Abstract

Principal-components analysis of a new set of highly resolved (<1 nm) fluorescence cross-section spectra excited at 354.7 nm over the 370–646 nm band has been used to demonstrate the potential ability of UV standoff lidars to discriminate among particular biological warfare agents and simulants over short ranges. The remapped spectra produced by this technique from Bacillus globigii (Bg) and Bacillus anthracis (Ba) spores were sufficiently different to allow them to be cleanly separated, and the Ba spectra obtained from Sterne and Ames strain spores were distinguishable. These patterns persisted as the spectral resolution was subsequently degraded in processing from ~1 to 34 nm. This is to the author’s knowledge the first time that resolved fluorescence spectra from biological warfare agents have been speciated or shown to be distinguishably different from those normally used surrogates by optical spectroscopy.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Eversole, A. Sanchez, D. Sickenberger, “Optical detection capabilities for biological and chemical agent aerosols,” presented at the Biodetection Technologies Workshop, Alexandria, Va., 1 May 2002.
  2. R. Goodacre, B. Shann, R. J. Gilbert, E. M. Timmins, A. C. McGovern, B. K. Alsberg, D. B. Kell, N. A. Logan, “Detection of the dipicolinic acid biomarker in ‘Bacillus’ spores using Curie-point pyrolysis mass spectrometry and Fourier transform infrared spectroscopy,” Anal. Chem. 72, 119–127 (2000).
    [CrossRef] [PubMed]
  3. J. Eversole, Naval Research Laboratory, 4555 Overlook Avenue, SW, Washington, D.C. 20375 (personal communication, 2003).
  4. A. C. Samuels, F. C. DeLucia, K. L. McNesby, A. W. Miziolek, “Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: initial studies of discrimination potential,” Appl. Opt. 42, 6205–6209 (2003).
    [CrossRef] [PubMed]
  5. J. D. Hybl, G. A. Lithgow, S. G. Buckley, “Laser-induced breakdown spectroscopy detection and classification of biological aerosols,” Appl. Spectrosc. 57, 1207–1215 (2003).
    [CrossRef] [PubMed]
  6. D. Descroix, I. Gustafson, H. Lancelin, G. Olofs son, S. Rannar, T. Tjarnhage, “Biological aerosol classification with spectroscopic flame photometry and principal component analysis,” presented at the Eighth International Symposium on Protection Against Chemical and Biological Warfare Agents, Gothenburg, Sweden, 3 June 2004.
  7. T. Tjarnhage, M. Stromqvist, G. Olofsson, D. Squirrell, J. Burke, J. Ho, M. Spence, “Multivariate data analysis of fluorescence signals from biological aerosols,” Field Anal. Chem. Technol. 5, 171–176 (2001).
    [CrossRef]
  8. C. B. Carlisle, J. E. van der Laan, S. A. Carlisle, “Measurement of absolutely calibrated UV–LIF cross sections of aerosolized agents of biological origin,” (SRI International, Menlo Park Calif.1997).
  9. M. J. Shaw, R. J. Byers, J. Strawbridge, D. Ondercin, “Standoff ambient breeze tunnel: design, construction and characterization,” presented at the Sixth Joint Conference on Standoff Detection for Chemical and Biological Defense, Williamsburg, Va., 27 October 2004.
  10. P. Hargis, Sandia National Laboratories, 1515 Eubank Boulevard, SE, Albuquerque, N. M. 87123 (personal communication, 2004).

2003 (2)

2001 (1)

T. Tjarnhage, M. Stromqvist, G. Olofsson, D. Squirrell, J. Burke, J. Ho, M. Spence, “Multivariate data analysis of fluorescence signals from biological aerosols,” Field Anal. Chem. Technol. 5, 171–176 (2001).
[CrossRef]

2000 (1)

R. Goodacre, B. Shann, R. J. Gilbert, E. M. Timmins, A. C. McGovern, B. K. Alsberg, D. B. Kell, N. A. Logan, “Detection of the dipicolinic acid biomarker in ‘Bacillus’ spores using Curie-point pyrolysis mass spectrometry and Fourier transform infrared spectroscopy,” Anal. Chem. 72, 119–127 (2000).
[CrossRef] [PubMed]

Alsberg, B. K.

R. Goodacre, B. Shann, R. J. Gilbert, E. M. Timmins, A. C. McGovern, B. K. Alsberg, D. B. Kell, N. A. Logan, “Detection of the dipicolinic acid biomarker in ‘Bacillus’ spores using Curie-point pyrolysis mass spectrometry and Fourier transform infrared spectroscopy,” Anal. Chem. 72, 119–127 (2000).
[CrossRef] [PubMed]

Buckley, S. G.

Burke, J.

