Abstract

In situ monitoring of traffic-generated nitrogen dioxide (NO2) emissions using long-path absorption spectroscopy is reported. High-sensitivity detection of NO2 is achieved by employing two-tone frequency-modulation spectroscopy at a visible absorption band using a tunable high-power diode laser operated around 635 nm. A real-time absorption spectrometer is accomplished by repetitively applying a rectangular current pulse to the diode-laser operating current, allowing detection of isolated NO2 absorption lines. A detection limit of 10 μg/m3 for NO2 at atmospheric pressure using a 160 m absorption path is demonstrated. Continuous monitoring of NO2 over a road intersection at peak traffic is performed.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Platt, “Differential optical absorption spectroscopy (DOAS),” in Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed., Vol. 127 of Chemical Physics Series (Wiley, New York, 1994), pp. 27–84.
  2. H. Edner, P. Ragnarson, S. Spännare, S. Svanberg, “Differential optical absorption spectroscopy (DOAS) system for urban atmospheric pollution monitoring,” Appl. Opt. 32, 327–333 (1993).
    [CrossRef] [PubMed]
  3. K. A. Fredriksson, H. M. Hertz, “Evaluation of the DIAL technique for studies on NO2using a mobile lidar system,” Appl. Opt. 23, 1403–1411 (1984).
    [CrossRef]
  4. H. Edner, P. Ragnarson, E. Wallinder, “Industrial emission control using lidar techniques,” Environ. Sci. Technol. 29, 330–337 (1995).
    [CrossRef] [PubMed]
  5. J. L. Jimenez, G. J. McRae, D. D. Nelson, M. S. Zahniser, C. E. Kolb, “Remote sensing of NO and NO2emissions from heavy-duty diesel trucks using tunable diode lasers,” Environ. Sci. Technol. 34, 2380–2387 (2000).
    [CrossRef]
  6. J. Reid, M. El-Sherbiny, B. K. Garside, E. A. Ballik, “Sensitivity limits of a tunable diode laser spectrometer, with application to the detection of NO2at the 100-ppt level,” Appl. Opt. 19, 3349–3354 (1980).
    [CrossRef] [PubMed]
  7. W. Lenth, M. Gehrtz, “Sensitive detection of NO2using high-frequency heterodyne spectroscopy with GaAlAs diode laser,” Appl. Phys. Lett. 47, 1263–1265 (1985).
    [CrossRef]
  8. C. R. Webster, R. D. May, C. A. Trimble, R. G. Chave, J. Kendall, “Aircraft (ER-2) laser infrared absorption spectrometer (ALIAS) for in-situ stratospheric measurements of HCl, N2O, CH4, NO2, and HNO3,” Appl. Opt. 33, 454–472 (1994).
    [CrossRef] [PubMed]
  9. M. G. Allen, K. L. Carleton, S. J. Davis, W. J. Kessler, C. E. Otis, D. A. Palombo, D. M. Sonnenfroh, “Ultrasensitive dual-beam absorption and gain spectroscopy: applications for near-infrared and visible diode laser sensors,” Appl. Opt. 34, 3240–3249 (1995).
    [CrossRef] [PubMed]
  10. D. M. Sonnenfroh, M. G. Allen, “Ultrasensitive, visible tunable diode laser detection of NO2,” Appl. Opt. 35, 4053–4058 (1996).
    [CrossRef] [PubMed]
  11. R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Tunable diode-laser absorption measurements of NO2near 670 and 395 nm,” Appl. Opt. 35, 4059–4064 (1996).
    [CrossRef] [PubMed]
  12. P. Kauranen, H. M. Hertz, S. Svanberg, “Tomographic imaging of fluid flows by the use of two-tone frequency-modulation spectroscopy,” Opt. Lett. 19, 1489–1491 (1994).
    [CrossRef] [PubMed]
  13. P. Kauranen, I. Harwigsson, B. Jönsson, “Relative vapor pressure measurements using a frequency-modulated tunable diode laser, a tool for water activity determination in solutions,” J. Phys. Chem. 98, 1411–1415 (1994).
    [CrossRef]
  14. H. Riris, C. L. Carlisle, L. W. Carr, D. E. Cooper, R. U. Martinelli, R. J. Menna, “Design of an open path near-infrared diode laser sensor: application to oxygen, water, and carbon dioxide vapor detection,” Appl. Opt. 33, 7059–7066 (1994).
    [CrossRef] [PubMed]
  15. T. J. Johnson, F. G. Wienhold, J. P. Burrows, G. W. Harris, “Frequency modulation spectroscopy at 1.3 μm using InGaAsP lasers: a prototype field instrument for atmospheric chemistry research,” Appl. Opt. 30, 407–413 (1991).
    [CrossRef] [PubMed]
  16. D. E. Cooper, T. F. Gallagher, “Double frequency modulation spectroscopy: high modulation frequency with low-bandwidth detectors,” Appl. Opt. 24, 1327–1334 (1985).
    [CrossRef] [PubMed]
  17. V. G. Avetisov, P. Kauranen, “High-resolution absorption measurements using two-tone frequency modulation spectroscopy with diode lasers,” Appl. Opt. 36, 4043–4054 (1997).
    [CrossRef] [PubMed]
  18. V. G. Avetisov, P. Kauranen, “Two-tone frequency-modulation spectroscopy for quantitative measurements of gaseous species: theoretical, numerical and experimental investigation of lineshapes,” Appl. Opt. 35, 4705–4723 (1996).
    [CrossRef] [PubMed]
  19. U. Gustafsson, G. Somesfalean, J. Alnis, S. Svanberg, “Frequency modulation spectroscopy with blue diode lasers,” Appl. Opt. 39, 3774–3780 (2000).
    [CrossRef]
  20. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
    [CrossRef]
  21. J. T. C. Liu, R. K. Hanson, J. B. Jeffries, “High-sensitivity absorption diagnostic for NO2using a blue diode laser,” J. Quant. Spectrosc. Radiat. Transfer 72, 655–664 (2002).
    [CrossRef]
  22. M. I. Mazurenka, B. L. Fawcett, J. M. F. Elks, D. E. Schall-cross, A. J. Orr-Ewing, “410-nm diode laser cavity ring-down spectroscopy for trace detection of NO2,” Chem. Phys. Lett. 367, 1–9 (2003).
    [CrossRef]

