Abstract

We compare the sensitivity of photon-counting and charged-coupled-device (CCD) imagers for rapidly moving objects. Our test case involves the detection of small objects in space, seen against a diffuse zodiacal light background, as observed from a space platform. We contrast photon-counting detectors, with excellent time resolution and negligible readout noise, against CCDs with a significantly larger quantum efficiency. For fast moving objects and small fields of view, the photon-counting detectors are able to detect significantly smaller targets, with the added benefit of providing angle–angle–time metric information in addition to high-time-resolution light curves. For larger fields of view and slower moving objects, the CCDs are more sensitive. These results may motivate the further development of microchannel-plate photon-counting systems and amplified CCDs for detecting and tracking space objects.

© 2005 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription