Abstract

A low-cost semiconductor red laser light delivery system for esophagus cancer treatment is presented. The system is small enough for insertion into the patient’s body. Scattering elements with nanoscale particles are used to achieve uniform illumination. The scattering element optimization calculations, with Mie theory, provide scattering and absorption efficiency factors for scattering particles composed of various materials. The possibility of using randomly deformed spheres and composite particles instead of perfect spheres is analyzed using an extension to Mie theory. The measured radiation pattern from a prototype light delivery system fabricated using these design criteria shows reasonable agreement with the theoretically predicted pattern.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. S. Nyman, P. H. Hynninen, “Research advances in the use of tetrapyrrolic photosensitizers for photodynamic therapy,” J. Photochem. Photobiol. B 73, 1–28 (2004).
    [CrossRef] [PubMed]
  2. T. Dalbasti, S. Cagli, E. Kilinc, N. Oktar, M. Ozsoz, “Online electrochemical monitoring of nitric oxide during photodynamic therapy,” Nitric Oxide 7, 301–305 (2002).
    [CrossRef] [PubMed]
  3. A. Ruol, G. Zaninotto, M. Costantini, G. Battaglia, M. Cagol, R. Alfieri, M. Epifani, E. Ancona, “Barrett’s esophagus: management of high-grade dysplasia and cancer,” J. Surg. Res. 117, 44–51 (2004).
    [CrossRef] [PubMed]
  4. J. van den Boogert, R. van Hillegersberg, H. J. van Staveren, R. W. de Bruin, H. van Dekken, P. D. Siersema, H. W. Tilanus, “Timing of illumination is essential for effective and safe photodynamic therapy: a study in the normal rat esophagus,” Br. J. Cancer 79, 825–830 (1999).
    [CrossRef] [PubMed]
  5. S. L. Jacques, “Laser-tissue interactions: photochemical, photothermal, and photomechanical mechanisms,” Surg. Clin. North Am. 72, 531–558 (1992).
    [PubMed]
  6. Diomed Inc., http://www.diomedinc.com/ .
  7. J. C. Chen, B. D. Swanson, “Microminiature illuminator for administering photodynamic therapy,” U.S. patent5,571,152 (5November1996).
  8. D. R. Doiron, H. L. Narcisco, P. Paspa, “Continuous gradient cylindrical diffusion tip for optical fibers and method for using,” U.S. patent5,330,465 (19July1994).
  9. X. Gu, R. C.-H. Tam, “Optical fiber diffuser,” U.S. patent6,398,778 (4June2002).
  10. C. Schmitz, S. Spaniol, V. Abraham, N. Ashraf, W. Neuberger, W. Ertmer, “Diffusing fibre tips for high-power medical laser applications,” Proc. SPIE 2631, 166–172 (1995).
    [CrossRef]
  11. J. C. Mizeret, H. E. van den Bergh, “Cylindrical fiberoptic light diffuser for medical applications,” Lasers Surg. Med. 19, 159–167 (1996).
    [CrossRef] [PubMed]
  12. D. J. Robinson, H. S. de Bruijn, N. van der Veen, M. R. Stringer, S. B. Brown, W. M. Star, “Fluorescence photobleaching of ALA-induced protoporphyrin IX during photodynamic therapy of normal hairless mouse skin: the effect of light dose and irradiance and the resulting biological effect,” J. Photochem. Photobiol. 67, 140–149 (1998).
    [CrossRef]
  13. A. Rosen, H. Rosen, “The efficacy of transurethral thermal ablation in the management of benign prostatic hyperplasia,” in New Frontiers in Medical Device Technology (Wiley, 1995), pp. 79–103.
  14. A. Rosen, H. Rosen, “Catheter with distally located integrated circuit radiation generator,” U.S. patent4,998,932 (12March1991).
  15. R. A. Hsi, A. Rosen, C. Rodriguez, “Method and apparatus for catheter phototherapy with dose sensing,” U.S. patent6,749,623 (15June2004).
  16. I. Charamisinau, G. Happawana, G. Evans, A. Rosen, R. A. Hsi, “Portable optical actuator for photodynamic therapy,” Proc. SPIE 5261, 38–49 (2003).
    [CrossRef]
  17. I. Charamisinau, G. Happawana, G. Evans, J. Kirk, D. P. Bour, A. Rosen, R. A. Hsi, “High power semiconductor red laser arrays for use in photodynamic therapy,” special issue of the IEEE J. Sel. Top. Quantum Electron. Biophoton (submitted).
  18. R. Smith, G. Mitchell, “Calculation of complex propagating models in arbitrary, plane layered, complex dielectric structures,” EE Tech. Rep. 206 (University of Washington, Seattle, 1977), http://engr.smu.edu/ee/smuphotonics/Modeig.htm .
  19. D. P. Bour, R. S. Geels, D. W. Treat, T. L. Paoli, F. Ponce, R. L. Thorton, B. S. Crusor, R. D. Bringans, D. F. Welch, “Strained GaxIn1–xP/(AlGA)0.5In0.5P heterostructures and quantum-well laser diodes,” IEEE J. Quantum Electron. 30, 593–607 (1994).
    [CrossRef]
  20. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “Optical properties of intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
    [CrossRef] [PubMed]
  21. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1964).
  22. P. Debye, “The diffraction theory of aberrations,” Ann. Phys. (Leipzig) 30, 59–62 (1909).
  23. I. Charamisinau, “Mie theory calculator,” 2004, available at http://engr.smu.edu/ee/smuphotonics/Software/Software_main.htm .
  24. A. K. Fung, Microwave Scattering and Emission Models and Their Applications (Artech House, 1994).
  25. T. Ji, Y. Avny, D. Davidov, “Preparation and optical properties of Au-shell submicron polystyrene particles,” in Mater. Res. Soc. Symp. Proc. 636, 956–964 (2001).
  26. MicroFab Technologies Inc., www.microfab.com .
  27. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 23, 13549–13554 (2003).
    [CrossRef]