2003

M. I. Mazurenka, B. L. Fawcett, J. M. F. Elks, D. E. Schall-cross, A. J. Orr-Ewing, “410-nm diode laser cavity ring-down spectroscopy for trace detection of NO2,” Chem. Phys. Lett. 367, 1–9 (2003).
[CrossRef]

2002

J. T. C. Liu, R. K. Hanson, J. B. Jeffries, “High-sensitivity absorption diagnostic for NO2using a blue diode laser,” J. Quant. Spectrosc. Radiat. Transfer 72, 655–664 (2002).
[CrossRef]

2000

J. L. Jimenez, G. J. McRae, D. D. Nelson, M. S. Zahniser, C. E. Kolb, “Remote sensing of NO and NO2emissions from heavy-duty diesel trucks using tunable diode lasers,” Environ. Sci. Technol. 34, 2380–2387 (2000).
[CrossRef]

U. Gustafsson, G. Somesfalean, J. Alnis, S. Svanberg, “Frequency modulation spectroscopy with blue diode lasers,” Appl. Opt. 39, 3774–3780 (2000).
[CrossRef]

1998

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

1997

1996

1995

1994

1993

1991

1985

D. E. Cooper, T. F. Gallagher, “Double frequency modulation spectroscopy: high modulation frequency with low-bandwidth detectors,” Appl. Opt. 24, 1327–1334 (1985).
[CrossRef] [PubMed]

W. Lenth, M. Gehrtz, “Sensitive detection of NO2using high-frequency heterodyne spectroscopy with GaAlAs diode laser,” Appl. Phys. Lett. 47, 1263–1265 (1985).
[CrossRef]

1984

1980

Allen, M. G.

Alnis, J.

Avetisov, V. G.

Baer, D. S.

Ballik, E. A.

Brown, L. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Burrows, J. P.

Camy-Peyret, C.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Carleton, K. L.

Carlisle, C. L.

Carr, L. W.

Chance, K. V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Chave, R. G.

Cooper, D. E.

Dana, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Davis, S. J.

Edner, H.

Edwards, D. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Elks, J. M. F.

M. I. Mazurenka, B. L. Fawcett, J. M. F. Elks, D. E. Schall-cross, A. J. Orr-Ewing, “410-nm diode laser cavity ring-down spectroscopy for trace detection of NO2,” Chem. Phys. Lett. 367, 1–9 (2003).
[CrossRef]

El-Sherbiny, M.

Fawcett, B. L.

M. I. Mazurenka, B. L. Fawcett, J. M. F. Elks, D. E. Schall-cross, A. J. Orr-Ewing, “410-nm diode laser cavity ring-down spectroscopy for trace detection of NO2,” Chem. Phys. Lett. 367, 1–9 (2003).
[CrossRef]

Flaud, J.-M.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Fredriksson, K. A.

Gallagher, T. F.

Gamache, R. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Garside, B. K.

Gehrtz, M.

W. Lenth, M. Gehrtz, “Sensitive detection of NO2using high-frequency heterodyne spectroscopy with GaAlAs diode laser,” Appl. Phys. Lett. 47, 1263–1265 (1985).
[CrossRef]

Goldman, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Gustafsson, U.

Hanson, R. K.

J. T. C. Liu, R. K. Hanson, J. B. Jeffries, “High-sensitivity absorption diagnostic for NO2using a blue diode laser,” J. Quant. Spectrosc. Radiat. Transfer 72, 655–664 (2002).
[CrossRef]

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Tunable diode-laser absorption measurements of NO2near 670 and 395 nm,” Appl. Opt. 35, 4059–4064 (1996).
[CrossRef] [PubMed]

Harris, G. W.

Harwigsson, I.

P. Kauranen, I. Harwigsson, B. Jönsson, “Relative vapor pressure measurements using a frequency-modulated tunable diode laser, a tool for water activity determination in solutions,” J. Phys. Chem. 98, 1411–1415 (1994).
[CrossRef]

Hertz, H. M.

Jeffries, J. B.

J. T. C. Liu, R. K. Hanson, J. B. Jeffries, “High-sensitivity absorption diagnostic for NO2using a blue diode laser,” J. Quant. Spectrosc. Radiat. Transfer 72, 655–664 (2002).
[CrossRef]

Jimenez, J. L.

J. L. Jimenez, G. J. McRae, D. D. Nelson, M. S. Zahniser, C. E. Kolb, “Remote sensing of NO and NO2emissions from heavy-duty diesel trucks using tunable diode lasers,” Environ. Sci. Technol. 34, 2380–2387 (2000).
[CrossRef]

Johnson, T. J.

Jönsson, B.

P. Kauranen, I. Harwigsson, B. Jönsson, “Relative vapor pressure measurements using a frequency-modulated tunable diode laser, a tool for water activity determination in solutions,” J. Phys. Chem. 98, 1411–1415 (1994).
[CrossRef]

Jucks, K. W.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Kauranen, P.

Kendall, J.

Kessler, W. J.

Kolb, C. E.

J. L. Jimenez, G. J. McRae, D. D. Nelson, M. S. Zahniser, C. E. Kolb, “Remote sensing of NO and NO2emissions from heavy-duty diesel trucks using tunable diode lasers,” Environ. Sci. Technol. 34, 2380–2387 (2000).
[CrossRef]

Lenth, W.

W. Lenth, M. Gehrtz, “Sensitive detection of NO2using high-frequency heterodyne spectroscopy with GaAlAs diode laser,” Appl. Phys. Lett. 47, 1263–1265 (1985).
[CrossRef]

Liu, J. T. C.

J. T. C. Liu, R. K. Hanson, J. B. Jeffries, “High-sensitivity absorption diagnostic for NO2using a blue diode laser,” J. Quant. Spectrosc. Radiat. Transfer 72, 655–664 (2002).
[CrossRef]

Mandin, J.-Y.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Martinelli, R. U.

Massie, S. T.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

May, R. D.

Mazurenka, M. I.

M. I. Mazurenka, B. L. Fawcett, J. M. F. Elks, D. E. Schall-cross, A. J. Orr-Ewing, “410-nm diode laser cavity ring-down spectroscopy for trace detection of NO2,” Chem. Phys. Lett. 367, 1–9 (2003).
[CrossRef]

McCann, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

McRae, G. J.

