Abstract

The multiconversion processes in optical parametric oscillators based on periodically poled LiNbO3 are investigated. Interpretations based on simultaneous quasi- and birefringent phase matching are presented. Three parametric and three harmonic generation processes in a multigrating periodically poled LiNbO3 crystal were observed. Two of the parametric processes and two of the harmonics were quasi-phase matched, and the other conversion processes were phase matched through birefringence in the crystal. The primary parametric process (ωp → ωs + ωi) was obtained through first-order quasi-phase matching. The other quasi-phase-matched processes occurred within higher orders. The existence of even-order quasi-phase matching in the crystal is due to other than a 50% duty-cycle grating periods. The tuning range for each of the generated waves is obtained and compared with theoretical fittings.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Andrews, Herbert Rabin, C. L. Tang, “Coupled parametric downconversion and upconversion with simultaneous phase matching,” Phys. Rev. Lett. 25, 605–608 (1970).
    [CrossRef]
  2. M. Vaidyanathan, R. C. Eckardt, V. Dominic, L. E. Myers, T. P. Grayson, “Cascaded optical parametric oscillations,” Opt. Exp. 1, 49–53 (1997).
    [CrossRef]
  3. M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer, “Quasi-phase-matched second harmonic: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
    [CrossRef]
  4. X. P. Zhang, J. Hebling, J. Kuhl, W. W. Ruhle, H. Giessen, “Efficient intracavity generation of visible pulses in a femtosecond near-infrared optical parametric oscillator,” Opt. Lett. 26, 2005–2009 (2001).
    [CrossRef]
  5. N. P. Barnes, V. J. Cocoran, “Parametric generation processes: spectral bandwidth and acceptance angles,” Appl. Opt. 15, 696–699 (1976).
    [CrossRef] [PubMed]
  6. W. R. Bosenberg, J. I. Alexander, L. E. Myers, R. W. Wallace, “2.5-W, continuous-wave, 629-nm solid-state laser source,” Opt. Lett. 23, 207–209 (1998).
    [CrossRef]
  7. T. Kartaloğlu, Z. G. Figen, O. Aytür, “Simultaneous phase matching of optical parametric oscillation and second-harmonic generation in aperiodically poled lithium niobate,” J. Opt. Soc. Am. B 20, 343–350 (2003).
    [CrossRef]
  8. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, “Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3,” Opt. Lett. 21, 591–593 (1996).
    [CrossRef] [PubMed]
  9. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553–1555 (1997).
    [CrossRef]
  10. S. Ballard, S. E. Brown, J. S. Browder, “Measurements of the thermal expansion of six optical materials, from room temperature to 250°C,” Appl. Opt. 17, 1152–1154 (1978).
    [CrossRef] [PubMed]
  11. G. C. Bhar, U. Chatterjee, S. Das, “A technique for the calculation of phase-matching angle for type-II noncollinear sum-frequency generation in negative uinaxial crystals,” Opt. Commun 80, 381–384 (1991).
    [CrossRef]
  12. G. J. Edwards, M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum. Electron. 16, 373–375 (1984).
    [CrossRef]
  13. W. Wiechmann, S. Kubota, T. Fukui, H. Masuda, “Refractive-index temperature derivatives of potassium titanyl phosphate,” Opt. Lett. 18, 1208–1210 (1993).
    [CrossRef] [PubMed]
  14. Y. S. Kim, R. T. Smith, “Thermal expansion of lithium tantalate and lithium niobate single crystals,” J. Appl. Phys. 40, 4637–4644 (1969).
    [CrossRef]
  15. D. J. M. Stothard, M. Ebrahimzadeh, M. H. Dunn, “Low-pump-threshold continuous-wave singly resonant optical parametric oscillator,” Opt. Lett. 23, 1895–1897 (1998).
    [CrossRef]
  16. W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, R. L. Byer “Continuous-wave singly resonant optical parametric oscillator based on periodically poled LiNbO3,” Opt. Lett. 21, 713–715 (1996).
    [CrossRef] [PubMed]

