Abstract

Simultaneous planar laser-induced incandescence, hydroxyl radical planar laser-induced fluorescence, and droplet Mie scattering are used to study the instantaneous flame structure and soot formation process in an atmospheric pressure, swirl-stabilized, liquid-fueled, model gas-turbine combustor. Optimal excitation and detection schemes to maximize single-shot signals and avoid interferences from soot-laden flame emission are discussed. The data indicate that rich pockets of premixed fuel and air along the interface between the spray flame and the recirculation zone serve as primary sites for soot inception. Intermittent large-scale structures and local equivalence ratio are also found to play an important role in soot formation.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W.-W. Kim, S. Menon, H. Mongia, “Large-eddy simulation of a gas turbine combustor flow,” Combust. Sci. Technol. 143, 25–62 (1999).
    [CrossRef]
  2. S. Wang, S.-Y. Hsieh, V. Yang, “Numerical simulation of gas turbine swirl-stabilized injector dynamics,” paper AIAA-2001-0334 presented at the Thirty-Ninth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 8–12 January 2001 (American Institute of Aeronautics and Astronautics, Reston, Va., 2001).
  3. M. V. Heitor, J. H. Whitelaw, “Velocity, temperature, and species characteristics of the flow in a gas-turbine combustor,” Combust. Flame 64, 1–32 (1986).
    [CrossRef]
  4. A. F. Bicen, D. G. N. Tse, J. H. Whitelaw, “Combustion characteristics of a model can-type combustor,” Combust. Flame 80, 111–125 (1990).
    [CrossRef]
  5. T. J. Held, M. A. Mueller, S.-C. Li, H. Mongia, “Data-driven model for NOx, CO and UHC emissions for a dry low emissions gas turbine combustor,” paper AIAA-2001-3425 presented at the Thirty-Ninth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 8–12 January 2001 (American Institute of Aeronautics and Astronautics, Reston, Va., 2001).
  6. W. A. Eckerle, “Soot loading in a generic gas turbine combustor,” paper AIAA-87-0297 presented at the Twenty-Fifth Aerospace Sciences Meeting, Reno, Nev., 12–15 January 1987 (American Institute of Aeronautics and Astronautics, New York, 1987).
  7. T. C. Fang, C. M. Megaridis, W. A. Sowa, G. S. Samuelsen, “Soot morphology in a liquid-fueled swirl-stabilized combustor,” Combust. Flame 112, 312–328 (1998).
    [CrossRef]
  8. A. H. Lefebvre, Gas Turbine Combustion, 2nd ed. (Taylor & Francis, Philadelphia, Pa., 1999).
  9. J. D. Black, “Laser-induced incandescence measurements of particles in aero-engine exhausts,” in Conference on Environmental Sensing and Applications, M. R. Carleer, M. Hilton, T. Lamp, R. Reuter, G. M. Russworm, K. Schaefer, K. Weber, K. C. H. Weitkamp, J.-P. Wolf, L. Woppowa, eds., Proc. SPIE3821, 209–215 (1999).
    [CrossRef]
  10. T. P. Jenkins, J. L. Bartholomew, P. A. DeBarber, P. Yang, J. M. Seitzman, R. P. Howard, “A laser-induced incandescence system for measuring soot flux in aircraft engine exhausts,” paper AIAA-2002-3736 presented at the Fortieth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 14–17 January 2002. (American Institute of Aeronautics and Astronautics, Reston, Va., 2002).
  11. R. J. Santoro, C. R. Shaddix, “Laser-induced incandescence,” in Applied Combustion Diagnostics,K. Kohse-Höinghaus, J. B. Jeffries, eds. (Taylor & Francis, New York, 2002), Chap. 9.
  12. A. Leipertz, F. Ossler, M. Aldén, “PAH and soot diagnostics by optical techniques,” in Applied Combustion Diagnostics,K. Kohse-Höinghaus, J. B. Jeffries, eds. (Taylor & Francis, New York, 2002), Chap. 13.
  13. Y.-H. Won, T. Kamimoto, H. Kobayashi, H. Kosaka, “2-D soot visualization in unsteady spray flame by means of laser sheet scattering technique,” (Society of Automotive Engineers, Warrendale, Pa., 1991).
    [CrossRef]
  14. C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air diffusion flame,” Combust. Flame 99, 723–732 (1994).
    [CrossRef]
  15. B. Quay, T.-W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
    [CrossRef]
  16. R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59, 445–452 (1994).
    [CrossRef]
  17. M. S. Brown, T. R. Meyer, J. R. Gord, V. M. Belovich, W. M. Roquemore, “Laser-induced incandescence measurements in the reaction zone of a model gas turbine combustor,” paper AIAA-2002-0393 presented at the Fortieth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 14–17 January 2002 (American Institute of Aeronautics and Astronautics, Reston, Va., 2002).
  18. K. C. Smyth, J. H. Miller, R. C. Dorfman, W. G. Mallard, R. J. Santoro, “Soot inception in a methane/air diffusion flame as characterized by detailed species profiles,” Combust. Flame 62, 157–181 (1985).
    [CrossRef]
  19. F. Cignoli, S. Benecchi, Z. Giorgio, “Simultaneous one-dimensional visualization of OH polycyclic aromatic hydrocarbons, and soot in a laminar diffusion flame,” Opt. Lett. 17, 229–231 (1992).
    [CrossRef] [PubMed]
  20. W.-P. Shih, J. G. Lee, D. A. Santavicca, “Stability and emissions characteristics of a lean premixed gas turbine combustor,” in the Twenty-Sixth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), pp. 2771–2778.
    [CrossRef]
  21. R. E. Foglesong, T. R. Frazier, L. M. Flamand, J. E. Peters, R. P. Lucht, “Flame structure and emissions characteristics of a lean premixed gas turbine combustor,” paper AIAA-99-2399 presented at the Thirty-Seventh Aerospace Sciences Meeting, Reno, Nev., 10–14 January 1999 (American Institute of Aeronautics and Astronautics, Reston, Va., 1999).
  22. R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, “Laser-saturated fluorescence measurements of OH concentration in flames,” Combust. Flame 50, 189–205 (1983).
    [CrossRef]
  23. C. D. Carter, G. B. King, N. M. Laurendeau, “Saturated fluorescence measurements of the hydroxyl radical in laminar high-pressure C2H6/O2/N2 flames,” Appl. Opt. 31, 1511–1522 (1992).
    [CrossRef] [PubMed]
  24. K. Lee, B. Chehroudi, “Structure of a swirl-stabilized spray flame relevant to gas turbine and furnaces,” J. Propul. Power 11, 1110–1117 (1995).
    [CrossRef]
  25. S. Roy, T. R. Meyer, R. P. Lucht, V. M. Belovich, E. Corporan, J. R. Gord, “Temperature and CO2-concentration measurements in the exhaust stream of a liquid-fueled combustor using dual-pump coherent anti-Stokes Raman scattering (CARS) spectroscopy,” Combust. Flame 138, 273–284 (2004).
    [CrossRef]
  26. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon & Breach, Dordrecht, The Netherlands, 1996).
  27. S. R. Turns, An Introduction to Combustion (McGraw-Hill, New York, 1996).
  28. M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, “Collisional quenching of CH(A), OH(A), and NO(A) in low pressure hydrocarbon flames,” Combust. Flame 114, 502–514 (1998).
    [CrossRef]
  29. T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995).
    [CrossRef] [PubMed]
  30. D. J. Bryce, N. Ladommatos, H. Zhao, “Quantitative investigation of soot distribution by laser-induced incandescence,” Appl. Opt. 39, 5012–5022 (2000).
    [CrossRef]
  31. H. A. Michelsen, “Understanding and predicting the temporal response of laser-induced incandescence from carbonaceous particles,” J. Chem. Phys. 118, 7012–7045 (2003).
    [CrossRef]
  32. D. L. Urban, G. M. Faeth, “Soot research in combustion science: introduction and review of current work,” paper AIAA-2001-0322 presented at the Thirty-Ninth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 8–12 January 2001 (American Institute of Aeronautics and Astronautics, Reston, VA, 2001).