2004 (2)

E. S. Nyman, P. H. Hynninen, “Research advances in the use of tetrapyrrolic photosensitizers for photodynamic therapy,” J. Photochem. Photobiol. B 73, 1–28 (2004).
[CrossRef] [PubMed]

A. Ruol, G. Zaninotto, M. Costantini, G. Battaglia, M. Cagol, R. Alfieri, M. Epifani, E. Ancona, “Barrett’s esophagus: management of high-grade dysplasia and cancer,” J. Surg. Res. 117, 44–51 (2004).
[CrossRef] [PubMed]

2003 (2)

I. Charamisinau, G. Happawana, G. Evans, A. Rosen, R. A. Hsi, “Portable optical actuator for photodynamic therapy,” Proc. SPIE 5261, 38–49 (2003).
[CrossRef]

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 23, 13549–13554 (2003).
[CrossRef]

2002 (1)

T. Dalbasti, S. Cagli, E. Kilinc, N. Oktar, M. Ozsoz, “Online electrochemical monitoring of nitric oxide during photodynamic therapy,” Nitric Oxide 7, 301–305 (2002).
[CrossRef] [PubMed]

2001 (1)

T. Ji, Y. Avny, D. Davidov, “Preparation and optical properties of Au-shell submicron polystyrene particles,” in Mater. Res. Soc. Symp. Proc. 636, 956–964 (2001).

1999 (1)

J. van den Boogert, R. van Hillegersberg, H. J. van Staveren, R. W. de Bruin, H. van Dekken, P. D. Siersema, H. W. Tilanus, “Timing of illumination is essential for effective and safe photodynamic therapy: a study in the normal rat esophagus,” Br. J. Cancer 79, 825–830 (1999).
[CrossRef] [PubMed]

1998 (1)

D. J. Robinson, H. S. de Bruijn, N. van der Veen, M. R. Stringer, S. B. Brown, W. M. Star, “Fluorescence photobleaching of ALA-induced protoporphyrin IX during photodynamic therapy of normal hairless mouse skin: the effect of light dose and irradiance and the resulting biological effect,” J. Photochem. Photobiol. 67, 140–149 (1998).
[CrossRef]

1996 (1)

J. C. Mizeret, H. E. van den Bergh, “Cylindrical fiberoptic light diffuser for medical applications,” Lasers Surg. Med. 19, 159–167 (1996).
[CrossRef] [PubMed]

1995 (1)

C. Schmitz, S. Spaniol, V. Abraham, N. Ashraf, W. Neuberger, W. Ertmer, “Diffusing fibre tips for high-power medical laser applications,” Proc. SPIE 2631, 166–172 (1995).
[CrossRef]

1994 (1)

D. P. Bour, R. S. Geels, D. W. Treat, T. L. Paoli, F. Ponce, R. L. Thorton, B. S. Crusor, R. D. Bringans, D. F. Welch, “Strained GaxIn1–xP/(AlGA)0.5In0.5P heterostructures and quantum-well laser diodes,” IEEE J. Quantum Electron. 30, 593–607 (1994).
[CrossRef]

1992 (2)

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “Optical properties of intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef] [PubMed]

S. L. Jacques, “Laser-tissue interactions: photochemical, photothermal, and photomechanical mechanisms,” Surg. Clin. North Am. 72, 531–558 (1992).
[PubMed]

1909 (1)

P. Debye, “The diffraction theory of aberrations,” Ann. Phys. (Leipzig) 30, 59–62 (1909).

Abraham, V.

C. Schmitz, S. Spaniol, V. Abraham, N. Ashraf, W. Neuberger, W. Ertmer, “Diffusing fibre tips for high-power medical laser applications,” Proc. SPIE 2631, 166–172 (1995).
[CrossRef]

Alfieri, R.

A. Ruol, G. Zaninotto, M. Costantini, G. Battaglia, M. Cagol, R. Alfieri, M. Epifani, E. Ancona, “Barrett’s esophagus: management of high-grade dysplasia and cancer,” J. Surg. Res. 117, 44–51 (2004).
[CrossRef] [PubMed]

Ancona, E.

A. Ruol, G. Zaninotto, M. Costantini, G. Battaglia, M. Cagol, R. Alfieri, M. Epifani, E. Ancona, “Barrett’s esophagus: management of high-grade dysplasia and cancer,” J. Surg. Res. 117, 44–51 (2004).
[CrossRef] [PubMed]

Ashraf, N.

C. Schmitz, S. Spaniol, V. Abraham, N. Ashraf, W. Neuberger, W. Ertmer, “Diffusing fibre tips for high-power medical laser applications,” Proc. SPIE 2631, 166–172 (1995).
[CrossRef]

Avny, Y.

T. Ji, Y. Avny, D. Davidov, “Preparation and optical properties of Au-shell submicron polystyrene particles,” in Mater. Res. Soc. Symp. Proc. 636, 956–964 (2001).

Bankson, J. A.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 23, 13549–13554 (2003).
[CrossRef]

Battaglia, G.

A. Ruol, G. Zaninotto, M. Costantini, G. Battaglia, M. Cagol, R. Alfieri, M. Epifani, E. Ancona, “Barrett’s esophagus: management of high-grade dysplasia and cancer,” J. Surg. Res. 117, 44–51 (2004).
[CrossRef] [PubMed]

Bour, D. P.

D. P. Bour, R. S. Geels, D. W. Treat, T. L. Paoli, F. Ponce, R. L. Thorton, B. S. Crusor, R. D. Bringans, D. F. Welch, “Strained GaxIn1–xP/(AlGA)0.5In0.5P heterostructures and quantum-well laser diodes,” IEEE J. Quantum Electron. 30, 593–607 (1994).
[CrossRef]

I. Charamisinau, G. Happawana, G. Evans, J. Kirk, D. P. Bour, A. Rosen, R. A. Hsi, “High power semiconductor red laser arrays for use in photodynamic therapy,” special issue of the IEEE J. Sel. Top. Quantum Electron. Biophoton (submitted).

