elements and Systems (SPIE Press, Bellingham, Wash., 1997).

Gupta, A.

Kross, J.

F. Bociort, J. Kross, “New ray-tracing method for radial gradient-index lenses,” in Lens and Optical Systems Design, H. Zuegge, ed., Proc. SPIE1780, 216–225 (1993).

Marchand, E. W.

Moore, D. T.

Sands, P. J.

Stepanov, S. A.

G. I. Greisukh, E. G. Ezhov, S. A. Stepanov, “Aberration properties and performance of a new diffractive-gradient-index high-resolution objective,” Appl. Opt. 40, 2730–2735 (2001).
[CrossRef]

G. I. Greisukh, E. G. Ezhov, S. A. Stepanov, “High-resolution diffraction-gradient objective,” J. Opt. Technol. 68, 212–214 (2001).
[CrossRef]

G. I. Greisukh, E. G. Ezhov, S. A. Stepanov, “Computer-aided design for gradient-index and diffractive-gradient-index high-resolution objectives,” in Automation, Control, and Information Technology, M. N. Hamza, O. I. Potaturkin, Yu. I. Shokin, eds., proceedings of the IASTED international conference (ACTA Press, Calgary, Canada, 2002), pp. 1–4.

G. I. Greisukh, S. T. Bobrov, S. A. Stepanov, Optics of Diffractive and Gradient-Index Elements and Systems (SPIE Press, Bellingham, Wash., 1997).

Thyagarjan, K.

Appl. Opt. (3)

J. Opt. Soc. Am. (4)

J. Opt. Technol. (1)

Other (3)

G. I. Greisukh, E. G. Ezhov, S. A. Stepanov, “Computer-aided design for gradient-index and diffractive-gradient-index high-resolution objectives,” in Automation, Control, and Information Technology, M. N. Hamza, O. I. Potaturkin, Yu. I. Shokin, eds., proceedings of the IASTED international conference (ACTA Press, Calgary, Canada, 2002), pp. 1–4.

G. I. Greisukh, S. T. Bobrov, S. A. Stepanov, Optics of Diffractive and Gradient-Index Elements and Systems (SPIE Press, Bellingham, Wash., 1997).

F. Bociort, J. Kross, “New ray-tracing method for radial gradient-index lenses,” in Lens and Optical Systems Design, H. Zuegge, ed., Proc. SPIE1780, 216–225 (1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Diffractive-GRIN objectives: (a) two-DL objective, (b) three-DL objective. EP, entrance pupil; IM, inhomogeneous material; DL, diffractive lens; and SS, spherical surface.

Fig. 2
Fig. 2

Relative distortion at optimal balance between its third-and fifth-order coefficients.

Fig. 3
Fig. 3

Field aberration plots for the optimized variant of a high-resolution objective.

Fig. 4
Fig. 4

Distribution of the wave-front aberration within the exit pupil.

Fig. 5
Fig. 5

Intensity distribution in the diffraction point image.

Tables (7)

Tables Icon

Table 1 Design Parameters of the Objective with Two DLs Corrected for All Third- and Fifth-Order Monochromatic Aberrationsa

Tables Icon

Table 2 Design Parameters of the Objective Corrected for All Third-and Fifth-Order Monochromatic Aberrations at the Significant Optical Power of the Interior DLa

Tables Icon

Table 3 Design Parameters of the Objective Corrected for All Third-and Fifth-Order Monochromatic Aberrations at the Nulled Optical Power of the Interior DLa

Tables Icon

Table 4 Design Parameters of the Objective with Two DLs Corrected for All Aberrations Except Distortiona

Tables Icon

Table 5 Additional Design Parameters and Performance of the Objectives with Two DLs Obtained Beforea and Afterb Optimizationc

Tables Icon

Table 6 Design Parameters of the Objective with Three DLs Corrected for All Aberrations Except Distortiona

Tables Icon

Table 7 Additional Design Parameters and Performance of the Objectives with Three DLs Obtained Beforea and Afterb Optimizationc

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

Ω ( ρ ) = 1 λ 0 d G 0 d ρ ,
G 0 = s DL ( 1 + ρ 2 / s DL 2 ) 1 / 2 - s DL - s DL ( 1 + ρ 2 / s DL 2 ) 1 / 2 + s DL - 1 8 b 3 ρ 4 - 1 16 b 5 ρ 6 - 5 128 b 7 ρ 8 - 21 768 b p ρ 10 -
s DL = ( 1 - β DL ) / Φ DL ,             s DL = ( 1 - β DL ) / β DL Φ DL .
n = p = 0 n p ρ 2 p .
W 0 , 2 , 0 = W 0 , 2 , 0 ( 0 ) + k W 0 , 1 , 0 .
δ y = W 0 , 1 , 0 tan 2 ω + W 0 , 2 , 0 tan 4 ω ,
W 0 , 1 , 0 ( opt ) [ N - ( N 2 + 4 P M ) 1 / 2 ] / 2 P ,
M = [ W 0 , 2 , 0 ( 0 ) tan 2 ω max ] 2 ,
N = 2 M k / W 0 , 2 , 0 ( 0 ) + M ,
P = 0.25 - k tan 2 ω max ,
tan ω ext = { - W 0 , 1 , 0 ( opt ) / 2 [ W 0 , 2 , 0 ( 0 ) + k W 0 , 1 , 0 ( opt ) ] } 1 / 2 ,
δ y max = W 0 , 1 , 0 ( opt ) 2 / 4 [ W 0 , 2 , 0 ( 0 ) + W 0 , 1 , 0 ( opt ) ] .

Metrics