2004 (1)

S. Roy, T. R. Meyer, R. P. Lucht, V. M. Belovich, E. Corporan, J. R. Gord, “Temperature and CO2-concentration measurements in the exhaust stream of a liquid-fueled combustor using dual-pump coherent anti-Stokes Raman scattering (CARS) spectroscopy,” Combust. Flame 138, 273–284 (2004).
[CrossRef]

2003 (1)

H. A. Michelsen, “Understanding and predicting the temporal response of laser-induced incandescence from carbonaceous particles,” J. Chem. Phys. 118, 7012–7045 (2003).
[CrossRef]

2000 (1)

1999 (1)

W.-W. Kim, S. Menon, H. Mongia, “Large-eddy simulation of a gas turbine combustor flow,” Combust. Sci. Technol. 143, 25–62 (1999).
[CrossRef]

1998 (2)

T. C. Fang, C. M. Megaridis, W. A. Sowa, G. S. Samuelsen, “Soot morphology in a liquid-fueled swirl-stabilized combustor,” Combust. Flame 112, 312–328 (1998).
[CrossRef]

M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, “Collisional quenching of CH(A), OH(A), and NO(A) in low pressure hydrocarbon flames,” Combust. Flame 114, 502–514 (1998).
[CrossRef]

1995 (2)

T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995).
[CrossRef] [PubMed]

K. Lee, B. Chehroudi, “Structure of a swirl-stabilized spray flame relevant to gas turbine and furnaces,” J. Propul. Power 11, 1110–1117 (1995).
[CrossRef]

1994 (3)

C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air diffusion flame,” Combust. Flame 99, 723–732 (1994).
[CrossRef]

B. Quay, T.-W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

1992 (2)

1990 (1)

A. F. Bicen, D. G. N. Tse, J. H. Whitelaw, “Combustion characteristics of a model can-type combustor,” Combust. Flame 80, 111–125 (1990).
[CrossRef]

1986 (1)

M. V. Heitor, J. H. Whitelaw, “Velocity, temperature, and species characteristics of the flow in a gas-turbine combustor,” Combust. Flame 64, 1–32 (1986).
[CrossRef]

1985 (1)

K. C. Smyth, J. H. Miller, R. C. Dorfman, W. G. Mallard, R. J. Santoro, “Soot inception in a methane/air diffusion flame as characterized by detailed species profiles,” Combust. Flame 62, 157–181 (1985).
[CrossRef]

1983 (1)

R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, “Laser-saturated fluorescence measurements of OH concentration in flames,” Combust. Flame 50, 189–205 (1983).
[CrossRef]

Aldén, M.

A. Leipertz, F. Ossler, M. Aldén, “PAH and soot diagnostics by optical techniques,” in Applied Combustion Diagnostics,K. Kohse-Höinghaus, J. B. Jeffries, eds. (Taylor & Francis, New York, 2002), Chap. 13.

Bartholomew, J. L.