Bringans, R. D.

D. P. Bour, R. S. Geels, D. W. Treat, T. L. Paoli, F. Ponce, R. L. Thorton, B. S. Crusor, R. D. Bringans, D. F. Welch, “Strained GaxIn1–xP/(AlGA)0.5In0.5P heterostructures and quantum-well laser diodes,” IEEE J. Quantum Electron. 30, 593–607 (1994).
[CrossRef]

Brown, S. B.

D. J. Robinson, H. S. de Bruijn, N. van der Veen, M. R. Stringer, S. B. Brown, W. M. Star, “Fluorescence photobleaching of ALA-induced protoporphyrin IX during photodynamic therapy of normal hairless mouse skin: the effect of light dose and irradiance and the resulting biological effect,” J. Photochem. Photobiol. 67, 140–149 (1998).
[CrossRef]

Cagli, S.

T. Dalbasti, S. Cagli, E. Kilinc, N. Oktar, M. Ozsoz, “Online electrochemical monitoring of nitric oxide during photodynamic therapy,” Nitric Oxide 7, 301–305 (2002).
[CrossRef] [PubMed]

Cagol, M.

A. Ruol, G. Zaninotto, M. Costantini, G. Battaglia, M. Cagol, R. Alfieri, M. Epifani, E. Ancona, “Barrett’s esophagus: management of high-grade dysplasia and cancer,” J. Surg. Res. 117, 44–51 (2004).
[CrossRef] [PubMed]

Charamisinau, I.

I. Charamisinau, G. Happawana, G. Evans, A. Rosen, R. A. Hsi, “Portable optical actuator for photodynamic therapy,” Proc. SPIE 5261, 38–49 (2003).
[CrossRef]

I. Charamisinau, G. Happawana, G. Evans, J. Kirk, D. P. Bour, A. Rosen, R. A. Hsi, “High power semiconductor red laser arrays for use in photodynamic therapy,” special issue of the IEEE J. Sel. Top. Quantum Electron. Biophoton (submitted).

Chen, J. C.

J. C. Chen, B. D. Swanson, “Microminiature illuminator for administering photodynamic therapy,” U.S. patent5,571,152 (5November1996).

Costantini, M.

A. Ruol, G. Zaninotto, M. Costantini, G. Battaglia, M. Cagol, R. Alfieri, M. Epifani, E. Ancona, “Barrett’s esophagus: management of high-grade dysplasia and cancer,” J. Surg. Res. 117, 44–51 (2004).
[CrossRef] [PubMed]

Crusor, B. S.

D. P. Bour, R. S. Geels, D. W. Treat, T. L. Paoli, F. Ponce, R. L. Thorton, B. S. Crusor, R. D. Bringans, D. F. Welch, “Strained GaxIn1–xP/(AlGA)0.5In0.5P heterostructures and quantum-well laser diodes,” IEEE J. Quantum Electron. 30, 593–607 (1994).
[CrossRef]

Dalbasti, T.

T. Dalbasti, S. Cagli, E. Kilinc, N. Oktar, M. Ozsoz, “Online electrochemical monitoring of nitric oxide during photodynamic therapy,” Nitric Oxide 7, 301–305 (2002).
[CrossRef] [PubMed]

Davidov, D.

T. Ji, Y. Avny, D. Davidov, “Preparation and optical properties of Au-shell submicron polystyrene particles,” in Mater. Res. Soc. Symp. Proc. 636, 956–964 (2001).

de Bruijn, H. S.

D. J. Robinson, H. S. de Bruijn, N. van der Veen, M. R. Stringer, S. B. Brown, W. M. Star, “Fluorescence photobleaching of ALA-induced protoporphyrin IX during photodynamic therapy of normal hairless mouse skin: the effect of light dose and irradiance and the resulting biological effect,” J. Photochem. Photobiol. 67, 140–149 (1998).
[CrossRef]

de Bruin, R. W.

J. van den Boogert, R. van Hillegersberg, H. J. van Staveren, R. W. de Bruin, H. van Dekken, P. D. Siersema, H. W. Tilanus, “Timing of illumination is essential for effective and safe photodynamic therapy: a study in the normal rat esophagus,” Br. J. Cancer 79, 825–830 (1999).
[CrossRef] [PubMed]

Debye, P.

P. Debye, “The diffraction theory of aberrations,” Ann. Phys. (Leipzig) 30, 59–62 (1909).

Doiron, D. R.

D. R. Doiron, H. L. Narcisco, P. Paspa, “Continuous gradient cylindrical diffusion tip for optical fibers and method for using,” U.S. patent5,330,465 (19July1994).

Epifani, M.

A. Ruol, G. Zaninotto, M. Costantini, G. Battaglia, M. Cagol, R. Alfieri, M. Epifani, E. Ancona, “Barrett’s esophagus: management of high-grade dysplasia and cancer,” J. Surg. Res. 117, 44–51 (2004).
[CrossRef] [PubMed]

Ertmer, W.

C. Schmitz, S. Spaniol, V. Abraham, N. Ashraf, W. Neuberger, W. Ertmer, “Diffusing fibre tips for high-power medical laser applications,” Proc. SPIE 2631, 166–172 (1995).
[CrossRef]

Evans, G.

I. Charamisinau, G. Happawana, G. Evans, A. Rosen, R. A. Hsi, “Portable optical actuator for photodynamic therapy,” Proc. SPIE 5261, 38–49 (2003).
[CrossRef]

I. Charamisinau, G. Happawana, G. Evans, J. Kirk, D. P. Bour, A. Rosen, R. A. Hsi, “High power semiconductor red laser arrays for use in photodynamic therapy,” special issue of the IEEE J. Sel. Top. Quantum Electron. Biophoton (submitted).

Flock, S. T.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “Optical properties of intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef] [PubMed]

Fung, A. K.

A. K. Fung, Microwave Scattering and Emission Models and Their Applications (Artech House, 1994).

Geels, R. S.

D. P. Bour, R. S. Geels, D. W. Treat, T. L. Paoli, F. Ponce, R. L. Thorton, B. S. Crusor, R. D. Bringans, D. F. Welch, “Strained GaxIn1–xP/(AlGA)0.5In0.5P heterostructures and quantum-well laser diodes,” IEEE J. Quantum Electron. 30, 593–607 (1994).
[CrossRef]

Gu, X.

X. Gu, R. C.-H. Tam, “Optical fiber diffuser,” U.S. patent6,398,778 (4June2002).

Halas, N. J.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 23, 13549–13554 (2003).
[CrossRef]

Happawana, G.

I. Charamisinau, G. Happawana, G. Evans, A. Rosen, R. A. Hsi, “Portable optical actuator for photodynamic therapy,” Proc. SPIE 5261, 38–49 (2003).
[CrossRef]

I. Charamisinau, G. Happawana, G. Evans, J. Kirk, D. P. Bour, A. Rosen, R. A. Hsi, “High power semiconductor red laser arrays for use in photodynamic therapy,” special issue of the IEEE J. Sel. Top. Quantum Electron. Biophoton (submitted).

Hazle, J. D.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 23, 13549–13554 (2003).
[CrossRef]

Hirsch, L. R.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 23, 13549–13554 (2003).
[CrossRef]

Hsi, R. A.

I. Charamisinau, G. Happawana, G. Evans, A. Rosen, R. A. Hsi, “Portable optical actuator for photodynamic therapy,” Proc. SPIE 5261, 38–49 (2003).
[CrossRef]

I. Charamisinau, G. Happawana, G. Evans, J. Kirk, D. P. Bour, A. Rosen, R. A. Hsi, “High power semiconductor red laser arrays for use in photodynamic therapy,” special issue of the IEEE J. Sel. Top. Quantum Electron. Biophoton (submitted).

R. A. Hsi, A. Rosen, C. Rodriguez, “Method and apparatus for catheter phototherapy with dose sensing,” U.S. patent6,749,623 (15June2004).

Hynninen, P. H.

E. S. Nyman, P. H. Hynninen, “Research advances in the use of tetrapyrrolic photosensitizers for photodynamic therapy,” J. Photochem. Photobiol. B 73, 1–28 (2004).
[CrossRef] [PubMed]

Jacques, S. L.

S. L. Jacques, “Laser-tissue interactions: photochemical, photothermal, and photomechanical mechanisms,” Surg. Clin. North Am. 72, 531–558 (1992).
[PubMed]

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “Optical properties of intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef] [PubMed]

Ji, T.

T. Ji, Y. Avny, D. Davidov, “Preparation and optical properties of Au-shell submicron polystyrene particles,” in Mater. Res. Soc. Symp. Proc. 636, 956–964 (2001).

Kilinc, E.

T. Dalbasti, S. Cagli, E. Kilinc, N. Oktar, M. Ozsoz, “Online electrochemical monitoring of nitric oxide during photodynamic therapy,” Nitric Oxide 7, 301–305 (2002).
[CrossRef] [PubMed]

Kirk, J.

I. Charamisinau, G. Happawana, G. Evans, J. Kirk, D. P. Bour, A. Rosen, R. A. Hsi, “High power semiconductor red laser arrays for use in photodynamic therapy,” special issue of the IEEE J. Sel. Top. Quantum Electron. Biophoton (submitted).

Mizeret, J. C.

J. C. Mizeret, H. E. van den Bergh, “Cylindrical fiberoptic light diffuser for medical applications,” Lasers Surg. Med. 19, 159–167 (1996).
[CrossRef] [PubMed]

Narcisco, H. L.

D. R. Doiron, H. L. Narcisco, P. Paspa, “Continuous gradient cylindrical diffusion tip for optical fibers and method for using,” U.S. patent5,330,465 (19July1994).

Neuberger, W.

C. Schmitz, S. Spaniol, V. Abraham, N. Ashraf, W. Neuberger, W. Ertmer, “Diffusing fibre tips for high-power medical laser applications,” Proc. SPIE 2631, 166–172 (1995).
[CrossRef]

Nyman, E. S.

E. S. Nyman, P. H. Hynninen, “Research advances in the use of tetrapyrrolic photosensitizers for photodynamic therapy,” J. Photochem. Photobiol. B 73, 1–28 (2004).
[CrossRef] [PubMed]

Oktar, N.

T. Dalbasti, S. Cagli, E. Kilinc, N. Oktar, M. Ozsoz, “Online electrochemical monitoring of nitric oxide during photodynamic therapy,” Nitric Oxide 7, 301–305 (2002).
[CrossRef] [PubMed]

Ozsoz, M.

T. Dalbasti, S. Cagli, E. Kilinc, N. Oktar, M. Ozsoz, “Online electrochemical monitoring of nitric oxide during photodynamic therapy,” Nitric Oxide 7, 301–305 (2002).
[CrossRef] [PubMed]

Paoli, T. L.

D. P. Bour, R. S. Geels, D. W. Treat, T. L. Paoli, F. Ponce, R. L. Thorton, B. S. Crusor, R. D. Bringans, D. F. Welch, “Strained GaxIn1–xP/(AlGA)0.5In0.5P heterostructures and quantum-well laser diodes,” IEEE J. Quantum Electron. 30, 593–607 (1994).
[CrossRef]

Paspa, P.

D. R. Doiron, H. L. Narcisco, P. Paspa, “Continuous gradient cylindrical diffusion tip for optical fibers and method for using,” U.S. patent5,330,465 (19July1994).

Ponce, F.

