Abstract

A new interferometer design for microlens testing is presented. The phase-shifting system combines the advantages of a Twyman–Green and a Mach–Zehnder interferometer and permits full characterization of the aberrations of microlenses as well as radius of curvature and focal length measurements. The Twyman–Green system is applied to surface testing in reflection (single reflection), whereas the Mach–Zehnder system is used for lens testing in transmission (single pass). Both measurements are performed without removal of the test part, allowing for combination of the results without confusion of the actual lens and without an azimuthal orientation error. The interferometer setup is explained, the test procedure is described, and experimental results are given.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. C. Hutley, “Manufacture and testing of microlens arrays,” in Optics in Complex Systems, F. Lanzl, G. Weigelt, eds., Proc. SPIE1319, 491–492 (1990).
    [CrossRef]
  2. M. C. Hutley, D. J. Daly, R. F. Stevens, The Testing of Microlens Arrays, Vol. 30 of IOP Short Meeting Series (IOP Publishing, 1991), pp. 67–81.
  3. P. Nussbaum, R. Völkel, H. P. Herzig, M. Eisner, S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6, 617–636 (1997).
    [CrossRef]
  4. D. Daly, Microlens Arrays (Taylor & Francis, 2001).
  5. W. Moench, H. Zappe, “Fabrication and testing of microlens arrays by all-liquid techniques,” J. Opt. A Pure Appl. Opt. 6, 330–337 (2004).
    [CrossRef]
  6. K. O. Mersereau, R. J. Crisci, C. R. Nijander, W. P. Townsend, D. J. Daly, M. C. Hutley, “Testing and measurement of microlenses,” in Miniature and Micro-Optics and Micromechanics, N. C. Gallagher, C. S. Roychoudhuri, eds., Proc. SPIE1992, 210–215 (1993).
    [CrossRef]
  7. J. Schwider, H. Sickinger, “Array test for microlenses,” Optik 107, 26–34 (1997).
  8. J. Schwider, N. Lindlein, R. Schreiner, J. Lamprecht, G. Leuchs, J. Pfund, M. Beyerlein, “Optikprüfung von refraktiven Mikrolinsen,” Tech. Messen 69, 467–482 (2002).
  9. J. Schwider, O. Falkenstörfer, “Twyman–Green interferometer for testing microspheres,” Opt. Eng. 34, 2972–2975 (1995).
    [CrossRef]
  10. L. Falco, J.-C. Vuilleumier, E. Muharemovic, “Automated Twyman–Green interferometer for micro-lens arrays characterization,” presented at the 10th Microoptics Conference, Jena, Germany, 1–3 September 2004.
  11. D. J. Daly, M. C. Hutley, R. F. Stevens, “Mach Zehnder interferometer for measuring microlenses,” in Interferometry ’94: New Techniques and Analysis in Optical Measurements, M. Kujawinska, K. Patorski, eds., Proc. SPIE2340, 258–263 (1994).
  12. H. Sickinger, J. Schwider, B. Manzke, “Fiber based Mach–Zehnder interferometer for measuring wave aberrations of microlenses,” Optik 110, 239–243 (1999).
  13. T. Miyashita, K. Hamanaka, M. Kato, S. Ishihara, H. Sato, E. Sato, T. Morokuma, “Wavefront aberration measurement technology for microlens using the Mach–Zehnder interferometer provided with a projected aperture,” in Interferometry XII: Applications, W. Osten, E. Novak, eds., Proc. SPIE5532, 117–127 (2004).
    [CrossRef]
  14. W. Krug, E. Lau, “Ein Interferenzmikroskop für Durchund Auflichtbeobachtungen,” Annalen der Physik 6, 329–340 (1951).
  15. H. Sickinger, O. Falkenstörfer, N. Lindlein, J. Schwider, “Characterization of microlenses using a phase-shifting shearing interferometer,” Opt. Eng. 33, 2680–2668 (1994).
    [CrossRef]
  16. J. H. Burning, D. R. Herriott, “A versatile laser interderometer,–,” Appl. Opt. 9, 2180–2182 (1970).
    [CrossRef]
  17. A. E. Jensen, “Absolute calibration method for laser Twyman–Green wavefront testing interferometers,” J. Opt. Soc. Am. 63, 1313A (1973) (abstract only).
  18. P. Manns, G. Kleer, W. Döll, “Heissprägung von Mikrostrukturen in anorganische Gläser für Anwendungen in der optischen Sensorik,” in Kurzreferate Glastechnische Tagung (Glastechnische Gesellschaft, 2000), pp. 102–106.
  19. K. Creath, J. C. Wyant, “Testing spherical surfaces: a fast, quasi-absolute technique,” Appl. Opt. 31, 4350–4354 (1992).
    [CrossRef] [PubMed]
  20. C. J. Evans, R. E. Parks, P. J. Sullivan, J. S. Taylor, “Visualization of surface figure by the use of Zernike polynomials,” Appl. Opt. 34, 7815–7819 (1995).
    [CrossRef] [PubMed]