J. L. Jimenez, G. J. McRae, D. D. Nelson, M. S. Zahniser, C. E. Kolb, “Remote sensing of NO and NO2emissions from heavy-duty diesel trucks using tunable diode lasers,” Environ. Sci. Technol. 34, 2380–2387 (2000).
[CrossRef]

Menna, R. J.

Mihalcea, R. M.

Nelson, D. D.

J. L. Jimenez, G. J. McRae, D. D. Nelson, M. S. Zahniser, C. E. Kolb, “Remote sensing of NO and NO2emissions from heavy-duty diesel trucks using tunable diode lasers,” Environ. Sci. Technol. 34, 2380–2387 (2000).
[CrossRef]

Nemtchinov, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Orr-Ewing, A. J.

M. I. Mazurenka, B. L. Fawcett, J. M. F. Elks, D. E. Schall-cross, A. J. Orr-Ewing, “410-nm diode laser cavity ring-down spectroscopy for trace detection of NO2,” Chem. Phys. Lett. 367, 1–9 (2003).
[CrossRef]

Otis, C. E.

Palombo, D. A.

Perrin, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Platt, U.

U. Platt, “Differential optical absorption spectroscopy (DOAS),” in Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed., Vol. 127 of Chemical Physics Series (Wiley, New York, 1994), pp. 27–84.

Ragnarson, P.

Reid, J.

Rinsland, C. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Riris, H.

Rothman, L. S.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Schall-cross, D. E.

M. I. Mazurenka, B. L. Fawcett, J. M. F. Elks, D. E. Schall-cross, A. J. Orr-Ewing, “410-nm diode laser cavity ring-down spectroscopy for trace detection of NO2,” Chem. Phys. Lett. 367, 1–9 (2003).
[CrossRef]

Schroeder, J.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Somesfalean, G.

Sonnenfroh, D. M.

Spännare, S.

Svanberg, S.

Trimble, C. A.

Varanasi, P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Wallinder, E.

H. Edner, P. Ragnarson, E. Wallinder, “Industrial emission control using lidar techniques,” Environ. Sci. Technol. 29, 330–337 (1995).
[CrossRef] [PubMed]

Wattson, R. B.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Webster, C. R.

Wienhold, F. G.

Yoshino, K.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Zahniser, M. S.

J. L. Jimenez, G. J. McRae, D. D. Nelson, M. S. Zahniser, C. E. Kolb, “Remote sensing of NO and NO2emissions from heavy-duty diesel trucks using tunable diode lasers,” Environ. Sci. Technol. 34, 2380–2387 (2000).
[CrossRef]

Appl. Opt.

J. Reid, M. El-Sherbiny, B. K. Garside, E. A. Ballik, “Sensitivity limits of a tunable diode laser spectrometer, with application to the detection of NO2at the 100-ppt level,” Appl. Opt. 19, 3349–3354 (1980).
[CrossRef] [PubMed]

K. A. Fredriksson, H. M. Hertz, “Evaluation of the DIAL technique for studies on NO2using a mobile lidar system,” Appl. Opt. 23, 1403–1411 (1984).
[CrossRef]

D. E. Cooper, T. F. Gallagher, “Double frequency modulation spectroscopy: high modulation frequency with low-bandwidth detectors,” Appl. Opt. 24, 1327–1334 (1985).
[CrossRef] [PubMed]

T. J. Johnson, F. G. Wienhold, J. P. Burrows, G. W. Harris, “Frequency modulation spectroscopy at 1.3 μm using InGaAsP lasers: a prototype field instrument for atmospheric chemistry research,” Appl. Opt. 30, 407–413 (1991).
[CrossRef] [PubMed]

C. R. Webster, R. D. May, C. A. Trimble, R. G. Chave, J. Kendall, “Aircraft (ER-2) laser infrared absorption spectrometer (ALIAS) for in-situ stratospheric measurements of HCl, N2O, CH4, NO2, and HNO3,” Appl. Opt. 33, 454–472 (1994).
[CrossRef] [PubMed]

H. Riris, C. L. Carlisle, L. W. Carr, D. E. Cooper, R. U. Martinelli, R. J. Menna, “Design of an open path near-infrared diode laser sensor: application to oxygen, water, and carbon dioxide vapor detection,” Appl. Opt. 33, 7059–7066 (1994).
[CrossRef] [PubMed]