D. P. Bour, R. S. Geels, D. W. Treat, T. L. Paoli, F. Ponce, R. L. Thorton, B. S. Crusor, R. D. Bringans, D. F. Welch, “Strained GaxIn1–xP/(AlGA)0.5In0.5P heterostructures and quantum-well laser diodes,” IEEE J. Quantum Electron. 30, 593–607 (1994).
[CrossRef]

Price, R. E.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 23, 13549–13554 (2003).
[CrossRef]

Rivera, B.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 23, 13549–13554 (2003).
[CrossRef]

Robinson, D. J.

D. J. Robinson, H. S. de Bruijn, N. van der Veen, M. R. Stringer, S. B. Brown, W. M. Star, “Fluorescence photobleaching of ALA-induced protoporphyrin IX during photodynamic therapy of normal hairless mouse skin: the effect of light dose and irradiance and the resulting biological effect,” J. Photochem. Photobiol. 67, 140–149 (1998).
[CrossRef]

Rodriguez, C.

R. A. Hsi, A. Rosen, C. Rodriguez, “Method and apparatus for catheter phototherapy with dose sensing,” U.S. patent6,749,623 (15June2004).

Rosen, A.

I. Charamisinau, G. Happawana, G. Evans, A. Rosen, R. A. Hsi, “Portable optical actuator for photodynamic therapy,” Proc. SPIE 5261, 38–49 (2003).
[CrossRef]

I. Charamisinau, G. Happawana, G. Evans, J. Kirk, D. P. Bour, A. Rosen, R. A. Hsi, “High power semiconductor red laser arrays for use in photodynamic therapy,” special issue of the IEEE J. Sel. Top. Quantum Electron. Biophoton (submitted).

R. A. Hsi, A. Rosen, C. Rodriguez, “Method and apparatus for catheter phototherapy with dose sensing,” U.S. patent6,749,623 (15June2004).

A. Rosen, H. Rosen, “Catheter with distally located integrated circuit radiation generator,” U.S. patent4,998,932 (12March1991).

A. Rosen, H. Rosen, “The efficacy of transurethral thermal ablation in the management of benign prostatic hyperplasia,” in New Frontiers in Medical Device Technology (Wiley, 1995), pp. 79–103.

Rosen, H.

A. Rosen, H. Rosen, “The efficacy of transurethral thermal ablation in the management of benign prostatic hyperplasia,” in New Frontiers in Medical Device Technology (Wiley, 1995), pp. 79–103.

A. Rosen, H. Rosen, “Catheter with distally located integrated circuit radiation generator,” U.S. patent4,998,932 (12March1991).

Ruol, A.

A. Ruol, G. Zaninotto, M. Costantini, G. Battaglia, M. Cagol, R. Alfieri, M. Epifani, E. Ancona, “Barrett’s esophagus: management of high-grade dysplasia and cancer,” J. Surg. Res. 117, 44–51 (2004).
[CrossRef] [PubMed]

Schmitz, C.

C. Schmitz, S. Spaniol, V. Abraham, N. Ashraf, W. Neuberger, W. Ertmer, “Diffusing fibre tips for high-power medical laser applications,” Proc. SPIE 2631, 166–172 (1995).
[CrossRef]

Sershen, S. R.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 23, 13549–13554 (2003).
[CrossRef]

Siersema, P. D.

J. van den Boogert, R. van Hillegersberg, H. J. van Staveren, R. W. de Bruin, H. van Dekken, P. D. Siersema, H. W. Tilanus, “Timing of illumination is essential for effective and safe photodynamic therapy: a study in the normal rat esophagus,” Br. J. Cancer 79, 825–830 (1999).
[CrossRef] [PubMed]

Spaniol, S.

C. Schmitz, S. Spaniol, V. Abraham, N. Ashraf, W. Neuberger, W. Ertmer, “Diffusing fibre tips for high-power medical laser applications,” Proc. SPIE 2631, 166–172 (1995).
[CrossRef]

Stafford, R. J.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 23, 13549–13554 (2003).
[CrossRef]

Star, W. M.

D. J. Robinson, H. S. de Bruijn, N. van der Veen, M. R. Stringer, S. B. Brown, W. M. Star, “Fluorescence photobleaching of ALA-induced protoporphyrin IX during photodynamic therapy of normal hairless mouse skin: the effect of light dose and irradiance and the resulting biological effect,” J. Photochem. Photobiol. 67, 140–149 (1998).
[CrossRef]

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “Optical properties of intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef] [PubMed]

Stringer, M. R.

D. J. Robinson, H. S. de Bruijn, N. van der Veen, M. R. Stringer, S. B. Brown, W. M. Star, “Fluorescence photobleaching of ALA-induced protoporphyrin IX during photodynamic therapy of normal hairless mouse skin: the effect of light dose and irradiance and the resulting biological effect,” J. Photochem. Photobiol. 67, 140–149 (1998).
[CrossRef]

Swanson, B. D.

J. C. Chen, B. D. Swanson, “Microminiature illuminator for administering photodynamic therapy,” U.S. patent5,571,152 (5November1996).

Tam, R. C.-H.

X. Gu, R. C.-H. Tam, “Optical fiber diffuser,” U.S. patent6,398,778 (4June2002).

Thorton, R. L.

D. P. Bour, R. S. Geels, D. W. Treat, T. L. Paoli, F. Ponce, R. L. Thorton, B. S. Crusor, R. D. Bringans, D. F. Welch, “Strained GaxIn1–xP/(AlGA)0.5In0.5P heterostructures and quantum-well laser diodes,” IEEE J. Quantum Electron. 30, 593–607 (1994).
[CrossRef]

Tilanus, H. W.

J. van den Boogert, R. van Hillegersberg, H. J. van Staveren, R. W. de Bruin, H. van Dekken, P. D. Siersema, H. W. Tilanus, “Timing of illumination is essential for effective and safe photodynamic therapy: a study in the normal rat esophagus,” Br. J. Cancer 79, 825–830 (1999).
[CrossRef] [PubMed]

Treat, D. W.

