Abstract

Different techniques to control the pulse width of a diode-pumped passively Q-switched Nd:GdVO4/KTP green laser have been theoretically and experimentally studied. It is shown that, when we vary the positions of the saturable absorber in the laser axis and the pump beam waist in the gain medium, we obtain an efficient means to control the pulse width. The experiments performed on a diode-pumped Nd:GdVO/4KTP green laser passively Q-switched by a Cr4+:YAG saturable absorber are consistent with the theoretical calculations obtained from the rate equation model, in which the intracavity photon density that is assumed to be the Gaussian spatial distribution, the longitudinal variation of the intracavity photon density, and the pump beam spatial distribution are also considered.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. F. Chen, T. M. Huang, C. L. Wang, “Passively Q-switched diode-pumped Nd:YVO4/Cr4+:YAG single-frequency microchip laser,” Electron. Lett. 33, 1880–1881 (1997).
    [CrossRef]
  2. G. J. Friel, R. S. Conney, A. J. Kemp, B. D. Sinclair, J. M. Ley, “Q-switching of a diode-pumped Nd:YVO4laser using a quadrupole electro-optic deflector,” Appl. Phys. B 67, 267–270 (1998).
    [CrossRef]
  3. J. Dong, P. Deng, Y. Liu, Y. Zhang, J. Xu, W. Chen, X. Xie, “Passively Q-switched Yb:YAG laser with Cr4+:YAG as the saturable absorber,” Appl. Opt. 40, 4303–4307 (2001).
    [CrossRef]
  4. X. Zhang, S. Zhao, Q. Wang, B. Ozygus, H. Weber, “Modeling of passively Q-switched lasers,” J. Opt. Soc. Am. B 17, 1166–1175 (2000).
    [CrossRef]
  5. N. D. Lai, M. Brunel, F. Bretenaker, O. Emile, “Control of the pulse duration in one- and two-axis passively Q-switched solid-state lasers,” Eur. Phys. J. D 19, 403–410 (2002).
    [CrossRef]
  6. A. I. Zagumennyi, V. G. Ostroumov, I. A. Shcherbakov, T. Jensen, J. P. Meyn, G. Huber, “The Nd:GdVO4crystal: a new material for diode-pumped lasers,” Sov. J. Quantum Electron. 22, 1071–1072 (1992).
    [CrossRef]
  7. T. Jensen, V. G. Ostroumov, J. P. Meyn, G. Huber, A. I. Zagumennyi, I. A. Shcherbakov, “Spectroscopic characterization and laser performance of diode-laser-pumped Nd:GdVO4,” Appl. Phys. B 58, 373–379 (1994).
    [CrossRef]
  8. J. Liu, C. Wang, C. Du, L. Zhu, H. Zhang, X. Meng, J. Wang, Z. Shao, M. Jiang, “High-power actively Q-switched Nd:GdVO4laser end-pumped by a fiber-coupled diode-laser-array,” Opt. Commun. 188, 155–162 (2001).
    [CrossRef]
  9. J. Liu, C. Wang, C. Q. Wang, X. Meng, H. Zhang, L. Zhu, J. Wang, Z. Shao, M. Jiang, “Diode end-pumped Q-switched high power intracavity frequency-doubled Nd:GdVO4/KTP green laser,” Appl. Phys. B 72, 171–174 (2001).
    [CrossRef]
  10. J. Liu, J. Yang, J. He, “Diode-pumped passively Q-switched intracavity frequency doubled Nd:GdVO4/KTP green laser,” Opt. Laser Technol. 36, 31–34 (2004).
    [CrossRef]
  11. G. Li, S. Zhao, H. Zhao, K. Yang, S. Ding, “Rate equations and solutions of a laser-diode end-pumped passively Q-switched intracavity doubling laser by taking into account intracavity laser spatial distribution,” Opt. Commun. 234, 321–328 (2004).
    [CrossRef]
  12. J. Zheng, S. Zhao, Q. Wang, X. Zhang, L. Chen, “Influence of thermal effect in gain-media on optimum design of LD-end pumped solid state laser,” Acta Photon. Sin. 30, 724–729 (2001) (in Chinese).
  13. J. Zheng, S. Zhao, Q. Wang, X. Zhang, L. Chen, “Influence of thermal effect on KTP type-II phase-matching second-harmonic generation,” Opt. Commun. 199, 207–214 (2001).
    [CrossRef]

2004 (2)