2003 (1)

2001 (1)

1998 (2)

1997 (2)

D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553–1555 (1997).
[CrossRef]

M. Vaidyanathan, R. C. Eckardt, V. Dominic, L. E. Myers, T. P. Grayson, “Cascaded optical parametric oscillations,” Opt. Exp. 1, 49–53 (1997).
[CrossRef]

1996 (2)

1993 (1)

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer, “Quasi-phase-matched second harmonic: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

1991 (1)

G. C. Bhar, U. Chatterjee, S. Das, “A technique for the calculation of phase-matching angle for type-II noncollinear sum-frequency generation in negative uinaxial crystals,” Opt. Commun 80, 381–384 (1991).
[CrossRef]

1984 (1)

G. J. Edwards, M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum. Electron. 16, 373–375 (1984).
[CrossRef]

1978 (1)

1976 (1)

1970 (1)

R. A. Andrews, Herbert Rabin, C. L. Tang, “Coupled parametric downconversion and upconversion with simultaneous phase matching,” Phys. Rev. Lett. 25, 605–608 (1970).
[CrossRef]

1969 (1)

Y. S. Kim, R. T. Smith, “Thermal expansion of lithium tantalate and lithium niobate single crystals,” J. Appl. Phys. 40, 4637–4644 (1969).
[CrossRef]

Alexander, J. I.

Andrews, R. A.

R. A. Andrews, Herbert Rabin, C. L. Tang, “Coupled parametric downconversion and upconversion with simultaneous phase matching,” Phys. Rev. Lett. 25, 605–608 (1970).
[CrossRef]

Aytür, O.

Ballard, S.

Barnes, N. P.

Bhar, G. C.

G. C. Bhar, U. Chatterjee, S. Das, “A technique for the calculation of phase-matching angle for type-II noncollinear sum-frequency generation in negative uinaxial crystals,” Opt. Commun 80, 381–384 (1991).
[CrossRef]

Bosenberg, W. R.

Browder, J. S.

Brown, S. E.

Byer, R. L.

Chatterjee, U.

G. C. Bhar, U. Chatterjee, S. Das, “A technique for the calculation of phase-matching angle for type-II noncollinear sum-frequency generation in negative uinaxial crystals,” Opt. Commun 80, 381–384 (1991).
[CrossRef]

Cocoran, V. J.

Das, S.

G. C. Bhar, U. Chatterjee, S. Das, “A technique for the calculation of phase-matching angle for type-II noncollinear sum-frequency generation in negative uinaxial crystals,” Opt. Commun 80, 381–384 (1991).
[CrossRef]

Dominic, V.

M. Vaidyanathan, R. C. Eckardt, V. Dominic, L. E. Myers, T. P. Grayson, “Cascaded optical parametric oscillations,” Opt. Exp. 1, 49–53 (1997).
[CrossRef]

Drobshoff, A.

Dunn, M. H.

Ebrahimzadeh, M.

Eckardt, R. C.

Edwards, G. J.

G. J. Edwards, M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum. Electron. 16, 373–375 (1984).
[CrossRef]

Fejer, M. M.

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, “Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3,” Opt. Lett. 21, 591–593 (1996).
[CrossRef] [PubMed]

M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer, “Quasi-phase-matched second harmonic: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Figen, Z. G.

Fukui, T.

Giessen, H.

Grayson, T. P.

M. Vaidyanathan, R. C. Eckardt, V. Dominic, L. E. Myers, T. P. Grayson, “Cascaded optical parametric oscillations,” Opt. Exp. 1, 49–53 (1997).
[CrossRef]

Hebling, J.

Jundt, D. H.

D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553–1555 (1997).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer, “Quasi-phase-matched second harmonic: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Kartaloglu, T.

Kim, Y. S.

Y. S. Kim, R. T. Smith, “Thermal expansion of lithium tantalate and lithium niobate single crystals,” J. Appl. Phys. 40, 4637–4644 (1969).
[CrossRef]

Kubota, S.

Kuhl, J.

Lawrence, M.

G. J. Edwards, M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum. Electron. 16, 373–375 (1984).
[CrossRef]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer, “Quasi-phase-matched second harmonic: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Masuda, H.

Myers, L. E.

Rabin, Herbert

R. A. Andrews, Herbert Rabin, C. L. Tang, “Coupled parametric downconversion and upconversion with simultaneous phase matching,” Phys. Rev. Lett. 25, 605–608 (1970).
[CrossRef]

Ruhle, W. W.

Smith, R. T.

Y. S. Kim, R. T. Smith, “Thermal expansion of lithium tantalate and lithium niobate single crystals,” J. Appl. Phys. 40, 4637–4644 (1969).
[CrossRef]

Stothard, D. J. M.

Tang, C. L.

R. A. Andrews, Herbert Rabin, C. L. Tang, “Coupled parametric downconversion and upconversion with simultaneous phase matching,” Phys. Rev. Lett. 25, 605–608 (1970).
[CrossRef]

Vaidyanathan, M.

M. Vaidyanathan, R. C. Eckardt, V. Dominic, L. E. Myers, T. P. Grayson, “Cascaded optical parametric oscillations,” Opt. Exp. 1, 49–53 (1997).
[CrossRef]

Wallace, R. W.

Wiechmann, W.

Zhang, X. P.

Appl. Opt. (2)

IEEE J. Quantum Electron. (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer, “Quasi-phase-matched second harmonic: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

J. Appl. Phys. (1)

Y. S. Kim, R. T. Smith, “Thermal expansion of lithium tantalate and lithium niobate single crystals,” J. Appl. Phys. 40, 4637–4644 (1969).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun (1)

G. C. Bhar, U. Chatterjee, S. Das, “A technique for the calculation of phase-matching angle for type-II noncollinear sum-frequency generation in negative uinaxial crystals,” Opt. Commun 80, 381–384 (1991).
[CrossRef]

Opt. Exp. (1)

M. Vaidyanathan, R. C. Eckardt, V. Dominic, L. E. Myers, T. P. Grayson, “Cascaded optical parametric oscillations,” Opt. Exp. 1, 49–53 (1997).
[CrossRef]

Opt. Lett. (7)

Opt. Quantum. Electron. (1)

G. J. Edwards, M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum. Electron. 16, 373–375 (1984).
[CrossRef]

Phys. Rev. Lett. (1)

R. A. Andrews, Herbert Rabin, C. L. Tang, “Coupled parametric downconversion and upconversion with simultaneous phase matching,” Phys. Rev. Lett. 25, 605–608 (1970).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Schematic of the experimental configuration. A cw Nd:YAG laser is used to pump the OPO. The OPO linear two-mirror cavity contains a multigrating PPLN crystal. The PPLN periods range from 28.5 to 29.9 µm. A dichroic mirror is used to separate the pump beam from the rest of the outputs. The visible and near-infrared spectrum are separated by a prism and then measured. The idler is filtered by use of a germanium filter (not shown).

Fig. 2
Fig. 2

Signal power versus cavity length. The cavity length could be adjusted within the range shown to increase the efficiency of the simultaneous BPM processes and at the same time to maintain efficient QPM processes. The large optimum range is explained in terms of severe change in the duty cycle in the grating period and from one period to another in the crystal.

Fig. 3
Fig. 3

Schematic of the PPLN front face. As the pump enters the crystal it separates into two perpendicular components; angle θ is small. Most of the pump is polarized along the optical axis of the crystal.

Fig. 4
Fig. 4

Combination of pump and signal wavelength under noncritical QPM conditions with ∂Δk/∂λp = 0. The inset is an enlarged view of these combinations around the 1.064 µm pump line. The poling period values required to quasi-phase match the primary process with this line at various temperatures are indicated in the inset.

Fig. 5
Fig. 5

Calculation of acceptance bandwidths for the pump and the signal in the primary conversion process. Note that the pump has a larger spectral bandwidth than the signal.