D. P. Bour, R. S. Geels, D. W. Treat, T. L. Paoli, F. Ponce, R. L. Thorton, B. S. Crusor, R. D. Bringans, D. F. Welch, “Strained GaxIn1–xP/(AlGA)0.5In0.5P heterostructures and quantum-well laser diodes,” IEEE J. Quantum Electron. 30, 593–607 (1994).
[CrossRef]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1964).

van Dekken, H.

J. van den Boogert, R. van Hillegersberg, H. J. van Staveren, R. W. de Bruin, H. van Dekken, P. D. Siersema, H. W. Tilanus, “Timing of illumination is essential for effective and safe photodynamic therapy: a study in the normal rat esophagus,” Br. J. Cancer 79, 825–830 (1999).
[CrossRef] [PubMed]

van den Bergh, H. E.

J. C. Mizeret, H. E. van den Bergh, “Cylindrical fiberoptic light diffuser for medical applications,” Lasers Surg. Med. 19, 159–167 (1996).
[CrossRef] [PubMed]

van den Boogert, J.

J. van den Boogert, R. van Hillegersberg, H. J. van Staveren, R. W. de Bruin, H. van Dekken, P. D. Siersema, H. W. Tilanus, “Timing of illumination is essential for effective and safe photodynamic therapy: a study in the normal rat esophagus,” Br. J. Cancer 79, 825–830 (1999).
[CrossRef] [PubMed]

van der Veen, N.

D. J. Robinson, H. S. de Bruijn, N. van der Veen, M. R. Stringer, S. B. Brown, W. M. Star, “Fluorescence photobleaching of ALA-induced protoporphyrin IX during photodynamic therapy of normal hairless mouse skin: the effect of light dose and irradiance and the resulting biological effect,” J. Photochem. Photobiol. 67, 140–149 (1998).
[CrossRef]

van Gemert, M. J. C.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “Optical properties of intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef] [PubMed]

van Hillegersberg, R.

J. van den Boogert, R. van Hillegersberg, H. J. van Staveren, R. W. de Bruin, H. van Dekken, P. D. Siersema, H. W. Tilanus, “Timing of illumination is essential for effective and safe photodynamic therapy: a study in the normal rat esophagus,” Br. J. Cancer 79, 825–830 (1999).
[CrossRef] [PubMed]

van Staveren, H. J.

J. van den Boogert, R. van Hillegersberg, H. J. van Staveren, R. W. de Bruin, H. van Dekken, P. D. Siersema, H. W. Tilanus, “Timing of illumination is essential for effective and safe photodynamic therapy: a study in the normal rat esophagus,” Br. J. Cancer 79, 825–830 (1999).
[CrossRef] [PubMed]

Welch, D. F.

D. P. Bour, R. S. Geels, D. W. Treat, T. L. Paoli, F. Ponce, R. L. Thorton, B. S. Crusor, R. D. Bringans, D. F. Welch, “Strained GaxIn1–xP/(AlGA)0.5In0.5P heterostructures and quantum-well laser diodes,” IEEE J. Quantum Electron. 30, 593–607 (1994).
[CrossRef]

West, J. L.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 23, 13549–13554 (2003).
[CrossRef]

Wilson, B. C.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “Optical properties of intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef] [PubMed]

Zaninotto, G.

A. Ruol, G. Zaninotto, M. Costantini, G. Battaglia, M. Cagol, R. Alfieri, M. Epifani, E. Ancona, “Barrett’s esophagus: management of high-grade dysplasia and cancer,” J. Surg. Res. 117, 44–51 (2004).
[CrossRef] [PubMed]

Ann. Phys. (Leipzig) (1)

P. Debye, “The diffraction theory of aberrations,” Ann. Phys. (Leipzig) 30, 59–62 (1909).

Br. J. Cancer (1)

J. van den Boogert, R. van Hillegersberg, H. J. van Staveren, R. W. de Bruin, H. van Dekken, P. D. Siersema, H. W. Tilanus, “Timing of illumination is essential for effective and safe photodynamic therapy: a study in the normal rat esophagus,” Br. J. Cancer 79, 825–830 (1999).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

D. P. Bour, R. S. Geels, D. W. Treat, T. L. Paoli, F. Ponce, R. L. Thorton, B. S. Crusor, R. D. Bringans, D. F. Welch, “Strained GaxIn1–xP/(AlGA)0.5In0.5P heterostructures and quantum-well laser diodes,” IEEE J. Quantum Electron. 30, 593–607 (1994).
[CrossRef]

in Mater. Res. Soc. Symp. Proc. (1)

T. Ji, Y. Avny, D. Davidov, “Preparation and optical properties of Au-shell submicron polystyrene particles,” in Mater. Res. Soc. Symp. Proc. 636, 956–964 (2001).

J. Photochem. Photobiol. (1)

D. J. Robinson, H. S. de Bruijn, N. van der Veen, M. R. Stringer, S. B. Brown, W. M. Star, “Fluorescence photobleaching of ALA-induced protoporphyrin IX during photodynamic therapy of normal hairless mouse skin: the effect of light dose and irradiance and the resulting biological effect,” J. Photochem. Photobiol. 67, 140–149 (1998).
[CrossRef]

J. Photochem. Photobiol. B (1)

E. S. Nyman, P. H. Hynninen, “Research advances in the use of tetrapyrrolic photosensitizers for photodynamic therapy,” J. Photochem. Photobiol. B 73, 1–28 (2004).
[CrossRef] [PubMed]

J. Surg. Res. (1)

A. Ruol, G. Zaninotto, M. Costantini, G. Battaglia, M. Cagol, R. Alfieri, M. Epifani, E. Ancona, “Barrett’s esophagus: management of high-grade dysplasia and cancer,” J. Surg. Res. 117, 44–51 (2004).
[CrossRef] [PubMed]

Lasers Surg. Med. (2)

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “Optical properties of intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef] [PubMed]

J. C. Mizeret, H. E. van den Bergh, “Cylindrical fiberoptic light diffuser for medical applications,” Lasers Surg. Med. 19, 159–167 (1996).
[CrossRef] [PubMed]