T. P. Jenkins, J. L. Bartholomew, P. A. DeBarber, P. Yang, J. M. Seitzman, R. P. Howard, “A laser-induced incandescence system for measuring soot flux in aircraft engine exhausts,” paper AIAA-2002-3736 presented at the Fortieth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 14–17 January 2002. (American Institute of Aeronautics and Astronautics, Reston, Va., 2002).

Belovich, V. M.

S. Roy, T. R. Meyer, R. P. Lucht, V. M. Belovich, E. Corporan, J. R. Gord, “Temperature and CO2-concentration measurements in the exhaust stream of a liquid-fueled combustor using dual-pump coherent anti-Stokes Raman scattering (CARS) spectroscopy,” Combust. Flame 138, 273–284 (2004).
[CrossRef]

M. S. Brown, T. R. Meyer, J. R. Gord, V. M. Belovich, W. M. Roquemore, “Laser-induced incandescence measurements in the reaction zone of a model gas turbine combustor,” paper AIAA-2002-0393 presented at the Fortieth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 14–17 January 2002 (American Institute of Aeronautics and Astronautics, Reston, Va., 2002).

Benecchi, S.

Berg, P. A.

M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, “Collisional quenching of CH(A), OH(A), and NO(A) in low pressure hydrocarbon flames,” Combust. Flame 114, 502–514 (1998).
[CrossRef]

Bicen, A. F.

A. F. Bicen, D. G. N. Tse, J. H. Whitelaw, “Combustion characteristics of a model can-type combustor,” Combust. Flame 80, 111–125 (1990).
[CrossRef]

Black, J. D.

J. D. Black, “Laser-induced incandescence measurements of particles in aero-engine exhausts,” in Conference on Environmental Sensing and Applications, M. R. Carleer, M. Hilton, T. Lamp, R. Reuter, G. M. Russworm, K. Schaefer, K. Weber, K. C. H. Weitkamp, J.-P. Wolf, L. Woppowa, eds., Proc. SPIE3821, 209–215 (1999).
[CrossRef]

Brown, M. S.

M. S. Brown, T. R. Meyer, J. R. Gord, V. M. Belovich, W. M. Roquemore, “Laser-induced incandescence measurements in the reaction zone of a model gas turbine combustor,” paper AIAA-2002-0393 presented at the Fortieth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 14–17 January 2002 (American Institute of Aeronautics and Astronautics, Reston, Va., 2002).

Bryce, D. J.

Carter, C. D.

Chehroudi, B.

K. Lee, B. Chehroudi, “Structure of a swirl-stabilized spray flame relevant to gas turbine and furnaces,” J. Propul. Power 11, 1110–1117 (1995).
[CrossRef]

Cignoli, F.

Corporan, E.

S. Roy, T. R. Meyer, R. P. Lucht, V. M. Belovich, E. Corporan, J. R. Gord, “Temperature and CO2-concentration measurements in the exhaust stream of a liquid-fueled combustor using dual-pump coherent anti-Stokes Raman scattering (CARS) spectroscopy,” Combust. Flame 138, 273–284 (2004).
[CrossRef]

Crosley, D. R.

M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, “Collisional quenching of CH(A), OH(A), and NO(A) in low pressure hydrocarbon flames,” Combust. Flame 114, 502–514 (1998).
[CrossRef]

DeBarber, P. A.

T. P. Jenkins, J. L. Bartholomew, P. A. DeBarber, P. Yang, J. M. Seitzman, R. P. Howard, “A laser-induced incandescence system for measuring soot flux in aircraft engine exhausts,” paper AIAA-2002-3736 presented at the Fortieth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 14–17 January 2002. (American Institute of Aeronautics and Astronautics, Reston, Va., 2002).

Dorfman, R. C.

K. C. Smyth, J. H. Miller, R. C. Dorfman, W. G. Mallard, R. J. Santoro, “Soot inception in a methane/air diffusion flame as characterized by detailed species profiles,” Combust. Flame 62, 157–181 (1985).
[CrossRef]

Eckbreth, A. C.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon & Breach, Dordrecht, The Netherlands, 1996).

Eckerle, W. A.

W. A. Eckerle, “Soot loading in a generic gas turbine combustor,” paper AIAA-87-0297 presented at the Twenty-Fifth Aerospace Sciences Meeting, Reno, Nev., 12–15 January 1987 (American Institute of Aeronautics and Astronautics, New York, 1987).

Faeth, G. M.

D. L. Urban, G. M. Faeth, “Soot research in combustion science: introduction and review of current work,” paper AIAA-2001-0322 presented at the Thirty-Ninth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 8–12 January 2001 (American Institute of Aeronautics and Astronautics, Reston, VA, 2001).

Fang, T. C.

T. C. Fang, C. M. Megaridis, W. A. Sowa, G. S. Samuelsen, “Soot morphology in a liquid-fueled swirl-stabilized combustor,” Combust. Flame 112, 312–328 (1998).
[CrossRef]

Flamand, L. M.

R. E. Foglesong, T. R. Frazier, L. M. Flamand, J. E. Peters, R. P. Lucht, “Flame structure and emissions characteristics of a lean premixed gas turbine combustor,” paper AIAA-99-2399 presented at the Thirty-Seventh Aerospace Sciences Meeting, Reno, Nev., 10–14 January 1999 (American Institute of Aeronautics and Astronautics, Reston, Va., 1999).

Foglesong, R. E.

R. E. Foglesong, T. R. Frazier, L. M. Flamand, J. E. Peters, R. P. Lucht, “Flame structure and emissions characteristics of a lean premixed gas turbine combustor,” paper AIAA-99-2399 presented at the Thirty-Seventh Aerospace Sciences Meeting, Reno, Nev., 10–14 January 1999 (American Institute of Aeronautics and Astronautics, Reston, Va., 1999).

Frazier, T. R.

R. E. Foglesong, T. R. Frazier, L. M. Flamand, J. E. Peters, R. P. Lucht, “Flame structure and emissions characteristics of a lean premixed gas turbine combustor,” paper AIAA-99-2399 presented at the Thirty-Seventh Aerospace Sciences Meeting, Reno, Nev., 10–14 January 1999 (American Institute of Aeronautics and Astronautics, Reston, Va., 1999).

Giorgio, Z.

Gord, J. R.

S. Roy, T. R. Meyer, R. P. Lucht, V. M. Belovich, E. Corporan, J. R. Gord, “Temperature and CO2-concentration measurements in the exhaust stream of a liquid-fueled combustor using dual-pump coherent anti-Stokes Raman scattering (CARS) spectroscopy,” Combust. Flame 138, 273–284 (2004).
[CrossRef]

M. S. Brown, T. R. Meyer, J. R. Gord, V. M. Belovich, W. M. Roquemore, “Laser-induced incandescence measurements in the reaction zone of a model gas turbine combustor,” paper AIAA-2002-0393 presented at the Fortieth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 14–17 January 2002 (American Institute of Aeronautics and Astronautics, Reston, Va., 2002).

Gupta, S.

Harrington, J. E.

M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, “Collisional quenching of CH(A), OH(A), and NO(A) in low pressure hydrocarbon flames,” Combust. Flame 114, 502–514 (1998).
[CrossRef]

C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air diffusion flame,” Combust. Flame 99, 723–732 (1994).
[CrossRef]

Heitor, M. V.

M. V. Heitor, J. H. Whitelaw, “Velocity, temperature, and species characteristics of the flow in a gas-turbine combustor,” Combust. Flame 64, 1–32 (1986).
[CrossRef]

Held, T. J.

T. J. Held, M. A. Mueller, S.-C. Li, H. Mongia, “Data-driven model for NOx, CO and UHC emissions for a dry low emissions gas turbine combustor,” paper AIAA-2001-3425 presented at the Thirty-Ninth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 8–12 January 2001 (American Institute of Aeronautics and Astronautics, Reston, Va., 2001).

Howard, R. P.

T. P. Jenkins, J. L. Bartholomew, P. A. DeBarber, P. Yang, J. M. Seitzman, R. P. Howard, “A laser-induced incandescence system for measuring soot flux in aircraft engine exhausts,” paper AIAA-2002-3736 presented at the Fortieth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 14–17 January 2002. (American Institute of Aeronautics and Astronautics, Reston, Va., 2002).

Hsieh, S.-Y.

S. Wang, S.-Y. Hsieh, V. Yang, “Numerical simulation of gas turbine swirl-stabilized injector dynamics,” paper AIAA-2001-0334 presented at the Thirty-Ninth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 8–12 January 2001 (American Institute of Aeronautics and Astronautics, Reston, Va., 2001).

Jeffries, J. B.

M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, “Collisional quenching of CH(A), OH(A), and NO(A) in low pressure hydrocarbon flames,” Combust. Flame 114, 502–514 (1998).
[CrossRef]

Jenkins, T. P.

T. P. Jenkins, J. L. Bartholomew, P. A. DeBarber, P. Yang, J. M. Seitzman, R. P. Howard, “A laser-induced incandescence system for measuring soot flux in aircraft engine exhausts,” paper AIAA-2002-3736 presented at the Fortieth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 14–17 January 2002. (American Institute of Aeronautics and Astronautics, Reston, Va., 2002).

Kamimoto, T.

Y.-H. Won, T. Kamimoto, H. Kobayashi, H. Kosaka, “2-D soot visualization in unsteady spray flame by means of laser sheet scattering technique,” (Society of Automotive Engineers, Warrendale, Pa., 1991).
[CrossRef]

Kim, W.-W.

W.-W. Kim, S. Menon, H. Mongia, “Large-eddy simulation of a gas turbine combustor flow,” Combust. Sci. Technol. 143, 25–62 (1999).
[CrossRef]

King, G. B.

Kobayashi, H.

Y.-H. Won, T. Kamimoto, H. Kobayashi, H. Kosaka, “2-D soot visualization in unsteady spray flame by means of laser sheet scattering technique,” (Society of Automotive Engineers, Warrendale, Pa., 1991).
[CrossRef]

Kosaka, H.

Y.-H. Won, T. Kamimoto, H. Kobayashi, H. Kosaka, “2-D soot visualization in unsteady spray flame by means of laser sheet scattering technique,” (Society of Automotive Engineers, Warrendale, Pa., 1991).
[CrossRef]

Ladommatos, N.

Laurendeau, N. M.

C. D. Carter, G. B. King, N. M. Laurendeau, “Saturated fluorescence measurements of the hydroxyl radical in laminar high-pressure C2H6/O2/N2 flames,” Appl. Opt. 31, 1511–1522 (1992).
[CrossRef] [PubMed]

R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, “Laser-saturated fluorescence measurements of OH concentration in flames,” Combust. Flame 50, 189–205 (1983).
[CrossRef]

Lee, J. G.

W.-P. Shih, J. G. Lee, D. A. Santavicca, “Stability and emissions characteristics of a lean premixed gas turbine combustor,” in the Twenty-Sixth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), pp. 2771–2778.
[CrossRef]

Lee, K.

K. Lee, B. Chehroudi, “Structure of a swirl-stabilized spray flame relevant to gas turbine and furnaces,” J. Propul. Power 11, 1110–1117 (1995).
[CrossRef]

Lee, T.-W.