J. Liu, J. Yang, J. He, “Diode-pumped passively Q-switched intracavity frequency doubled Nd:GdVO4/KTP green laser,” Opt. Laser Technol. 36, 31–34 (2004).
[CrossRef]

G. Li, S. Zhao, H. Zhao, K. Yang, S. Ding, “Rate equations and solutions of a laser-diode end-pumped passively Q-switched intracavity doubling laser by taking into account intracavity laser spatial distribution,” Opt. Commun. 234, 321–328 (2004).
[CrossRef]

2002 (1)

N. D. Lai, M. Brunel, F. Bretenaker, O. Emile, “Control of the pulse duration in one- and two-axis passively Q-switched solid-state lasers,” Eur. Phys. J. D 19, 403–410 (2002).
[CrossRef]

2001 (5)

J. Liu, C. Wang, C. Du, L. Zhu, H. Zhang, X. Meng, J. Wang, Z. Shao, M. Jiang, “High-power actively Q-switched Nd:GdVO4laser end-pumped by a fiber-coupled diode-laser-array,” Opt. Commun. 188, 155–162 (2001).
[CrossRef]

J. Liu, C. Wang, C. Q. Wang, X. Meng, H. Zhang, L. Zhu, J. Wang, Z. Shao, M. Jiang, “Diode end-pumped Q-switched high power intracavity frequency-doubled Nd:GdVO4/KTP green laser,” Appl. Phys. B 72, 171–174 (2001).
[CrossRef]

J. Dong, P. Deng, Y. Liu, Y. Zhang, J. Xu, W. Chen, X. Xie, “Passively Q-switched Yb:YAG laser with Cr4+:YAG as the saturable absorber,” Appl. Opt. 40, 4303–4307 (2001).
[CrossRef]

J. Zheng, S. Zhao, Q. Wang, X. Zhang, L. Chen, “Influence of thermal effect in gain-media on optimum design of LD-end pumped solid state laser,” Acta Photon. Sin. 30, 724–729 (2001) (in Chinese).

J. Zheng, S. Zhao, Q. Wang, X. Zhang, L. Chen, “Influence of thermal effect on KTP type-II phase-matching second-harmonic generation,” Opt. Commun. 199, 207–214 (2001).
[CrossRef]

2000 (1)

1998 (1)

G. J. Friel, R. S. Conney, A. J. Kemp, B. D. Sinclair, J. M. Ley, “Q-switching of a diode-pumped Nd:YVO4laser using a quadrupole electro-optic deflector,” Appl. Phys. B 67, 267–270 (1998).
[CrossRef]

1997 (1)

Y. F. Chen, T. M. Huang, C. L. Wang, “Passively Q-switched diode-pumped Nd:YVO4/Cr4+:YAG single-frequency microchip laser,” Electron. Lett. 33, 1880–1881 (1997).
[CrossRef]

1994 (1)

T. Jensen, V. G. Ostroumov, J. P. Meyn, G. Huber, A. I. Zagumennyi, I. A. Shcherbakov, “Spectroscopic characterization and laser performance of diode-laser-pumped Nd:GdVO4,” Appl. Phys. B 58, 373–379 (1994).
[CrossRef]

1992 (1)

A. I. Zagumennyi, V. G. Ostroumov, I. A. Shcherbakov, T. Jensen, J. P. Meyn, G. Huber, “The Nd:GdVO4crystal: a new material for diode-pumped lasers,” Sov. J. Quantum Electron. 22, 1071–1072 (1992).
[CrossRef]

Bretenaker, F.

N. D. Lai, M. Brunel, F. Bretenaker, O. Emile, “Control of the pulse duration in one- and two-axis passively Q-switched solid-state lasers,” Eur. Phys. J. D 19, 403–410 (2002).
[CrossRef]

Brunel, M.

N. D. Lai, M. Brunel, F. Bretenaker, O. Emile, “Control of the pulse duration in one- and two-axis passively Q-switched solid-state lasers,” Eur. Phys. J. D 19, 403–410 (2002).
[CrossRef]

Chen, L.

J. Zheng, S. Zhao, Q. Wang, X. Zhang, L. Chen, “Influence of thermal effect in gain-media on optimum design of LD-end pumped solid state laser,” Acta Photon. Sin. 30, 724–729 (2001) (in Chinese).

J. Zheng, S. Zhao, Q. Wang, X. Zhang, L. Chen, “Influence of thermal effect on KTP type-II phase-matching second-harmonic generation,” Opt. Commun. 199, 207–214 (2001).
[CrossRef]

Chen, W.

Chen, Y. F.

Y. F. Chen, T. M. Huang, C. L. Wang, “Passively Q-switched diode-pumped Nd:YVO4/Cr4+:YAG single-frequency microchip laser,” Electron. Lett. 33, 1880–1881 (1997).
[CrossRef]

Conney, R. S.

G. J. Friel, R. S. Conney, A. J. Kemp, B. D. Sinclair, J. M. Ley, “Q-switching of a diode-pumped Nd:YVO4laser using a quadrupole electro-optic deflector,” Appl. Phys. B 67, 267–270 (1998).
[CrossRef]

Deng, P.

Ding, S.

G. Li, S. Zhao, H. Zhao, K. Yang, S. Ding, “Rate equations and solutions of a laser-diode end-pumped passively Q-switched intracavity doubling laser by taking into account intracavity laser spatial distribution,” Opt. Commun. 234, 321–328 (2004).
[CrossRef]

Dong, J.

Du, C.

J. Liu, C. Wang, C. Du, L. Zhu, H. Zhang, X. Meng, J. Wang, Z. Shao, M. Jiang, “High-power actively Q-switched Nd:GdVO4laser end-pumped by a fiber-coupled diode-laser-array,” Opt. Commun. 188, 155–162 (2001).
[CrossRef]

Emile, O.

N. D. Lai, M. Brunel, F. Bretenaker, O. Emile, “Control of the pulse duration in one- and two-axis passively Q-switched solid-state lasers,” Eur. Phys. J. D 19, 403–410 (2002).
[CrossRef]

Friel, G. J.

G. J. Friel, R. S. Conney, A. J. Kemp, B. D. Sinclair, J. M. Ley, “Q-switching of a diode-pumped Nd:YVO4laser using a quadrupole electro-optic deflector,” Appl. Phys. B 67, 267–270 (1998).
[CrossRef]

He, J.

J. Liu, J. Yang, J. He, “Diode-pumped passively Q-switched intracavity frequency doubled Nd:GdVO4/KTP green laser,” Opt. Laser Technol. 36, 31–34 (2004).
[CrossRef]

Huang, T. M.

Y. F. Chen, T. M. Huang, C. L. Wang, “Passively Q-switched diode-pumped Nd:YVO4/Cr4+:YAG single-frequency microchip laser,” Electron. Lett. 33, 1880–1881 (1997).
[CrossRef]

Huber, G.

T. Jensen, V. G. Ostroumov, J. P. Meyn, G. Huber, A. I. Zagumennyi, I. A. Shcherbakov, “Spectroscopic characterization and laser performance of diode-laser-pumped Nd:GdVO4,” Appl. Phys. B 58, 373–379 (1994).
[CrossRef]

A. I. Zagumennyi, V. G. Ostroumov, I. A. Shcherbakov, T. Jensen, J. P. Meyn, G. Huber, “The Nd:GdVO4crystal: a new material for diode-pumped lasers,” Sov. J. Quantum Electron. 22, 1071–1072 (1992).
[CrossRef]

Jensen, T.

T. Jensen, V. G. Ostroumov, J. P. Meyn, G. Huber, A. I. Zagumennyi, I. A. Shcherbakov, “Spectroscopic characterization and laser performance of diode-laser-pumped Nd:GdVO4,” Appl. Phys. B 58, 373–379 (1994).
[CrossRef]

A. I. Zagumennyi, V. G. Ostroumov, I. A. Shcherbakov, T. Jensen, J. P. Meyn, G. Huber, “The Nd:GdVO4crystal: a new material for diode-pumped lasers,” Sov. J. Quantum Electron. 22, 1071–1072 (1992).
[CrossRef]

Jiang, M.

J. Liu, C. Wang, C. Du, L. Zhu, H. Zhang, X. Meng, J. Wang, Z. Shao, M. Jiang, “High-power actively Q-switched Nd:GdVO4laser end-pumped by a fiber-coupled diode-laser-array,” Opt. Commun. 188, 155–162 (2001).
[CrossRef]

J. Liu, C. Wang, C. Q. Wang, X. Meng, H. Zhang, L. Zhu, J. Wang, Z. Shao, M. Jiang, “Diode end-pumped Q-switched high power intracavity frequency-doubled Nd:GdVO4/KTP green laser,” Appl. Phys. B 72, 171–174 (2001).
[CrossRef]

Kemp, A. J.

G. J. Friel, R. S. Conney, A. J. Kemp, B. D. Sinclair, J. M. Ley, “Q-switching of a diode-pumped Nd:YVO4laser using a quadrupole electro-optic deflector,” Appl. Phys. B 67, 267–270 (1998).
[CrossRef]

Lai, N. D.