Nitric Oxide (1)

T. Dalbasti, S. Cagli, E. Kilinc, N. Oktar, M. Ozsoz, “Online electrochemical monitoring of nitric oxide during photodynamic therapy,” Nitric Oxide 7, 301–305 (2002).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 23, 13549–13554 (2003).
[CrossRef]

Proc. SPIE (2)

C. Schmitz, S. Spaniol, V. Abraham, N. Ashraf, W. Neuberger, W. Ertmer, “Diffusing fibre tips for high-power medical laser applications,” Proc. SPIE 2631, 166–172 (1995).
[CrossRef]

I. Charamisinau, G. Happawana, G. Evans, A. Rosen, R. A. Hsi, “Portable optical actuator for photodynamic therapy,” Proc. SPIE 5261, 38–49 (2003).
[CrossRef]

Surg. Clin. North Am. (1)

S. L. Jacques, “Laser-tissue interactions: photochemical, photothermal, and photomechanical mechanisms,” Surg. Clin. North Am. 72, 531–558 (1992).
[PubMed]

Other (13)

Diomed Inc., http://www.diomedinc.com/ .

J. C. Chen, B. D. Swanson, “Microminiature illuminator for administering photodynamic therapy,” U.S. patent5,571,152 (5November1996).

D. R. Doiron, H. L. Narcisco, P. Paspa, “Continuous gradient cylindrical diffusion tip for optical fibers and method for using,” U.S. patent5,330,465 (19July1994).

X. Gu, R. C.-H. Tam, “Optical fiber diffuser,” U.S. patent6,398,778 (4June2002).

I. Charamisinau, G. Happawana, G. Evans, J. Kirk, D. P. Bour, A. Rosen, R. A. Hsi, “High power semiconductor red laser arrays for use in photodynamic therapy,” special issue of the IEEE J. Sel. Top. Quantum Electron. Biophoton (submitted).

R. Smith, G. Mitchell, “Calculation of complex propagating models in arbitrary, plane layered, complex dielectric structures,” EE Tech. Rep. 206 (University of Washington, Seattle, 1977), http://engr.smu.edu/ee/smuphotonics/Modeig.htm .

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1964).

A. Rosen, H. Rosen, “The efficacy of transurethral thermal ablation in the management of benign prostatic hyperplasia,” in New Frontiers in Medical Device Technology (Wiley, 1995), pp. 79–103.

A. Rosen, H. Rosen, “Catheter with distally located integrated circuit radiation generator,” U.S. patent4,998,932 (12March1991).

R. A. Hsi, A. Rosen, C. Rodriguez, “Method and apparatus for catheter phototherapy with dose sensing,” U.S. patent6,749,623 (15June2004).

MicroFab Technologies Inc., www.microfab.com .

I. Charamisinau, “Mie theory calculator,” 2004, available at http://engr.smu.edu/ee/smuphotonics/Software/Software_main.htm .

A. K. Fung, Microwave Scattering and Emission Models and Their Applications (Artech House, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (21)

Fig. 1
Fig. 1

Schematic of a balloon catheter (designed in collaboration with Duane Horton, Mallinckroft Medical1315).

Fig. 2
Fig. 2

Laser insert design: (a) side view, (b) mechanical cross section of the laser insert, (c) edge-emitting 635 nm laser on a copper submount with a scattering element.

Fig. 3
Fig. 3

Rectangular scattering element with particles.

Fig. 4
Fig. 4

Scattering intensity function F(θ) for a silver sphere with kD = 20.

Fig. 5
Fig. 5

Far field (a) of the transmitted light, (b) of the scattered light, (c) of the total light transmitted and scattered.

Fig. 6
Fig. 6

(a) Scattering and (b) absorption efficiency factors for gold (solid curves) and silver (dashed curves) spheres.

Fig. 7
Fig. 7

(a) Percentage of light absorbed in the scattering element required to achieve a uniformity of 0.5 for particles of different diameters. (b) Size of the scattering element required to achieve a uniformity of 0.5 for particles of different diameters. The host polymer has a refractive index of 1.51 and an absorption coefficient of 5%/cm. The wavelength of the scattered light is 635 nm. The fraction of scattering particles by volume is 1%.

Fig. 8
Fig. 8

Size of the scattering element required to achieve a uniformity of 0.5 for nonabsorbing particles of arbitrary refractive index and various diameters. The host polymer has a refractive index of 1.51 and an absorption coefficient of 5%/cm. The wavelength of the scattered light is 635 nm. The fraction of scattering particles by volume is 1%.

Fig. 9
Fig. 9

(a) Percentage of light absorbed in the scattering element required to achieve a uniformity of 0.5 for particles in the scattering element with an arbitrary complex index of refraction. (b) Size of the scattering element required to achieve a uniformity of 0.5 for particles in the scattering element with an arbitrary complex index of refraction. In both (a) and (b) the particle diameter is fixed at 0.12 μm; the host polymer has a refractive index of 1.51 and an absorption coefficient of 5%/cm. The wavelength of the scattered light is 635 nm. The fraction of scattering particles by volume is 1%.

Fig. 10
Fig. 10

Shape of a rough particle for K = 6, Δr/r0 = 20%.

Fig. 11
Fig. 11

(a) Scattering and (b) absorption efficiency factors for 1 μm gold particles with respect to roughness for K = 6.

Fig. 12
Fig. 12

Radial component nr of the normal vector n averaged over the particle surface with respect to roughness for K = 6.

Fig. 13
Fig. 13

Model of a composite particle.

Fig. 14
Fig. 14

(a) Scattering and (b) absorption efficiency factors as a function of normalized particle diameter for a composite particle with a glass core and a silver shell.

Fig. 15
Fig. 15

Scattering efficiency factors as a function of normalized particle diameter for a light-transparent composite particle with a core refractive index of 1.65 and a shell refractive index of 1.33.