B. Quay, T.-W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

Lefebvre, A. H.

A. H. Lefebvre, Gas Turbine Combustion, 2nd ed. (Taylor & Francis, Philadelphia, Pa., 1999).

Leipertz, A.

A. Leipertz, F. Ossler, M. Aldén, “PAH and soot diagnostics by optical techniques,” in Applied Combustion Diagnostics,K. Kohse-Höinghaus, J. B. Jeffries, eds. (Taylor & Francis, New York, 2002), Chap. 13.

Li, S.-C.

T. J. Held, M. A. Mueller, S.-C. Li, H. Mongia, “Data-driven model for NOx, CO and UHC emissions for a dry low emissions gas turbine combustor,” paper AIAA-2001-3425 presented at the Thirty-Ninth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 8–12 January 2001 (American Institute of Aeronautics and Astronautics, Reston, Va., 2001).

Lucht, R. P.

S. Roy, T. R. Meyer, R. P. Lucht, V. M. Belovich, E. Corporan, J. R. Gord, “Temperature and CO2-concentration measurements in the exhaust stream of a liquid-fueled combustor using dual-pump coherent anti-Stokes Raman scattering (CARS) spectroscopy,” Combust. Flame 138, 273–284 (2004).
[CrossRef]

R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, “Laser-saturated fluorescence measurements of OH concentration in flames,” Combust. Flame 50, 189–205 (1983).
[CrossRef]

R. E. Foglesong, T. R. Frazier, L. M. Flamand, J. E. Peters, R. P. Lucht, “Flame structure and emissions characteristics of a lean premixed gas turbine combustor,” paper AIAA-99-2399 presented at the Thirty-Seventh Aerospace Sciences Meeting, Reno, Nev., 10–14 January 1999 (American Institute of Aeronautics and Astronautics, Reston, Va., 1999).

Luque, J.

M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, “Collisional quenching of CH(A), OH(A), and NO(A) in low pressure hydrocarbon flames,” Combust. Flame 114, 502–514 (1998).
[CrossRef]

Mallard, W. G.

K. C. Smyth, J. H. Miller, R. C. Dorfman, W. G. Mallard, R. J. Santoro, “Soot inception in a methane/air diffusion flame as characterized by detailed species profiles,” Combust. Flame 62, 157–181 (1985).
[CrossRef]

Megaridis, C. M.

T. C. Fang, C. M. Megaridis, W. A. Sowa, G. S. Samuelsen, “Soot morphology in a liquid-fueled swirl-stabilized combustor,” Combust. Flame 112, 312–328 (1998).
[CrossRef]

Menon, S.

W.-W. Kim, S. Menon, H. Mongia, “Large-eddy simulation of a gas turbine combustor flow,” Combust. Sci. Technol. 143, 25–62 (1999).
[CrossRef]

Meyer, T. R.

S. Roy, T. R. Meyer, R. P. Lucht, V. M. Belovich, E. Corporan, J. R. Gord, “Temperature and CO2-concentration measurements in the exhaust stream of a liquid-fueled combustor using dual-pump coherent anti-Stokes Raman scattering (CARS) spectroscopy,” Combust. Flame 138, 273–284 (2004).
[CrossRef]

M. S. Brown, T. R. Meyer, J. R. Gord, V. M. Belovich, W. M. Roquemore, “Laser-induced incandescence measurements in the reaction zone of a model gas turbine combustor,” paper AIAA-2002-0393 presented at the Fortieth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 14–17 January 2002 (American Institute of Aeronautics and Astronautics, Reston, Va., 2002).

Michelsen, H. A.

H. A. Michelsen, “Understanding and predicting the temporal response of laser-induced incandescence from carbonaceous particles,” J. Chem. Phys. 118, 7012–7045 (2003).
[CrossRef]

Miller, J. H.

K. C. Smyth, J. H. Miller, R. C. Dorfman, W. G. Mallard, R. J. Santoro, “Soot inception in a methane/air diffusion flame as characterized by detailed species profiles,” Combust. Flame 62, 157–181 (1985).
[CrossRef]

Mongia, H.

W.-W. Kim, S. Menon, H. Mongia, “Large-eddy simulation of a gas turbine combustor flow,” Combust. Sci. Technol. 143, 25–62 (1999).
[CrossRef]

T. J. Held, M. A. Mueller, S.-C. Li, H. Mongia, “Data-driven model for NOx, CO and UHC emissions for a dry low emissions gas turbine combustor,” paper AIAA-2001-3425 presented at the Thirty-Ninth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 8–12 January 2001 (American Institute of Aeronautics and Astronautics, Reston, Va., 2001).

Mueller, M. A.

T. J. Held, M. A. Mueller, S.-C. Li, H. Mongia, “Data-driven model for NOx, CO and UHC emissions for a dry low emissions gas turbine combustor,” paper AIAA-2001-3425 presented at the Thirty-Ninth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 8–12 January 2001 (American Institute of Aeronautics and Astronautics, Reston, Va., 2001).

Ni, T.

T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995).
[CrossRef] [PubMed]

B. Quay, T.-W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

Ossler, F.

A. Leipertz, F. Ossler, M. Aldén, “PAH and soot diagnostics by optical techniques,” in Applied Combustion Diagnostics,K. Kohse-Höinghaus, J. B. Jeffries, eds. (Taylor & Francis, New York, 2002), Chap. 13.

Peters, J. E.