N. D. Lai, M. Brunel, F. Bretenaker, O. Emile, “Control of the pulse duration in one- and two-axis passively Q-switched solid-state lasers,” Eur. Phys. J. D 19, 403–410 (2002).
[CrossRef]

Ley, J. M.

G. J. Friel, R. S. Conney, A. J. Kemp, B. D. Sinclair, J. M. Ley, “Q-switching of a diode-pumped Nd:YVO4laser using a quadrupole electro-optic deflector,” Appl. Phys. B 67, 267–270 (1998).
[CrossRef]

Li, G.

G. Li, S. Zhao, H. Zhao, K. Yang, S. Ding, “Rate equations and solutions of a laser-diode end-pumped passively Q-switched intracavity doubling laser by taking into account intracavity laser spatial distribution,” Opt. Commun. 234, 321–328 (2004).
[CrossRef]

Liu, J.

J. Liu, J. Yang, J. He, “Diode-pumped passively Q-switched intracavity frequency doubled Nd:GdVO4/KTP green laser,” Opt. Laser Technol. 36, 31–34 (2004).
[CrossRef]

J. Liu, C. Wang, C. Q. Wang, X. Meng, H. Zhang, L. Zhu, J. Wang, Z. Shao, M. Jiang, “Diode end-pumped Q-switched high power intracavity frequency-doubled Nd:GdVO4/KTP green laser,” Appl. Phys. B 72, 171–174 (2001).
[CrossRef]

J. Liu, C. Wang, C. Du, L. Zhu, H. Zhang, X. Meng, J. Wang, Z. Shao, M. Jiang, “High-power actively Q-switched Nd:GdVO4laser end-pumped by a fiber-coupled diode-laser-array,” Opt. Commun. 188, 155–162 (2001).
[CrossRef]

Liu, Y.

Meng, X.

J. Liu, C. Wang, C. Du, L. Zhu, H. Zhang, X. Meng, J. Wang, Z. Shao, M. Jiang, “High-power actively Q-switched Nd:GdVO4laser end-pumped by a fiber-coupled diode-laser-array,” Opt. Commun. 188, 155–162 (2001).
[CrossRef]

J. Liu, C. Wang, C. Q. Wang, X. Meng, H. Zhang, L. Zhu, J. Wang, Z. Shao, M. Jiang, “Diode end-pumped Q-switched high power intracavity frequency-doubled Nd:GdVO4/KTP green laser,” Appl. Phys. B 72, 171–174 (2001).
[CrossRef]

Meyn, J. P.

T. Jensen, V. G. Ostroumov, J. P. Meyn, G. Huber, A. I. Zagumennyi, I. A. Shcherbakov, “Spectroscopic characterization and laser performance of diode-laser-pumped Nd:GdVO4,” Appl. Phys. B 58, 373–379 (1994).
[CrossRef]

A. I. Zagumennyi, V. G. Ostroumov, I. A. Shcherbakov, T. Jensen, J. P. Meyn, G. Huber, “The Nd:GdVO4crystal: a new material for diode-pumped lasers,” Sov. J. Quantum Electron. 22, 1071–1072 (1992).
[CrossRef]

Ostroumov, V. G.

T. Jensen, V. G. Ostroumov, J. P. Meyn, G. Huber, A. I. Zagumennyi, I. A. Shcherbakov, “Spectroscopic characterization and laser performance of diode-laser-pumped Nd:GdVO4,” Appl. Phys. B 58, 373–379 (1994).
[CrossRef]

A. I. Zagumennyi, V. G. Ostroumov, I. A. Shcherbakov, T. Jensen, J. P. Meyn, G. Huber, “The Nd:GdVO4crystal: a new material for diode-pumped lasers,” Sov. J. Quantum Electron. 22, 1071–1072 (1992).
[CrossRef]

Ozygus, B.

Shao, Z.

J. Liu, C. Wang, C. Du, L. Zhu, H. Zhang, X. Meng, J. Wang, Z. Shao, M. Jiang, “High-power actively Q-switched Nd:GdVO4laser end-pumped by a fiber-coupled diode-laser-array,” Opt. Commun. 188, 155–162 (2001).
[CrossRef]

J. Liu, C. Wang, C. Q. Wang, X. Meng, H. Zhang, L. Zhu, J. Wang, Z. Shao, M. Jiang, “Diode end-pumped Q-switched high power intracavity frequency-doubled Nd:GdVO4/KTP green laser,” Appl. Phys. B 72, 171–174 (2001).
[CrossRef]

Shcherbakov, I. A.