T. Tjarnhage, M. Stromqvist, G. Olofsson, D. Squirrell, J. Burke, J. Ho, M. Spence, “Multivariate data analysis of fluorescence signals from biological aerosols,” Field Anal. Chem. Technol. 5, 171–176 (2001).
[CrossRef]

Byers, R. J.

M. J. Shaw, R. J. Byers, J. Strawbridge, D. Ondercin, “Standoff ambient breeze tunnel: design, construction and characterization,” presented at the Sixth Joint Conference on Standoff Detection for Chemical and Biological Defense, Williamsburg, Va., 27 October 2004.

Carlisle, C. B.

C. B. Carlisle, J. E. van der Laan, S. A. Carlisle, “Measurement of absolutely calibrated UV–LIF cross sections of aerosolized agents of biological origin,” (SRI International, Menlo Park Calif.1997).

Carlisle, S. A.

C. B. Carlisle, J. E. van der Laan, S. A. Carlisle, “Measurement of absolutely calibrated UV–LIF cross sections of aerosolized agents of biological origin,” (SRI International, Menlo Park Calif.1997).

DeLucia, F. C.

Descroix, D.

D. Descroix, I. Gustafson, H. Lancelin, G. Olofs son, S. Rannar, T. Tjarnhage, “Biological aerosol classification with spectroscopic flame photometry and principal component analysis,” presented at the Eighth International Symposium on Protection Against Chemical and Biological Warfare Agents, Gothenburg, Sweden, 3 June 2004.

Eversole, J.

J. Eversole, Naval Research Laboratory, 4555 Overlook Avenue, SW, Washington, D.C. 20375 (personal communication, 2003).

J. Eversole, A. Sanchez, D. Sickenberger, “Optical detection capabilities for biological and chemical agent aerosols,” presented at the Biodetection Technologies Workshop, Alexandria, Va., 1 May 2002.

Gilbert, R. J.

R. Goodacre, B. Shann, R. J. Gilbert, E. M. Timmins, A. C. McGovern, B. K. Alsberg, D. B. Kell, N. A. Logan, “Detection of the dipicolinic acid biomarker in ‘Bacillus’ spores using Curie-point pyrolysis mass spectrometry and Fourier transform infrared spectroscopy,” Anal. Chem. 72, 119–127 (2000).
[CrossRef] [PubMed]

Goodacre, R.

R. Goodacre, B. Shann, R. J. Gilbert, E. M. Timmins, A. C. McGovern, B. K. Alsberg, D. B. Kell, N. A. Logan, “Detection of the dipicolinic acid biomarker in ‘Bacillus’ spores using Curie-point pyrolysis mass spectrometry and Fourier transform infrared spectroscopy,” Anal. Chem. 72, 119–127 (2000).
[CrossRef] [PubMed]

Gustafson, I.

D. Descroix, I. Gustafson, H. Lancelin, G. Olofs son, S. Rannar, T. Tjarnhage, “Biological aerosol classification with spectroscopic flame photometry and principal component analysis,” presented at the Eighth International Symposium on Protection Against Chemical and Biological Warfare Agents, Gothenburg, Sweden, 3 June 2004.

Hargis, P.

P. Hargis, Sandia National Laboratories, 1515 Eubank Boulevard, SE, Albuquerque, N. M. 87123 (personal communication, 2004).

Ho, J.

T. Tjarnhage, M. Stromqvist, G. Olofsson, D. Squirrell, J. Burke, J. Ho, M. Spence, “Multivariate data analysis of fluorescence signals from biological aerosols,” Field Anal. Chem. Technol. 5, 171–176 (2001).
[CrossRef]

Hybl, J. D.

Kell, D. B.

R. Goodacre, B. Shann, R. J. Gilbert, E. M. Timmins, A. C. McGovern, B. K. Alsberg, D. B. Kell, N. A. Logan, “Detection of the dipicolinic acid biomarker in ‘Bacillus’ spores using Curie-point pyrolysis mass spectrometry and Fourier transform infrared spectroscopy,” Anal. Chem. 72, 119–127 (2000).
[CrossRef] [PubMed]

Lancelin, H.

D. Descroix, I. Gustafson, H. Lancelin, G. Olofs son, S. Rannar, T. Tjarnhage, “Biological aerosol classification with spectroscopic flame photometry and principal component analysis,” presented at the Eighth International Symposium on Protection Against Chemical and Biological Warfare Agents, Gothenburg, Sweden, 3 June 2004.

Lithgow, G. A.

Logan, N. A.

R. Goodacre, B. Shann, R. J. Gilbert, E. M. Timmins, A. C. McGovern, B. K. Alsberg, D. B. Kell, N. A. Logan, “Detection of the dipicolinic acid biomarker in ‘Bacillus’ spores using Curie-point pyrolysis mass spectrometry and Fourier transform infrared spectroscopy,” Anal. Chem. 72, 119–127 (2000).
[CrossRef] [PubMed]

McGovern, A. C.