2004 (1)

W. Moench, H. Zappe, “Fabrication and testing of microlens arrays by all-liquid techniques,” J. Opt. A Pure Appl. Opt. 6, 330–337 (2004).
[CrossRef]

2002 (1)

J. Schwider, N. Lindlein, R. Schreiner, J. Lamprecht, G. Leuchs, J. Pfund, M. Beyerlein, “Optikprüfung von refraktiven Mikrolinsen,” Tech. Messen 69, 467–482 (2002).

1999 (1)

H. Sickinger, J. Schwider, B. Manzke, “Fiber based Mach–Zehnder interferometer for measuring wave aberrations of microlenses,” Optik 110, 239–243 (1999).

1997 (2)

J. Schwider, H. Sickinger, “Array test for microlenses,” Optik 107, 26–34 (1997).

P. Nussbaum, R. Völkel, H. P. Herzig, M. Eisner, S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6, 617–636 (1997).
[CrossRef]

1995 (2)

C. J. Evans, R. E. Parks, P. J. Sullivan, J. S. Taylor, “Visualization of surface figure by the use of Zernike polynomials,” Appl. Opt. 34, 7815–7819 (1995).
[CrossRef] [PubMed]

J. Schwider, O. Falkenstörfer, “Twyman–Green interferometer for testing microspheres,” Opt. Eng. 34, 2972–2975 (1995).
[CrossRef]

1994 (1)

H. Sickinger, O. Falkenstörfer, N. Lindlein, J. Schwider, “Characterization of microlenses using a phase-shifting shearing interferometer,” Opt. Eng. 33, 2680–2668 (1994).
[CrossRef]

1992 (1)

1973 (1)

A. E. Jensen, “Absolute calibration method for laser Twyman–Green wavefront testing interferometers,” J. Opt. Soc. Am. 63, 1313A (1973) (abstract only).

1970 (1)

1951 (1)

W. Krug, E. Lau, “Ein Interferenzmikroskop für Durchund Auflichtbeobachtungen,” Annalen der Physik 6, 329–340 (1951).

Beyerlein, M.

J. Schwider, N. Lindlein, R. Schreiner, J. Lamprecht, G. Leuchs, J. Pfund, M. Beyerlein, “Optikprüfung von refraktiven Mikrolinsen,” Tech. Messen 69, 467–482 (2002).

Burning, J. H.

Creath, K.

Crisci, R. J.

K. O. Mersereau, R. J. Crisci, C. R. Nijander, W. P. Townsend, D. J. Daly, M. C. Hutley, “Testing and measurement of microlenses,” in Miniature and Micro-Optics and Micromechanics, N. C. Gallagher, C. S. Roychoudhuri, eds., Proc. SPIE1992, 210–215 (1993).
[CrossRef]

Daly, D.

D. Daly, Microlens Arrays (Taylor & Francis, 2001).

Daly, D. J.

K. O. Mersereau, R. J. Crisci, C. R. Nijander, W. P. Townsend, D. J. Daly, M. C. Hutley, “Testing and measurement of microlenses,” in Miniature and Micro-Optics and Micromechanics, N. C. Gallagher, C. S. Roychoudhuri, eds., Proc. SPIE1992, 210–215 (1993).
[CrossRef]

M. C. Hutley, D. J. Daly, R. F. Stevens, The Testing of Microlens Arrays, Vol. 30 of IOP Short Meeting Series (IOP Publishing, 1991), pp. 67–81.

D. J. Daly, M. C. Hutley, R. F. Stevens, “Mach Zehnder interferometer for measuring microlenses,” in Interferometry ’94: New Techniques and Analysis in Optical Measurements, M. Kujawinska, K. Patorski, eds., Proc. SPIE2340, 258–263 (1994).

Döll, W.

P. Manns, G. Kleer, W. Döll, “Heissprägung von Mikrostrukturen in anorganische Gläser für Anwendungen in der optischen Sensorik,” in Kurzreferate Glastechnische Tagung (Glastechnische Gesellschaft, 2000), pp. 102–106.

Eisner, M.

P. Nussbaum, R. Völkel, H. P. Herzig, M. Eisner, S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6, 617–636 (1997).
[CrossRef]

Evans, C. J.

Falco, L.

L. Falco, J.-C. Vuilleumier, E. Muharemovic, “Automated Twyman–Green interferometer for micro-lens arrays characterization,” presented at the 10th Microoptics Conference, Jena, Germany, 1–3 September 2004.

Falkenstörfer, O.

J. Schwider, O. Falkenstörfer, “Twyman–Green interferometer for testing microspheres,” Opt. Eng. 34, 2972–2975 (1995).
[CrossRef]

H. Sickinger, O. Falkenstörfer, N. Lindlein, J. Schwider, “Characterization of microlenses using a phase-shifting shearing interferometer,” Opt. Eng. 33, 2680–2668 (1994).
[CrossRef]

Hamanaka, K.

T. Miyashita, K. Hamanaka, M. Kato, S. Ishihara, H. Sato, E. Sato, T. Morokuma, “Wavefront aberration measurement technology for microlens using the Mach–Zehnder interferometer provided with a projected aperture,” in Interferometry XII: Applications, W. Osten, E. Novak, eds., Proc. SPIE5532, 117–127 (2004).
[CrossRef]

Haselbeck, S.

P. Nussbaum, R. Völkel, H. P. Herzig, M. Eisner, S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6, 617–636 (1997).
[CrossRef]

Herriott, D. R.

Herzig, H. P.

P. Nussbaum, R. Völkel, H. P. Herzig, M. Eisner, S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6, 617–636 (1997).
[CrossRef]

Hutley, M. C.

K. O. Mersereau, R. J. Crisci, C. R. Nijander, W. P. Townsend, D. J. Daly, M. C. Hutley, “Testing and measurement of microlenses,” in Miniature and Micro-Optics and Micromechanics, N. C. Gallagher, C. S. Roychoudhuri, eds., Proc. SPIE1992, 210–215 (1993).
[CrossRef]

M. C. Hutley, “Manufacture and testing of microlens arrays,” in Optics in Complex Systems, F. Lanzl, G. Weigelt, eds., Proc. SPIE1319, 491–492 (1990).
[CrossRef]

M. C. Hutley, D. J. Daly, R. F. Stevens, The Testing of Microlens Arrays, Vol. 30 of IOP Short Meeting Series (IOP Publishing, 1991), pp. 67–81.

D. J. Daly, M. C. Hutley, R. F. Stevens, “Mach Zehnder interferometer for measuring microlenses,” in Interferometry ’94: New Techniques and Analysis in Optical Measurements, M. Kujawinska, K. Patorski, eds., Proc. SPIE2340, 258–263 (1994).

Ishihara, S.

T. Miyashita, K. Hamanaka, M. Kato, S. Ishihara, H. Sato, E. Sato, T. Morokuma, “Wavefront aberration measurement technology for microlens using the Mach–Zehnder interferometer provided with a projected aperture,” in Interferometry XII: Applications, W. Osten, E. Novak, eds., Proc. SPIE5532, 117–127 (2004).
[CrossRef]

Jensen, A. E.

A. E. Jensen, “Absolute calibration method for laser Twyman–Green wavefront testing interferometers,” J. Opt. Soc. Am. 63, 1313A (1973) (abstract only).

Kato, M.

T. Miyashita, K. Hamanaka, M. Kato, S. Ishihara, H. Sato, E. Sato, T. Morokuma, “Wavefront aberration measurement technology for microlens using the Mach–Zehnder interferometer provided with a projected aperture,” in Interferometry XII: Applications, W. Osten, E. Novak, eds., Proc. SPIE5532, 117–127 (2004).
[CrossRef]

Kleer, G.

P. Manns, G. Kleer, W. Döll, “Heissprägung von Mikrostrukturen in anorganische Gläser für Anwendungen in der optischen Sensorik,” in Kurzreferate Glastechnische Tagung (Glastechnische Gesellschaft, 2000), pp. 102–106.

Krug, W.

W. Krug, E. Lau, “Ein Interferenzmikroskop für Durchund Auflichtbeobachtungen,” Annalen der Physik 6, 329–340 (1951).

Lamprecht, J.

J. Schwider, N. Lindlein, R. Schreiner, J. Lamprecht, G. Leuchs, J. Pfund, M. Beyerlein, “Optikprüfung von refraktiven Mikrolinsen,” Tech. Messen 69, 467–482 (2002).

Lau, E.

W. Krug, E. Lau, “Ein Interferenzmikroskop für Durchund Auflichtbeobachtungen,” Annalen der Physik 6, 329–340 (1951).

Leuchs, G.

J. Schwider, N. Lindlein, R. Schreiner, J. Lamprecht, G. Leuchs, J. Pfund, M. Beyerlein, “Optikprüfung von refraktiven Mikrolinsen,” Tech. Messen 69, 467–482 (2002).

Lindlein, N.

J. Schwider, N. Lindlein, R. Schreiner, J. Lamprecht, G. Leuchs, J. Pfund, M. Beyerlein, “Optikprüfung von refraktiven Mikrolinsen,” Tech. Messen 69, 467–482 (2002).

H. Sickinger, O. Falkenstörfer, N. Lindlein, J. Schwider, “Characterization of microlenses using a phase-shifting shearing interferometer,” Opt. Eng. 33, 2680–2668 (1994).
[CrossRef]

Manns, P.

P. Manns, G. Kleer, W. Döll, “Heissprägung von Mikrostrukturen in anorganische Gläser für Anwendungen in der optischen Sensorik,” in Kurzreferate Glastechnische Tagung (Glastechnische Gesellschaft, 2000), pp. 102–106.

Manzke, B.

H. Sickinger, J. Schwider, B. Manzke, “Fiber based Mach–Zehnder interferometer for measuring wave aberrations of microlenses,” Optik 110, 239–243 (1999).

Mersereau, K. O.

K. O. Mersereau, R. J. Crisci, C. R. Nijander, W. P. Townsend, D. J. Daly, M. C. Hutley, “Testing and measurement of microlenses,” in Miniature and Micro-Optics and Micromechanics, N. C. Gallagher, C. S. Roychoudhuri, eds., Proc. SPIE1992, 210–215 (1993).
[CrossRef]

Miyashita, T.

T. Miyashita, K. Hamanaka, M. Kato, S. Ishihara, H. Sato, E. Sato, T. Morokuma, “Wavefront aberration measurement technology for microlens using the Mach–Zehnder interferometer provided with a projected aperture,” in Interferometry XII: Applications, W. Osten, E. Novak, eds., Proc. SPIE5532, 117–127 (2004).
[CrossRef]

Moench, W.

W. Moench, H. Zappe, “Fabrication and testing of microlens arrays by all-liquid techniques,” J. Opt. A Pure Appl. Opt. 6, 330–337 (2004).
[CrossRef]

Morokuma, T.

T. Miyashita, K. Hamanaka, M. Kato, S. Ishihara, H. Sato, E. Sato, T. Morokuma, “Wavefront aberration measurement technology for microlens using the Mach–Zehnder interferometer provided with a projected aperture,” in Interferometry XII: Applications, W. Osten, E. Novak, eds., Proc. SPIE5532, 117–127 (2004).
[CrossRef]

Muharemovic, E.

L. Falco, J.-C. Vuilleumier, E. Muharemovic, “Automated Twyman–Green interferometer for micro-lens arrays characterization,” presented at the 10th Microoptics Conference, Jena, Germany, 1–3 September 2004.

Nijander, C. R.

K. O. Mersereau, R. J. Crisci, C. R. Nijander, W. P. Townsend, D. J. Daly, M. C. Hutley, “Testing and measurement of microlenses,” in Miniature and Micro-Optics and Micromechanics, N. C. Gallagher, C. S. Roychoudhuri, eds., Proc. SPIE1992, 210–215 (1993).
[CrossRef]

Nussbaum, P.

P. Nussbaum, R. Völkel, H. P. Herzig, M. Eisner, S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6, 617–636 (1997).
[CrossRef]

Parks, R. E.

Pfund, J.

J. Schwider, N. Lindlein, R. Schreiner, J. Lamprecht, G. Leuchs, J. Pfund, M. Beyerlein, “Optikprüfung von refraktiven Mikrolinsen,” Tech. Messen 69, 467–482 (2002).

Sato, E.

T. Miyashita, K. Hamanaka, M. Kato, S. Ishihara, H. Sato, E. Sato, T. Morokuma, “Wavefront aberration measurement technology for microlens using the Mach–Zehnder interferometer provided with a projected aperture,” in Interferometry XII: Applications, W. Osten, E. Novak, eds., Proc. SPIE5532, 117–127 (2004).
[CrossRef]

Sato, H.

T. Miyashita, K. Hamanaka, M. Kato, S. Ishihara, H. Sato, E. Sato, T. Morokuma, “Wavefront aberration measurement technology for microlens using the Mach–Zehnder interferometer provided with a projected aperture,” in Interferometry XII: Applications, W. Osten, E. Novak, eds., Proc. SPIE5532, 117–127 (2004).
[CrossRef]

Schreiner, R.

J. Schwider, N. Lindlein, R. Schreiner, J. Lamprecht, G. Leuchs, J. Pfund, M. Beyerlein, “Optikprüfung von refraktiven Mikrolinsen,” Tech. Messen 69, 467–482 (2002).

Schwider, J.

J. Schwider, N. Lindlein, R. Schreiner, J. Lamprecht, G. Leuchs, J. Pfund, M. Beyerlein, “Optikprüfung von refraktiven Mikrolinsen,” Tech. Messen 69, 467–482 (2002).

H. Sickinger, J. Schwider, B. Manzke, “Fiber based Mach–Zehnder interferometer for measuring wave aberrations of microlenses,” Optik 110, 239–243 (1999).

J. Schwider, H. Sickinger, “Array test for microlenses,” Optik 107, 26–34 (1997).

J. Schwider, O. Falkenstörfer, “Twyman–Green interferometer for testing microspheres,” Opt. Eng. 34, 2972–2975 (1995).
[CrossRef]

H. Sickinger, O. Falkenstörfer, N. Lindlein, J. Schwider, “Characterization of microlenses using a phase-shifting shearing interferometer,” Opt. Eng. 33, 2680–2668 (1994).
[CrossRef]

Sickinger, H.