T. Jensen, V. G. Ostroumov, J. P. Meyn, G. Huber, A. I. Zagumennyi, I. A. Shcherbakov, “Spectroscopic characterization and laser performance of diode-laser-pumped Nd:GdVO4,” Appl. Phys. B 58, 373–379 (1994).
[CrossRef]

A. I. Zagumennyi, V. G. Ostroumov, I. A. Shcherbakov, T. Jensen, J. P. Meyn, G. Huber, “The Nd:GdVO4crystal: a new material for diode-pumped lasers,” Sov. J. Quantum Electron. 22, 1071–1072 (1992).
[CrossRef]

Sinclair, B. D.

G. J. Friel, R. S. Conney, A. J. Kemp, B. D. Sinclair, J. M. Ley, “Q-switching of a diode-pumped Nd:YVO4laser using a quadrupole electro-optic deflector,” Appl. Phys. B 67, 267–270 (1998).
[CrossRef]

Wang, C.

J. Liu, C. Wang, C. Du, L. Zhu, H. Zhang, X. Meng, J. Wang, Z. Shao, M. Jiang, “High-power actively Q-switched Nd:GdVO4laser end-pumped by a fiber-coupled diode-laser-array,” Opt. Commun. 188, 155–162 (2001).
[CrossRef]

J. Liu, C. Wang, C. Q. Wang, X. Meng, H. Zhang, L. Zhu, J. Wang, Z. Shao, M. Jiang, “Diode end-pumped Q-switched high power intracavity frequency-doubled Nd:GdVO4/KTP green laser,” Appl. Phys. B 72, 171–174 (2001).
[CrossRef]

Wang, C. L.

Y. F. Chen, T. M. Huang, C. L. Wang, “Passively Q-switched diode-pumped Nd:YVO4/Cr4+:YAG single-frequency microchip laser,” Electron. Lett. 33, 1880–1881 (1997).
[CrossRef]

Wang, C. Q.

J. Liu, C. Wang, C. Q. Wang, X. Meng, H. Zhang, L. Zhu, J. Wang, Z. Shao, M. Jiang, “Diode end-pumped Q-switched high power intracavity frequency-doubled Nd:GdVO4/KTP green laser,” Appl. Phys. B 72, 171–174 (2001).
[CrossRef]

Wang, J.

J. Liu, C. Wang, C. Q. Wang, X. Meng, H. Zhang, L. Zhu, J. Wang, Z. Shao, M. Jiang, “Diode end-pumped Q-switched high power intracavity frequency-doubled Nd:GdVO4/KTP green laser,” Appl. Phys. B 72, 171–174 (2001).
[CrossRef]

J. Liu, C. Wang, C. Du, L. Zhu, H. Zhang, X. Meng, J. Wang, Z. Shao, M. Jiang, “High-power actively Q-switched Nd:GdVO4laser end-pumped by a fiber-coupled diode-laser-array,” Opt. Commun. 188, 155–162 (2001).
[CrossRef]

Wang, Q.

J. Zheng, S. Zhao, Q. Wang, X. Zhang, L. Chen, “Influence of thermal effect on KTP type-II phase-matching second-harmonic generation,” Opt. Commun. 199, 207–214 (2001).
[CrossRef]

J. Zheng, S. Zhao, Q. Wang, X. Zhang, L. Chen, “Influence of thermal effect in gain-media on optimum design of LD-end pumped solid state laser,” Acta Photon. Sin. 30, 724–729 (2001) (in Chinese).

X. Zhang, S. Zhao, Q. Wang, B. Ozygus, H. Weber, “Modeling of passively Q-switched lasers,” J. Opt. Soc. Am. B 17, 1166–1175 (2000).
[CrossRef]

Weber, H.

Xie, X.

Xu, J.

Yang, J.

J. Liu, J. Yang, J. He, “Diode-pumped passively Q-switched intracavity frequency doubled Nd:GdVO4/KTP green laser,” Opt. Laser Technol. 36, 31–34 (2004).
[CrossRef]

Yang, K.

G. Li, S. Zhao, H. Zhao, K. Yang, S. Ding, “Rate equations and solutions of a laser-diode end-pumped passively Q-switched intracavity doubling laser by taking into account intracavity laser spatial distribution,” Opt. Commun. 234, 321–328 (2004).
[CrossRef]

Zagumennyi, A. I.