R. E. Foglesong, T. R. Frazier, L. M. Flamand, J. E. Peters, R. P. Lucht, “Flame structure and emissions characteristics of a lean premixed gas turbine combustor,” paper AIAA-99-2399 presented at the Thirty-Seventh Aerospace Sciences Meeting, Reno, Nev., 10–14 January 1999 (American Institute of Aeronautics and Astronautics, Reston, Va., 1999).

Pinson, J. A.

Quay, B.

B. Quay, T.-W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

Roquemore, W. M.

M. S. Brown, T. R. Meyer, J. R. Gord, V. M. Belovich, W. M. Roquemore, “Laser-induced incandescence measurements in the reaction zone of a model gas turbine combustor,” paper AIAA-2002-0393 presented at the Fortieth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 14–17 January 2002 (American Institute of Aeronautics and Astronautics, Reston, Va., 2002).

Roy, S.

S. Roy, T. R. Meyer, R. P. Lucht, V. M. Belovich, E. Corporan, J. R. Gord, “Temperature and CO2-concentration measurements in the exhaust stream of a liquid-fueled combustor using dual-pump coherent anti-Stokes Raman scattering (CARS) spectroscopy,” Combust. Flame 138, 273–284 (2004).
[CrossRef]

Samuelsen, G. S.

T. C. Fang, C. M. Megaridis, W. A. Sowa, G. S. Samuelsen, “Soot morphology in a liquid-fueled swirl-stabilized combustor,” Combust. Flame 112, 312–328 (1998).
[CrossRef]

Santavicca, D. A.

W.-P. Shih, J. G. Lee, D. A. Santavicca, “Stability and emissions characteristics of a lean premixed gas turbine combustor,” in the Twenty-Sixth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), pp. 2771–2778.
[CrossRef]

Santoro, R. J.

T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995).
[CrossRef] [PubMed]

B. Quay, T.-W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

K. C. Smyth, J. H. Miller, R. C. Dorfman, W. G. Mallard, R. J. Santoro, “Soot inception in a methane/air diffusion flame as characterized by detailed species profiles,” Combust. Flame 62, 157–181 (1985).
[CrossRef]

R. J. Santoro, C. R. Shaddix, “Laser-induced incandescence,” in Applied Combustion Diagnostics,K. Kohse-Höinghaus, J. B. Jeffries, eds. (Taylor & Francis, New York, 2002), Chap. 9.

Seitzman, J. M.

T. P. Jenkins, J. L. Bartholomew, P. A. DeBarber, P. Yang, J. M. Seitzman, R. P. Howard, “A laser-induced incandescence system for measuring soot flux in aircraft engine exhausts,” paper AIAA-2002-3736 presented at the Fortieth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 14–17 January 2002. (American Institute of Aeronautics and Astronautics, Reston, Va., 2002).

Shaddix, C. R.

C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air diffusion flame,” Combust. Flame 99, 723–732 (1994).
[CrossRef]

R. J. Santoro, C. R. Shaddix, “Laser-induced incandescence,” in Applied Combustion Diagnostics,K. Kohse-Höinghaus, J. B. Jeffries, eds. (Taylor & Francis, New York, 2002), Chap. 9.

Shih, W.-P.

W.-P. Shih, J. G. Lee, D. A. Santavicca, “Stability and emissions characteristics of a lean premixed gas turbine combustor,” in the Twenty-Sixth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), pp. 2771–2778.
[CrossRef]

Smith, G. P.

M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, “Collisional quenching of CH(A), OH(A), and NO(A) in low pressure hydrocarbon flames,” Combust. Flame 114, 502–514 (1998).
[CrossRef]

Smyth, K. C.

C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air diffusion flame,” Combust. Flame 99, 723–732 (1994).
[CrossRef]

K. C. Smyth, J. H. Miller, R. C. Dorfman, W. G. Mallard, R. J. Santoro, “Soot inception in a methane/air diffusion flame as characterized by detailed species profiles,” Combust. Flame 62, 157–181 (1985).
[CrossRef]

Sowa, W. A.

T. C. Fang, C. M. Megaridis, W. A. Sowa, G. S. Samuelsen, “Soot morphology in a liquid-fueled swirl-stabilized combustor,” Combust. Flame 112, 312–328 (1998).
[CrossRef]

Sweeney, D. W.

R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, “Laser-saturated fluorescence measurements of OH concentration in flames,” Combust. Flame 50, 189–205 (1983).
[CrossRef]

Tamura, M.

M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, “Collisional quenching of CH(A), OH(A), and NO(A) in low pressure hydrocarbon flames,” Combust. Flame 114, 502–514 (1998).
[CrossRef]

Tse, D. G. N.

A. F. Bicen, D. G. N. Tse, J. H. Whitelaw, “Combustion characteristics of a model can-type combustor,” Combust. Flame 80, 111–125 (1990).
[CrossRef]

Turns, S. R.

S. R. Turns, An Introduction to Combustion (McGraw-Hill, New York, 1996).

Urban, D. L.

D. L. Urban, G. M. Faeth, “Soot research in combustion science: introduction and review of current work,” paper AIAA-2001-0322 presented at the Thirty-Ninth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 8–12 January 2001 (American Institute of Aeronautics and Astronautics, Reston, VA, 2001).

Vander Wal, R. L.

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

Wang, S.

S. Wang, S.-Y. Hsieh, V. Yang, “Numerical simulation of gas turbine swirl-stabilized injector dynamics,” paper AIAA-2001-0334 presented at the Thirty-Ninth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 8–12 January 2001 (American Institute of Aeronautics and Astronautics, Reston, Va., 2001).

Weiland, K. J.

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

Whitelaw, J. H.