H. Sickinger, J. Schwider, B. Manzke, “Fiber based Mach–Zehnder interferometer for measuring wave aberrations of microlenses,” Optik 110, 239–243 (1999).

J. Schwider, H. Sickinger, “Array test for microlenses,” Optik 107, 26–34 (1997).

H. Sickinger, O. Falkenstörfer, N. Lindlein, J. Schwider, “Characterization of microlenses using a phase-shifting shearing interferometer,” Opt. Eng. 33, 2680–2668 (1994).
[CrossRef]

Stevens, R. F.

M. C. Hutley, D. J. Daly, R. F. Stevens, The Testing of Microlens Arrays, Vol. 30 of IOP Short Meeting Series (IOP Publishing, 1991), pp. 67–81.

D. J. Daly, M. C. Hutley, R. F. Stevens, “Mach Zehnder interferometer for measuring microlenses,” in Interferometry ’94: New Techniques and Analysis in Optical Measurements, M. Kujawinska, K. Patorski, eds., Proc. SPIE2340, 258–263 (1994).

Sullivan, P. J.

Taylor, J. S.

Townsend, W. P.

K. O. Mersereau, R. J. Crisci, C. R. Nijander, W. P. Townsend, D. J. Daly, M. C. Hutley, “Testing and measurement of microlenses,” in Miniature and Micro-Optics and Micromechanics, N. C. Gallagher, C. S. Roychoudhuri, eds., Proc. SPIE1992, 210–215 (1993).
[CrossRef]

Völkel, R.

P. Nussbaum, R. Völkel, H. P. Herzig, M. Eisner, S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6, 617–636 (1997).
[CrossRef]

Vuilleumier, J.-C.

L. Falco, J.-C. Vuilleumier, E. Muharemovic, “Automated Twyman–Green interferometer for micro-lens arrays characterization,” presented at the 10th Microoptics Conference, Jena, Germany, 1–3 September 2004.

Wyant, J. C.

Zappe, H.

W. Moench, H. Zappe, “Fabrication and testing of microlens arrays by all-liquid techniques,” J. Opt. A Pure Appl. Opt. 6, 330–337 (2004).
[CrossRef]

Annalen der Physik (1)

W. Krug, E. Lau, “Ein Interferenzmikroskop für Durchund Auflichtbeobachtungen,” Annalen der Physik 6, 329–340 (1951).

Appl. Opt. (3)

J. Opt. A Pure Appl. Opt. (1)

W. Moench, H. Zappe, “Fabrication and testing of microlens arrays by all-liquid techniques,” J. Opt. A Pure Appl. Opt. 6, 330–337 (2004).
[CrossRef]

J. Opt. Soc. Am. (1)

A. E. Jensen, “Absolute calibration method for laser Twyman–Green wavefront testing interferometers,” J. Opt. Soc. Am. 63, 1313A (1973) (abstract only).

Opt. Eng. (2)

H. Sickinger, O. Falkenstörfer, N. Lindlein, J. Schwider, “Characterization of microlenses using a phase-shifting shearing interferometer,” Opt. Eng. 33, 2680–2668 (1994).
[CrossRef]

J. Schwider, O. Falkenstörfer, “Twyman–Green interferometer for testing microspheres,” Opt. Eng. 34, 2972–2975 (1995).
[CrossRef]

Optik (2)

H. Sickinger, J. Schwider, B. Manzke, “Fiber based Mach–Zehnder interferometer for measuring wave aberrations of microlenses,” Optik 110, 239–243 (1999).

J. Schwider, H. Sickinger, “Array test for microlenses,” Optik 107, 26–34 (1997).

Pure Appl. Opt. (1)

P. Nussbaum, R. Völkel, H. P. Herzig, M. Eisner, S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6, 617–636 (1997).
[CrossRef]

Tech. Messen (1)

J. Schwider, N. Lindlein, R. Schreiner, J. Lamprecht, G. Leuchs, J. Pfund, M. Beyerlein, “Optikprüfung von refraktiven Mikrolinsen,” Tech. Messen 69, 467–482 (2002).