Fig. 6
Fig. 6

Measured wavelength of the visible and infrared spectrum of the OPO. The peaks indicated in the spectrum are the wavelengths of the 1, signal SHG; 2, SFM of the pump and signal; 3, pump SHG; 4, signal THG; and 5, SFM of the signal SHG and the pump.

Fig. 7
Fig. 7

Calculation of the spectral acceptance bandwidth from the SHG of the signal wavelength. The bandwidth is very small but the process can still occur within these bandwidths.

Fig. 8
Fig. 8

Calculations of the temperature acceptance bandwidth for the signal SHG wavelengths. The relatively large bandwidths indicate the low efficiency of this process.

Fig. 9
Fig. 9

Calculation of acceptance bandwidths for the pump and the signal in the SFM conversion process. Both signal and pump have a small bandwidth for this process; however, the process still occurs under these restrictions.

Fig. 10
Fig. 10

Calculation of the temperature acceptance bandwidths for the SFM of the signal and the pump. It is clear from the extraordinarily wide bandwidths that the process is insensitive to the temperature changes especially around the pump central wavelength of 1.064 µm.

Fig. 11
Fig. 11

SFM of the pump and signal versus the grating period. The theoretical values were obtained using the Sellmeier equations given in Ref. 9.

Fig. 12
Fig. 12

Calculation of the intersection points of Eqs. (9) and (10) in the THG process. The intersection of the lines with the same line style gives the value of the grating period at which the THG process takes place. The lower horizontal lines were plotted using Eq. (10) with m = 4 and the upper ones with m = 5.

Fig. 13
Fig. 13

Tuning curves for higher-order QPM multiconversion processes. The squares and triangles represent the measured values. The solid curves were calculated assuming that the pump wavelength is constant (1.064 µm) and then by use of the Jundt dispersion relation (Ref. 9) in the calculations.

Fig. 14
Fig. 14

Calculation of the intersection points of Eqs. (9) and (11) in the SFM process. The intersection of the lines with the same line style gives the value of the grating period at which the THG process takes place. The lower horizontal lines were plotted using Eq. (11) with m = 8 and the upper ones with m = 7.

Fig. 15
Fig. 15

Calculated relative conversion efficiency (η) versus poling period duty cycle at some of the higher-order QPM processes.

Tables (3)

Tables Icon

Table 1 Wavelengths of Fig. 6 with Their Related Conversion Process and Phase-Matching Type

Tables Icon

Table 2 Intersection Points of the Curves in Figs. 12 and 14a

Tables Icon

Table 3 Data of the Measured Power for the Various Conversion Processes at 120 °C by use of the 29.7 µm Grating Period in the PPLN Crystal

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

[ sin ( Δ k l / 2 ) Δ k l / 2 ] 2 ,
Δ k = Δ k | ξ 0 + Δ k ξ | ξ 0 ( Δ ξ ) + 1 2 2 Δ k ξ 2 | ξ 0 ( Δ ξ ) 2 + .
Δ ξ L = 1.772 π | Δ k ξ | ξ 0 | 1 ,
Δ ξ L 1 / 2 = 7.088 π ( | 2 Δ k ξ 2 | ξ 0 | 1 ) 1 / 2 .
ω p e ω s e + ω i e ( first-order QPM ) ,
Δ T FWHM L = 0.4429 λ s | n 2 w s T | T 0 n ω s T | T 0 α ( n 2 ω n ω ) | 1 ,
n s e ( φ ) λ s + n p 0 λ p = n SFM e ( φ ) λ SFM ,
Δ T FWHM L = 2 λ s 2.25 | n s T + λ s λ p n p T λ s λ SFM n SFM T | 1 ,
Λ ( T ) = Λ 25 ° C [ 1 + α ( T 25 ° C ) + β ( T 25 ° C ) 2 ] ,
Λ ( T ) = m λ f ( T ) 3 n THG ( T ) 2 n SHG ( T ) 2 n f ( T ) ,
Λ ( T ) = m n SF M ( T ) λ SF M n SHG ( T ) λ SHG n pump ( T ) λ pump ,

Metrics