T. Jensen, V. G. Ostroumov, J. P. Meyn, G. Huber, A. I. Zagumennyi, I. A. Shcherbakov, “Spectroscopic characterization and laser performance of diode-laser-pumped Nd:GdVO4,” Appl. Phys. B 58, 373–379 (1994).
[CrossRef]

A. I. Zagumennyi, V. G. Ostroumov, I. A. Shcherbakov, T. Jensen, J. P. Meyn, G. Huber, “The Nd:GdVO4crystal: a new material for diode-pumped lasers,” Sov. J. Quantum Electron. 22, 1071–1072 (1992).
[CrossRef]

Zhang, H.

J. Liu, C. Wang, C. Q. Wang, X. Meng, H. Zhang, L. Zhu, J. Wang, Z. Shao, M. Jiang, “Diode end-pumped Q-switched high power intracavity frequency-doubled Nd:GdVO4/KTP green laser,” Appl. Phys. B 72, 171–174 (2001).
[CrossRef]

J. Liu, C. Wang, C. Du, L. Zhu, H. Zhang, X. Meng, J. Wang, Z. Shao, M. Jiang, “High-power actively Q-switched Nd:GdVO4laser end-pumped by a fiber-coupled diode-laser-array,” Opt. Commun. 188, 155–162 (2001).
[CrossRef]

Zhang, X.

J. Zheng, S. Zhao, Q. Wang, X. Zhang, L. Chen, “Influence of thermal effect in gain-media on optimum design of LD-end pumped solid state laser,” Acta Photon. Sin. 30, 724–729 (2001) (in Chinese).

J. Zheng, S. Zhao, Q. Wang, X. Zhang, L. Chen, “Influence of thermal effect on KTP type-II phase-matching second-harmonic generation,” Opt. Commun. 199, 207–214 (2001).
[CrossRef]

X. Zhang, S. Zhao, Q. Wang, B. Ozygus, H. Weber, “Modeling of passively Q-switched lasers,” J. Opt. Soc. Am. B 17, 1166–1175 (2000).
[CrossRef]

Zhang, Y.

Zhao, H.

G. Li, S. Zhao, H. Zhao, K. Yang, S. Ding, “Rate equations and solutions of a laser-diode end-pumped passively Q-switched intracavity doubling laser by taking into account intracavity laser spatial distribution,” Opt. Commun. 234, 321–328 (2004).
[CrossRef]

Zhao, S.

G. Li, S. Zhao, H. Zhao, K. Yang, S. Ding, “Rate equations and solutions of a laser-diode end-pumped passively Q-switched intracavity doubling laser by taking into account intracavity laser spatial distribution,” Opt. Commun. 234, 321–328 (2004).
[CrossRef]

J. Zheng, S. Zhao, Q. Wang, X. Zhang, L. Chen, “Influence of thermal effect in gain-media on optimum design of LD-end pumped solid state laser,” Acta Photon. Sin. 30, 724–729 (2001) (in Chinese).

J. Zheng, S. Zhao, Q. Wang, X. Zhang, L. Chen, “Influence of thermal effect on KTP type-II phase-matching second-harmonic generation,” Opt. Commun. 199, 207–214 (2001).
[CrossRef]

X. Zhang, S. Zhao, Q. Wang, B. Ozygus, H. Weber, “Modeling of passively Q-switched lasers,” J. Opt. Soc. Am. B 17, 1166–1175 (2000).
[CrossRef]

Zheng, J.

J. Zheng, S. Zhao, Q. Wang, X. Zhang, L. Chen, “Influence of thermal effect on KTP type-II phase-matching second-harmonic generation,” Opt. Commun. 199, 207–214 (2001).
[CrossRef]

J. Zheng, S. Zhao, Q. Wang, X. Zhang, L. Chen, “Influence of thermal effect in gain-media on optimum design of LD-end pumped solid state laser,” Acta Photon. Sin. 30, 724–729 (2001) (in Chinese).

Zhu, L.

J. Liu, C. Wang, C. Du, L. Zhu, H. Zhang, X. Meng, J. Wang, Z. Shao, M. Jiang, “High-power actively Q-switched Nd:GdVO4laser end-pumped by a fiber-coupled diode-laser-array,” Opt. Commun. 188, 155–162 (2001).
[CrossRef]

J. Liu, C. Wang, C. Q. Wang, X. Meng, H. Zhang, L. Zhu, J. Wang, Z. Shao, M. Jiang, “Diode end-pumped Q-switched high power intracavity frequency-doubled Nd:GdVO4/KTP green laser,” Appl. Phys. B 72, 171–174 (2001).
[CrossRef]

Acta Photon. Sin. (1)

J. Zheng, S. Zhao, Q. Wang, X. Zhang, L. Chen, “Influence of thermal effect in gain-media on optimum design of LD-end pumped solid state laser,” Acta Photon. Sin. 30, 724–729 (2001) (in Chinese).