Other (8)

K. O. Mersereau, R. J. Crisci, C. R. Nijander, W. P. Townsend, D. J. Daly, M. C. Hutley, “Testing and measurement of microlenses,” in Miniature and Micro-Optics and Micromechanics, N. C. Gallagher, C. S. Roychoudhuri, eds., Proc. SPIE1992, 210–215 (1993).
[CrossRef]

D. Daly, Microlens Arrays (Taylor & Francis, 2001).

M. C. Hutley, “Manufacture and testing of microlens arrays,” in Optics in Complex Systems, F. Lanzl, G. Weigelt, eds., Proc. SPIE1319, 491–492 (1990).
[CrossRef]

M. C. Hutley, D. J. Daly, R. F. Stevens, The Testing of Microlens Arrays, Vol. 30 of IOP Short Meeting Series (IOP Publishing, 1991), pp. 67–81.

T. Miyashita, K. Hamanaka, M. Kato, S. Ishihara, H. Sato, E. Sato, T. Morokuma, “Wavefront aberration measurement technology for microlens using the Mach–Zehnder interferometer provided with a projected aperture,” in Interferometry XII: Applications, W. Osten, E. Novak, eds., Proc. SPIE5532, 117–127 (2004).
[CrossRef]

L. Falco, J.-C. Vuilleumier, E. Muharemovic, “Automated Twyman–Green interferometer for micro-lens arrays characterization,” presented at the 10th Microoptics Conference, Jena, Germany, 1–3 September 2004.

D. J. Daly, M. C. Hutley, R. F. Stevens, “Mach Zehnder interferometer for measuring microlenses,” in Interferometry ’94: New Techniques and Analysis in Optical Measurements, M. Kujawinska, K. Patorski, eds., Proc. SPIE2340, 258–263 (1994).

P. Manns, G. Kleer, W. Döll, “Heissprägung von Mikrostrukturen in anorganische Gläser für Anwendungen in der optischen Sensorik,” in Kurzreferate Glastechnische Tagung (Glastechnische Gesellschaft, 2000), pp. 102–106.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematics of the combined phase-shifting interferometer: (a) Twyman–Green system and (b) Mach–Zehnder system. HeNe, helium–neon laser (633 nm); HALO, high-aperture laser objective; L’s, positive lenses; M’s, mirrors; Cam, camera; other abbreviations defined in text.

Fig. 2
Fig. 2

Photograph of the interferometer system.

Fig. 3
Fig. 3

Basic test positions to measure radius of curvature R, front focal length f, and both reflected and transmitted wavefront aberrations of a single microlens.

Fig. 4
Fig. 4

Measurement of physical properties: (a) depth of sagitta and (b) substrate thickness tS.

Fig. 5
Fig. 5

Slightly tilted interferograms of (a) reflected and (b) transmitted wavefronts.

Fig. 6
Fig. 6

(a) Single reflection wavefront error of the concave microlens surface and (b) visualization of a tenth-order Zernike fit.20 Tilt, power, and coma are removed. The wavefront error consists mainly of spherical aberration (A40 = 113.7 nm, A60 = 108.1 nm).

Fig. 7
Fig. 7

(a) Single-pass wavefront error of the microlens and (b) bar plot of the Zernike coefficients. Tilt and power have been subtracted from the measurement. The main parts of aberrations are primary astigmatism (A22 = 155.3 nm) and primary spherical aberration (A40 = 74.4 nm).

Tables (1)

Tables Icon

Table 1 Comparison of Actual and Nominal Lens Data

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

W Focus = W R 1 + ½ ( W O 1 + W ¯ O 1 ) ,
W TGI = W S + W R 1 + W O 1 .
W MZI = W L + W R 2 + W O 2 .
W L = ( Δ s 1 - Δ s 2 ) ( n - 1 ) .
t S = Δ z ( n 2 - sin 2 α ) 1 / 2 cos α ,

Metrics