A. F. Bicen, D. G. N. Tse, J. H. Whitelaw, “Combustion characteristics of a model can-type combustor,” Combust. Flame 80, 111–125 (1990).
[CrossRef]

M. V. Heitor, J. H. Whitelaw, “Velocity, temperature, and species characteristics of the flow in a gas-turbine combustor,” Combust. Flame 64, 1–32 (1986).
[CrossRef]

Won, Y.-H.

Y.-H. Won, T. Kamimoto, H. Kobayashi, H. Kosaka, “2-D soot visualization in unsteady spray flame by means of laser sheet scattering technique,” (Society of Automotive Engineers, Warrendale, Pa., 1991).
[CrossRef]

Yang, P.

T. P. Jenkins, J. L. Bartholomew, P. A. DeBarber, P. Yang, J. M. Seitzman, R. P. Howard, “A laser-induced incandescence system for measuring soot flux in aircraft engine exhausts,” paper AIAA-2002-3736 presented at the Fortieth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 14–17 January 2002. (American Institute of Aeronautics and Astronautics, Reston, Va., 2002).

Yang, V.

S. Wang, S.-Y. Hsieh, V. Yang, “Numerical simulation of gas turbine swirl-stabilized injector dynamics,” paper AIAA-2001-0334 presented at the Thirty-Ninth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 8–12 January 2001 (American Institute of Aeronautics and Astronautics, Reston, Va., 2001).

Zhao, H.

Appl. Opt. (3)

Appl. Phys. B (1)

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

Combust. Flame (9)

K. C. Smyth, J. H. Miller, R. C. Dorfman, W. G. Mallard, R. J. Santoro, “Soot inception in a methane/air diffusion flame as characterized by detailed species profiles,” Combust. Flame 62, 157–181 (1985).
[CrossRef]

C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air diffusion flame,” Combust. Flame 99, 723–732 (1994).
[CrossRef]

B. Quay, T.-W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

M. V. Heitor, J. H. Whitelaw, “Velocity, temperature, and species characteristics of the flow in a gas-turbine combustor,” Combust. Flame 64, 1–32 (1986).
[CrossRef]

A. F. Bicen, D. G. N. Tse, J. H. Whitelaw, “Combustion characteristics of a model can-type combustor,” Combust. Flame 80, 111–125 (1990).
[CrossRef]

T. C. Fang, C. M. Megaridis, W. A. Sowa, G. S. Samuelsen, “Soot morphology in a liquid-fueled swirl-stabilized combustor,” Combust. Flame 112, 312–328 (1998).
[CrossRef]

M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, “Collisional quenching of CH(A), OH(A), and NO(A) in low pressure hydrocarbon flames,” Combust. Flame 114, 502–514 (1998).
[CrossRef]

R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, “Laser-saturated fluorescence measurements of OH concentration in flames,” Combust. Flame 50, 189–205 (1983).
[CrossRef]

S. Roy, T. R. Meyer, R. P. Lucht, V. M. Belovich, E. Corporan, J. R. Gord, “Temperature and CO2-concentration measurements in the exhaust stream of a liquid-fueled combustor using dual-pump coherent anti-Stokes Raman scattering (CARS) spectroscopy,” Combust. Flame 138, 273–284 (2004).
[CrossRef]

Combust. Sci. Technol. (1)

W.-W. Kim, S. Menon, H. Mongia, “Large-eddy simulation of a gas turbine combustor flow,” Combust. Sci. Technol. 143, 25–62 (1999).
[CrossRef]

J. Chem. Phys. (1)

H. A. Michelsen, “Understanding and predicting the temporal response of laser-induced incandescence from carbonaceous particles,” J. Chem. Phys. 118, 7012–7045 (2003).
[CrossRef]

J. Propul. Power (1)

K. Lee, B. Chehroudi, “Structure of a swirl-stabilized spray flame relevant to gas turbine and furnaces,” J. Propul. Power 11, 1110–1117 (1995).
[CrossRef]

Opt. Lett. (1)

Other (15)

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon & Breach, Dordrecht, The Netherlands, 1996).

S. R. Turns, An Introduction to Combustion (McGraw-Hill, New York, 1996).

D. L. Urban, G. M. Faeth, “Soot research in combustion science: introduction and review of current work,” paper AIAA-2001-0322 presented at the Thirty-Ninth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 8–12 January 2001 (American Institute of Aeronautics and Astronautics, Reston, VA, 2001).

S. Wang, S.-Y. Hsieh, V. Yang, “Numerical simulation of gas turbine swirl-stabilized injector dynamics,” paper AIAA-2001-0334 presented at the Thirty-Ninth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 8–12 January 2001 (American Institute of Aeronautics and Astronautics, Reston, Va., 2001).

W.-P. Shih, J. G. Lee, D. A. Santavicca, “Stability and emissions characteristics of a lean premixed gas turbine combustor,” in the Twenty-Sixth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), pp. 2771–2778.
[CrossRef]

R. E. Foglesong, T. R. Frazier, L. M. Flamand, J. E. Peters, R. P. Lucht, “Flame structure and emissions characteristics of a lean premixed gas turbine combustor,” paper AIAA-99-2399 presented at the Thirty-Seventh Aerospace Sciences Meeting, Reno, Nev., 10–14 January 1999 (American Institute of Aeronautics and Astronautics, Reston, Va., 1999).

M. S. Brown, T. R. Meyer, J. R. Gord, V. M. Belovich, W. M. Roquemore, “Laser-induced incandescence measurements in the reaction zone of a model gas turbine combustor,” paper AIAA-2002-0393 presented at the Fortieth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 14–17 January 2002 (American Institute of Aeronautics and Astronautics, Reston, Va., 2002).