R. Goodacre, B. Shann, R. J. Gilbert, E. M. Timmins, A. C. McGovern, B. K. Alsberg, D. B. Kell, N. A. Logan, “Detection of the dipicolinic acid biomarker in ‘Bacillus’ spores using Curie-point pyrolysis mass spectrometry and Fourier transform infrared spectroscopy,” Anal. Chem. 72, 119–127 (2000).
[CrossRef] [PubMed]

McNesby, K. L.

Miziolek, A. W.

Olofs son, G.

D. Descroix, I. Gustafson, H. Lancelin, G. Olofs son, S. Rannar, T. Tjarnhage, “Biological aerosol classification with spectroscopic flame photometry and principal component analysis,” presented at the Eighth International Symposium on Protection Against Chemical and Biological Warfare Agents, Gothenburg, Sweden, 3 June 2004.

Olofsson, G.

T. Tjarnhage, M. Stromqvist, G. Olofsson, D. Squirrell, J. Burke, J. Ho, M. Spence, “Multivariate data analysis of fluorescence signals from biological aerosols,” Field Anal. Chem. Technol. 5, 171–176 (2001).
[CrossRef]

Ondercin, D.

M. J. Shaw, R. J. Byers, J. Strawbridge, D. Ondercin, “Standoff ambient breeze tunnel: design, construction and characterization,” presented at the Sixth Joint Conference on Standoff Detection for Chemical and Biological Defense, Williamsburg, Va., 27 October 2004.

Rannar, S.

D. Descroix, I. Gustafson, H. Lancelin, G. Olofs son, S. Rannar, T. Tjarnhage, “Biological aerosol classification with spectroscopic flame photometry and principal component analysis,” presented at the Eighth International Symposium on Protection Against Chemical and Biological Warfare Agents, Gothenburg, Sweden, 3 June 2004.

Samuels, A. C.

Sanchez, A.

J. Eversole, A. Sanchez, D. Sickenberger, “Optical detection capabilities for biological and chemical agent aerosols,” presented at the Biodetection Technologies Workshop, Alexandria, Va., 1 May 2002.

Shann, B.

R. Goodacre, B. Shann, R. J. Gilbert, E. M. Timmins, A. C. McGovern, B. K. Alsberg, D. B. Kell, N. A. Logan, “Detection of the dipicolinic acid biomarker in ‘Bacillus’ spores using Curie-point pyrolysis mass spectrometry and Fourier transform infrared spectroscopy,” Anal. Chem. 72, 119–127 (2000).
[CrossRef] [PubMed]

Shaw, M. J.

M. J. Shaw, R. J. Byers, J. Strawbridge, D. Ondercin, “Standoff ambient breeze tunnel: design, construction and characterization,” presented at the Sixth Joint Conference on Standoff Detection for Chemical and Biological Defense, Williamsburg, Va., 27 October 2004.

Sickenberger, D.

J. Eversole, A. Sanchez, D. Sickenberger, “Optical detection capabilities for biological and chemical agent aerosols,” presented at the Biodetection Technologies Workshop, Alexandria, Va., 1 May 2002.

Spence, M.

T. Tjarnhage, M. Stromqvist, G. Olofsson, D. Squirrell, J. Burke, J. Ho, M. Spence, “Multivariate data analysis of fluorescence signals from biological aerosols,” Field Anal. Chem. Technol. 5, 171–176 (2001).
[CrossRef]

Squirrell, D.

T. Tjarnhage, M. Stromqvist, G. Olofsson, D. Squirrell, J. Burke, J. Ho, M. Spence, “Multivariate data analysis of fluorescence signals from biological aerosols,” Field Anal. Chem. Technol. 5, 171–176 (2001).
[CrossRef]

Strawbridge, J.

M. J. Shaw, R. J. Byers, J. Strawbridge, D. Ondercin, “Standoff ambient breeze tunnel: design, construction and characterization,” presented at the Sixth Joint Conference on Standoff Detection for Chemical and Biological Defense, Williamsburg, Va., 27 October 2004.

Stromqvist, M.

T. Tjarnhage, M. Stromqvist, G. Olofsson, D. Squirrell, J. Burke, J. Ho, M. Spence, “Multivariate data analysis of fluorescence signals from biological aerosols,” Field Anal. Chem. Technol. 5, 171–176 (2001).
[CrossRef]

Timmins, E. M.