Appl. Opt. (1)

Appl. Phys. B (3)

G. J. Friel, R. S. Conney, A. J. Kemp, B. D. Sinclair, J. M. Ley, “Q-switching of a diode-pumped Nd:YVO4laser using a quadrupole electro-optic deflector,” Appl. Phys. B 67, 267–270 (1998).
[CrossRef]

T. Jensen, V. G. Ostroumov, J. P. Meyn, G. Huber, A. I. Zagumennyi, I. A. Shcherbakov, “Spectroscopic characterization and laser performance of diode-laser-pumped Nd:GdVO4,” Appl. Phys. B 58, 373–379 (1994).
[CrossRef]

J. Liu, C. Wang, C. Q. Wang, X. Meng, H. Zhang, L. Zhu, J. Wang, Z. Shao, M. Jiang, “Diode end-pumped Q-switched high power intracavity frequency-doubled Nd:GdVO4/KTP green laser,” Appl. Phys. B 72, 171–174 (2001).
[CrossRef]

Electron. Lett. (1)

Y. F. Chen, T. M. Huang, C. L. Wang, “Passively Q-switched diode-pumped Nd:YVO4/Cr4+:YAG single-frequency microchip laser,” Electron. Lett. 33, 1880–1881 (1997).
[CrossRef]

Eur. Phys. J. D (1)

N. D. Lai, M. Brunel, F. Bretenaker, O. Emile, “Control of the pulse duration in one- and two-axis passively Q-switched solid-state lasers,” Eur. Phys. J. D 19, 403–410 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (3)

J. Liu, C. Wang, C. Du, L. Zhu, H. Zhang, X. Meng, J. Wang, Z. Shao, M. Jiang, “High-power actively Q-switched Nd:GdVO4laser end-pumped by a fiber-coupled diode-laser-array,” Opt. Commun. 188, 155–162 (2001).
[CrossRef]

J. Zheng, S. Zhao, Q. Wang, X. Zhang, L. Chen, “Influence of thermal effect on KTP type-II phase-matching second-harmonic generation,” Opt. Commun. 199, 207–214 (2001).
[CrossRef]

G. Li, S. Zhao, H. Zhao, K. Yang, S. Ding, “Rate equations and solutions of a laser-diode end-pumped passively Q-switched intracavity doubling laser by taking into account intracavity laser spatial distribution,” Opt. Commun. 234, 321–328 (2004).
[CrossRef]

Opt. Laser Technol. (1)

J. Liu, J. Yang, J. He, “Diode-pumped passively Q-switched intracavity frequency doubled Nd:GdVO4/KTP green laser,” Opt. Laser Technol. 36, 31–34 (2004).
[CrossRef]

Sov. J. Quantum Electron. (1)

A. I. Zagumennyi, V. G. Ostroumov, I. A. Shcherbakov, T. Jensen, J. P. Meyn, G. Huber, “The Nd:GdVO4crystal: a new material for diode-pumped lasers,” Sov. J. Quantum Electron. 22, 1071–1072 (1992).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the experimental setup.

Fig. 2
Fig. 2

Pulse width versus L0.

Fig. 3
Fig. 3

Temporal profile of a single pulse. Solid curve, oscilloscope trace; dotted curve, calculated result.

Fig. 4
Fig. 4

Pulse width versus z0.

Fig. 5
Fig. 5

Average pump beam radius wp versus z0.

Fig. 6
Fig. 6

Laser beam size versus the average pump beam radius wp.

Fig. 7
Fig. 7

Laser beam size ws versus L0.