V. G. Avetisov, P. Kauranen, “High-resolution absorption measurements using two-tone frequency modulation spectroscopy with diode lasers,” Appl. Opt. 36, 4043–4054 (1997).
[CrossRef] [PubMed]

M. G. Allen, K. L. Carleton, S. J. Davis, W. J. Kessler, C. E. Otis, D. A. Palombo, D. M. Sonnenfroh, “Ultrasensitive dual-beam absorption and gain spectroscopy: applications for near-infrared and visible diode laser sensors,” Appl. Opt. 34, 3240–3249 (1995).
[CrossRef] [PubMed]

D. M. Sonnenfroh, M. G. Allen, “Ultrasensitive, visible tunable diode laser detection of NO2,” Appl. Opt. 35, 4053–4058 (1996).
[CrossRef] [PubMed]

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Tunable diode-laser absorption measurements of NO2near 670 and 395 nm,” Appl. Opt. 35, 4059–4064 (1996).
[CrossRef] [PubMed]

V. G. Avetisov, P. Kauranen, “Two-tone frequency-modulation spectroscopy for quantitative measurements of gaseous species: theoretical, numerical and experimental investigation of lineshapes,” Appl. Opt. 35, 4705–4723 (1996).
[CrossRef] [PubMed]

H. Edner, P. Ragnarson, S. Spännare, S. Svanberg, “Differential optical absorption spectroscopy (DOAS) system for urban atmospheric pollution monitoring,” Appl. Opt. 32, 327–333 (1993).
[CrossRef] [PubMed]

U. Gustafsson, G. Somesfalean, J. Alnis, S. Svanberg, “Frequency modulation spectroscopy with blue diode lasers,” Appl. Opt. 39, 3774–3780 (2000).
[CrossRef]

Appl. Phys. Lett.

W. Lenth, M. Gehrtz, “Sensitive detection of NO2using high-frequency heterodyne spectroscopy with GaAlAs diode laser,” Appl. Phys. Lett. 47, 1263–1265 (1985).
[CrossRef]

Chem. Phys. Lett.

M. I. Mazurenka, B. L. Fawcett, J. M. F. Elks, D. E. Schall-cross, A. J. Orr-Ewing, “410-nm diode laser cavity ring-down spectroscopy for trace detection of NO2,” Chem. Phys. Lett. 367, 1–9 (2003).
[CrossRef]

Environ. Sci. Technol.

H. Edner, P. Ragnarson, E. Wallinder, “Industrial emission control using lidar techniques,” Environ. Sci. Technol. 29, 330–337 (1995).
[CrossRef] [PubMed]

J. L. Jimenez, G. J. McRae, D. D. Nelson, M. S. Zahniser, C. E. Kolb, “Remote sensing of NO and NO2emissions from heavy-duty diesel trucks using tunable diode lasers,” Environ. Sci. Technol. 34, 2380–2387 (2000).
[CrossRef]

J. Phys. Chem.

P. Kauranen, I. Harwigsson, B. Jönsson, “Relative vapor pressure measurements using a frequency-modulated tunable diode laser, a tool for water activity determination in solutions,” J. Phys. Chem. 98, 1411–1415 (1994).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

J. T. C. Liu, R. K. Hanson, J. B. Jeffries, “High-sensitivity absorption diagnostic for NO2using a blue diode laser,” J. Quant. Spectrosc. Radiat. Transfer 72, 655–664 (2002).
[CrossRef]

Opt. Lett.

Other

U. Platt, “Differential optical absorption spectroscopy (DOAS),” in Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed., Vol. 127 of Chemical Physics Series (Wiley, New York, 1994), pp. 27–84.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup for long-path measurements of NO2 using high-frequency modulation spectroscopy.

Fig. 2
Fig. 2

Sensitive detection of NO2 at atmospheric pressure: (a) detected optical pulse; (b) frequency-modulation signals from ambient NO2 with the reference cell inserted into the beam, and (c) from atmospheric absorption. (d) Corresponding recording of the Fabry-Pérot etalon fringes (free spectral range 2.43 GHz) serving as a frequency scale.

Fig. 3
Fig. 3

Time recording of the measured concentrations of NO2 along a 160 m long path over a road intersection during winter hours at peak traffic. C1 and C2 mark two reference cells containing an equivalent of 470 μg/m3 and 87 μg/m3 of NO2, respectively, inserted into the beam for calibration purposes.

Metrics