R. Goodacre, B. Shann, R. J. Gilbert, E. M. Timmins, A. C. McGovern, B. K. Alsberg, D. B. Kell, N. A. Logan, “Detection of the dipicolinic acid biomarker in ‘Bacillus’ spores using Curie-point pyrolysis mass spectrometry and Fourier transform infrared spectroscopy,” Anal. Chem. 72, 119–127 (2000).
[CrossRef] [PubMed]

Tjarnhage, T.

T. Tjarnhage, M. Stromqvist, G. Olofsson, D. Squirrell, J. Burke, J. Ho, M. Spence, “Multivariate data analysis of fluorescence signals from biological aerosols,” Field Anal. Chem. Technol. 5, 171–176 (2001).
[CrossRef]

D. Descroix, I. Gustafson, H. Lancelin, G. Olofs son, S. Rannar, T. Tjarnhage, “Biological aerosol classification with spectroscopic flame photometry and principal component analysis,” presented at the Eighth International Symposium on Protection Against Chemical and Biological Warfare Agents, Gothenburg, Sweden, 3 June 2004.

van der Laan, J. E.

C. B. Carlisle, J. E. van der Laan, S. A. Carlisle, “Measurement of absolutely calibrated UV–LIF cross sections of aerosolized agents of biological origin,” (SRI International, Menlo Park Calif.1997).

Anal. Chem. (1)

R. Goodacre, B. Shann, R. J. Gilbert, E. M. Timmins, A. C. McGovern, B. K. Alsberg, D. B. Kell, N. A. Logan, “Detection of the dipicolinic acid biomarker in ‘Bacillus’ spores using Curie-point pyrolysis mass spectrometry and Fourier transform infrared spectroscopy,” Anal. Chem. 72, 119–127 (2000).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Spectrosc. (1)

Field Anal. Chem. Technol. (1)

T. Tjarnhage, M. Stromqvist, G. Olofsson, D. Squirrell, J. Burke, J. Ho, M. Spence, “Multivariate data analysis of fluorescence signals from biological aerosols,” Field Anal. Chem. Technol. 5, 171–176 (2001).
[CrossRef]

Other (6)

C. B. Carlisle, J. E. van der Laan, S. A. Carlisle, “Measurement of absolutely calibrated UV–LIF cross sections of aerosolized agents of biological origin,” (SRI International, Menlo Park Calif.1997).

M. J. Shaw, R. J. Byers, J. Strawbridge, D. Ondercin, “Standoff ambient breeze tunnel: design, construction and characterization,” presented at the Sixth Joint Conference on Standoff Detection for Chemical and Biological Defense, Williamsburg, Va., 27 October 2004.

P. Hargis, Sandia National Laboratories, 1515 Eubank Boulevard, SE, Albuquerque, N. M. 87123 (personal communication, 2004).

J. Eversole, Naval Research Laboratory, 4555 Overlook Avenue, SW, Washington, D.C. 20375 (personal communication, 2003).

D. Descroix, I. Gustafson, H. Lancelin, G. Olofs son, S. Rannar, T. Tjarnhage, “Biological aerosol classification with spectroscopic flame photometry and principal component analysis,” presented at the Eighth International Symposium on Protection Against Chemical and Biological Warfare Agents, Gothenburg, Sweden, 3 June 2004.

J. Eversole, A. Sanchez, D. Sickenberger, “Optical detection capabilities for biological and chemical agent aerosols,” presented at the Biodetection Technologies Workshop, Alexandria, Va., 1 May 2002.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Normalized fluorescence cross-section spectra based on fitted standoff measurements: (a) Bg spores, (b) remaining fit spectra in Table 1.

Fig. 2
Fig. 2

Normalized fluorescence cross-section spectra measured in the laboratory: (a) Ba spores, (b) remaining norm spectra in Table 1.

Fig. 3
Fig. 3

Notional illustration of the PCA process.

Fig. 4
Fig. 4

Score plot for unrotated principal-components solution based on all spectra in the PC1–PC2 plane.

Fig. 5
Fig. 5

Comparison of normalized standoff spectra from irradiated Ba spores and Ft cells with identically prepared live-agent cuvette spectra from the same strains.

Fig. 6
Fig. 6

Score plot sorted by biological group for the unrotated solution determined from live-agent spectra.

Fig. 7
Fig. 7

Score plot labeled by organism viability for the unrotated solution shown in Fig. 6.

Fig. 8
Fig. 8

Coefficients for the first two principal-component polynomials from 10 point averaged data.

Fig. 9
Fig. 9

Reduced resolution score plots for 10, 20, and 40 point bin averaging.

Tables (2)

Tables Icon

Table 1 Origin and Labeling of Analyzed Fluorescence Cross-Section Spectra

Tables Icon

Table 2 Coefficients of the Four Principal-Component Polynomials for 10 Point Averaged Spectra

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P C i = j a i j σ ¯ j ,

Metrics