Tables (2)

Tables Icon

Table 1 Parameters of the Type II Phase-Matching KTP Crystala

Tables Icon

Table 2 Parameters of the Theoretical Calculationa

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

ϕ ( r , t ) = ϕ ( 0 , t ) exp ( - 2 r 2 w l 2 ) ,
ϕ g ( r , t ) = w l 2 w g 2 ϕ ( 0 , t ) exp ( - 2 r 2 w g 2 ) ,
ϕ s ( r , t ) = w l 2 w s 2 ϕ ( 0 , t ) exp ( - 2 r 2 w s 2 ) ,
ϕ k ( r , t ) = w l 2 w g 2 ϕ ( 0 , t ) exp ( - 2 r 2 w k 2 ) ,
f T = 2 π K c d n / d T + α T n 1 w p 2 ξ P in η ,
w p ( z ) = w p 0 + θ p z - z 0 ,
E ( ω , r , z , t ) = E ( ω , r ) cos ( K z - ω t ) ,
E o ( ω , r ) = E 0 o exp ( - r 2 w k 2 ) ,
E e ( ω , r ) = E 0 e exp ( - r 2 w k 2 ) .
d E ( 2 ω , r ) d z = i 2 ω d eff n e 2 ω c E 0 o E 0 e exp ( - 2 r 2 w k 2 ) ,
E ( 2 ω , r ) = i 2 ω d eff l k n e 2 ω c E 0 o E 0 e exp ( - 2 r 2 w k 2 ) ,
I = 1 2 n c 0 E 2
P i = π ω k 2 4 n c 0 E i 2             ( i = o , e ) ,
I ( 2 ω , r ) = 32 ω 2 d eff 2 l k 2 c 3 0 n e 2 ω n o ω n e w P 0 o P 0 e ( π ω k 2 ) 2 exp ( - 4 r 2 w k 2 ) ,
I ( ω , r ) = I o ( ω , r ) + I e ( ω , r ) = 2 π ω k 2 exp ( - 2 r 2 w k 2 ) ( P 0 o + P 0 e ) .
P 0 o = P 0 e = ( 1 / 2 ) P ( ω , 0 ) ,
δ N = P ( 2 ω , r ) P ( ω , r ) = I ( 2 ω , r ) I ( ω , r ) = K N ω c l k 2 exp ( - 2 r 2 w k 2 ) ϕ k ( 0 , t ) = δ k ϕ k ( r , t ) ,
K N = ω 2 d eff 2 c 3 0 n e 2 ω n o ω n e ω ,
δ k = K N ω c l k 2 .
0 d ϕ ( r , t ) d t 2 π r d r = 0 1 t r { 2 σ n ( r , t ) l ϕ g ( r , t ) - 2 σ g n s 1 ( r , t ) l s ϕ s ( r , t ) - 2 σ e [ n s 0 - n s 1 ( r , t ) ] l s ϕ s ( r , t ) - δ k ϕ k 2 ( r , t ) - L ϕ ( r , t ) } 2 π r d r ,
d n ( r , t ) d t = R in ( r ) - σ c n ( r , t ) ϕ g ( r , t ) - n ( r , t ) τ ,
d n s 1 ( r , t ) d t = n s 0 - n s 1 ( r , t ) τ s - σ g c n s 1 ( r , t ) ϕ s ( r , t ) ,
n ( r , t ) = exp [ - σ c w l 2 w g 2 exp ( - 2 r 2 w g 2 ) 0 t ϕ ( 0 , t ) d t - t τ ] × { R in ( r ) 0 t exp [ σ c w l 2 w g 2 exp ( - 2 r 2 w g 2 ) × 0 t ϕ ( 0 , t ) d t + t τ ] d t + n ( 0 , 0 ) × exp ( - 2 r 2 w p 2 ) } ,
n s 1 ( r , t ) = exp [ - σ g c w l 2 w s 2 exp ( - 2 r 2 w s 2 ) 0 t ϕ ( 0 , t ) d t - t τ s ] { n s 0 τ s 0 t exp [ σ g c w l 2 w s 2 exp ( - 2 r 2 w s 2 ) × 0 t ϕ ( 0 , t ) d t + t τ s ] d t + n s 0 } ,
n ( 0 , 0 ) = ln ( 1 T 0 2 ) + L 2 σ l ( 1 + w g 2 w 2 p ) ,
d ϕ ( 0 , t ) d t = 4 ϕ ( 0 , t ) w l 2 t r 0 t { 2 σ n ( r , t ) l w l 2 w g 2 exp ( - 2 r 2 w g 2 ) - 2 σ g n s 1 ( r , t ) l s w l 2 w s 2 exp ( - 2 r 2 w s 2 ) - 2 σ e [ n s 0 - n s 1 ( r , t ) ] l s w l 2 w s 2 exp ( - 2 r 2 w s 2 ) - δ k ϕ ( 0 , t ) w l 4 w k 4 exp ( - 4 r 2 w k 2 ) - L exp ( - 2 r 2 w l 2 ) } r d r ,

Metrics