A. H. Lefebvre, Gas Turbine Combustion, 2nd ed. (Taylor & Francis, Philadelphia, Pa., 1999).

J. D. Black, “Laser-induced incandescence measurements of particles in aero-engine exhausts,” in Conference on Environmental Sensing and Applications, M. R. Carleer, M. Hilton, T. Lamp, R. Reuter, G. M. Russworm, K. Schaefer, K. Weber, K. C. H. Weitkamp, J.-P. Wolf, L. Woppowa, eds., Proc. SPIE3821, 209–215 (1999).
[CrossRef]

T. P. Jenkins, J. L. Bartholomew, P. A. DeBarber, P. Yang, J. M. Seitzman, R. P. Howard, “A laser-induced incandescence system for measuring soot flux in aircraft engine exhausts,” paper AIAA-2002-3736 presented at the Fortieth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 14–17 January 2002. (American Institute of Aeronautics and Astronautics, Reston, Va., 2002).

R. J. Santoro, C. R. Shaddix, “Laser-induced incandescence,” in Applied Combustion Diagnostics,K. Kohse-Höinghaus, J. B. Jeffries, eds. (Taylor & Francis, New York, 2002), Chap. 9.

A. Leipertz, F. Ossler, M. Aldén, “PAH and soot diagnostics by optical techniques,” in Applied Combustion Diagnostics,K. Kohse-Höinghaus, J. B. Jeffries, eds. (Taylor & Francis, New York, 2002), Chap. 13.

Y.-H. Won, T. Kamimoto, H. Kobayashi, H. Kosaka, “2-D soot visualization in unsteady spray flame by means of laser sheet scattering technique,” (Society of Automotive Engineers, Warrendale, Pa., 1991).
[CrossRef]

T. J. Held, M. A. Mueller, S.-C. Li, H. Mongia, “Data-driven model for NOx, CO and UHC emissions for a dry low emissions gas turbine combustor,” paper AIAA-2001-3425 presented at the Thirty-Ninth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 8–12 January 2001 (American Institute of Aeronautics and Astronautics, Reston, Va., 2001).

W. A. Eckerle, “Soot loading in a generic gas turbine combustor,” paper AIAA-87-0297 presented at the Twenty-Fifth Aerospace Sciences Meeting, Reno, Nev., 12–15 January 1987 (American Institute of Aeronautics and Astronautics, New York, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(a) Swirl injector geometry used in the current study, and (b) photograph of near-field flame structure. Flow is left to right. Regions A–C depict the fuel evaporation and preheat zone, the turbulent flame brush, and the recirculation region, respectively.

Fig. 2
Fig. 2

Experimental setup for simultaneous planar LII, OH PLIF, and droplet Mie scattering in an atmospheric pressure, swirl-stabilized, liquid-fueled, model gas-turbine combustor. FCU, frequency-conversion unit.

Fig. 3
Fig. 3

Adiabatic flame temperature calculations in which equilibrium combustion products are assumed along with OH LIF efficiency multiplied by the Boltzmann fraction for JP-8 fuel at various equivalence ratios φ.

Fig. 4
Fig. 4

Raw signal from (a) OH PLIF and droplet Mie scattering while on the Q1(9) line of the (1,0) band in the AX system and (b) droplet Mie scattering while off the OH line. Overall, ϕ = 0.7.

Fig. 5
Fig. 5

LII saturation curve from averaged images in a swirl-stabilized combustor at an overall ϕ = 1.16. The solid curve is for guidance only.

Fig. 6
Fig. 6

Power-law temporal decay of the LII signal in a swirl-stabilized combustor at an overall ϕ = 1.1.

Fig. 7
Fig. 7

Postprocessed OH PLIF images near the injector exit lip: (a) time-averaged image at an overall ϕ = 0.5, (b) instantaneous image at an overall ϕ = 0.5, (c) instantaneous image at an overall ϕ = 0.9. The horizontal and vertical extent of the signal is 4 − 70 mm from the injector exit and −39–39 mm from the injector centerline. The false-color scale is 5% (black) to 100% (white) of peak signals. Regions greater than 100% represent droplet scattering.

Fig. 8
Fig. 8

PDFs of a corrected OH PLIF signal at location A (mixing layer) and location B (flame center) shown in the time-average image of Fig. 7(a).

Fig. 9
Fig. 9

Theoretical OH number density compared with OH PLIF data in a recirculation zone [region C in Fig. 7(c)]. OH PLIF data are corrected for variations in fluorescence efficiency and Boltzmann fraction with 3 (see Fig. 3). Confidence intervals include PLIF uncertainty and flame fluctuation.

Fig. 10
Fig. 10

Overlay of OH PLIF and LII images at an overall ϕ = 1.0. The false-color scale for OH PLIF images are same as for Fig. 7. LII images shown with false-color contours from 5% (red) to 100% (blue) of peak signals.

Fig. 11
Fig. 11

Effect of overall φ on normalized soot volume fraction in primary flame zone and particulate number density from condensation nuclei counter data in exhaust. LII measurements with camera gate of 50 ns are fit with an exponential function. Data with a 200-ns camera gate are used to check for particle-size bias.

Fig. 12
Fig. 12

Effect of methyl acetate (C3H6O2) addition (20% by volume) to JP-8 fuel on LII and OH PLIF signals in the primary flame zone of a swirl-stabilized combustor. Signals are averaged for 100 shots.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S OH N OH η = N OH A OH A OH + Q OH .

Metrics