Fig. 16
Fig. 16

Laser insert geometry.

Fig. 17
Fig. 17

Plot of the light-blocking function Fsh(θ).

Fig. 18
Fig. 18

(a) Calculated (solid line) and measured (dashed line) radial radiation pattern at R = 10 mm; (b) measured radiation pattern without scattering elements.

Fig. 19
Fig. 19

Geometry of the laser insert in the lateral direction.

Fig. 20
Fig. 20

(a) Calculated (solid curve) and measured (dashed curve) lateral radiation pattern at R = 10 mm; (b) measured radiation pattern without scattering elements.

Fig. 21
Fig. 21

Prototype of the light delivery system.

Tables (2)

Tables Icon

Table 1 Calculation Results for 1 μm Spheres

Tables Icon

Table 2 Calculation Results for Resonant Spheres

Equations (54)

Equations on this page are rendered with MathJax. Learn more.

Q sca = 1 k 2 G 0 π 0 2 π F ( θ ,     φ ) sin ( θ ) d φ d θ ,
Q sca = 2 k 2 G π / 4 3 π / 4 0 2 π F ( θ ,     φ ) sin ( θ ) d φ d θ .
P = G Q scu a 2 = π D 2 Q scu ( D ) 4 a b .
T = ( 1 - p ) N .
T = exp ( - p N ) = exp [ - π D 2 Q scu ( D ) 4 a b 6 P g a b L π D 3 ] = exp [ - 3 P g L Q scu ( D ) 2 D ] ,
I min = P ( 1 - T ) 2 / π .
I tr ( θ ) = P T 2 2 π 2 0.849 θ exp ( - θ 2 2 Δ θ 2 ) ,
I max = I min + P T 4 / ( 0.849 θ 2 π ) ,
V = 1 - I min I max = 1 - [ P ( 1 - T ) 2 π ] / [ p ( 1 - T ) 2 π + P T 2 2 π 2 0.849 θ ] .
T = [ 1 + ( 1 - V ) 2 π 0.849 θ V ] - 1 .
L = - 2 D ln ( T ) 3 P g Q scu ( D ) .
u = e i ω t cos     φ n = 1 - a n ( - i ) n 2 n + 1 n ( n + 1 ) × P n 1 ( cos     θ ) h n ( 2 ) ( k r ) ,
v = e i ω t sin     φ n = 1 - b n ( - i ) n 2 n + 1 n ( n + 1 ) × P n 1 ( cos     θ ) h n ( 2 ) ( k r ) ,
E = × ( r ν ) + ( i / m k ) × × ( r u ) ,
H = m [ - × ( r u ) + ( i / m k ) × ( r u ) ] ,
a n = ψ n ( y ) ψ n ( x ) - m ψ n ( y ) ψ n ( x ) ψ n ( y ) ζ n ( x ) - m ψ n ( y ) ζ n ( x ) , b n = m ψ n ( y ) ψ n ( x ) - ψ n ( y ) ψ n ( x ) m ψ n ( y ) ζ n ( x ) - ψ n ( y ) ζ n ( x ) ,
ψ ( z ) = π z / 2 J n + 1 / 2 ( z ) , χ ( z ) = - π z / 2 N n + 1 / 2 ( z ) , ζ ( z ) = π z / 2 H n + 1 / 2 ( 2 ) ( z ) ,
x = k a = k D / 2 = π D λ ,
y = m k a = m π D λ .
F ( θ , φ ) = S 2 2 ( θ ) cos 2 φ + S 1 2 ( θ ) sin 2 φ ,
S 1 ( θ ) = n = 1 2 n + 1 n ( n + 1 ) [ a n π n ( cos θ ) + b n τ n ( cos θ ) ] ,
S 2 ( θ ) = n = 1 2 n + 1 n ( n + 1 ) [ b n π n ( cos θ ) + a n τ n ( cos θ ) ] ,
π n ( cos θ ) = 1 sin θ P n 1 ( cos θ ) ,
τ n ( cos θ ) = d d θ P n 1 ( cos θ ) .
Q ext = 4 x 2 Re [ S 1 ( 0 ) ] = 4 x 2 Re [ S 2 ( 0 ) ] = 2 x 2 n = 1 ( 2 n + 1 ) Re ( b n + a n ) .
Q sca = 1 x 2 0 π [ S 1 2 ( θ ) + S 2 2 ( θ ) ] sin θ d θ .
Q sca = 2 x 2 n = 1 ( 2 n + 1 ) ( a n 2 + b n 2 ) .
Q abs = Q ext - Q sca .
Q scu = 2 x 2 π / 4 3 π / 4 [ S 1 2 ( θ ) + S 2 2 ( θ ) ] sin θ d θ .
1 - A p = exp ( - 3 P g Q abs 2 D L ) ,
1 - A = exp ( - 3 P g Q abs 2 D L ) exp ( - α m L ) .
1 - A = exp [ ( Q abs Q scu + α m 2 D 3 P g Q scu ) ln T ] .
r ( θ , ϕ ) = r 0 + Δ r sin ( K θ ) sin ( K ϕ ) ,
Q scu = 1 2 π x 2 π / 4 3 π / 4 0 2 π [ S 1 2 ( θ , φ ) ] + S 2 2 ( θ , φ ) ] d φ sin θ d θ .
u = e i ω t cos φ n = 1 m 2 ( - i ) n 2 n + 1 n ( n + 1 ) P n 1 ( cos θ ) × [ c n j n ( m 2 k r ) - d n n n ( m 2 k r ) ] ,
v = e i ω t sin φ n = 1 ( - i ) n 2 n + 1 n ( n + 1 ) P n 1 ( cos θ ) × [ e n j n ( m 2 k r ) - f n n n ( m 2 k r ) ] .
a n = s n ψ n ( x 2 ) - ψ n ( x 2 ) s n ζ n ( x 2 ) - ζ n ( x 2 ) ,
b n = t n ψ n ( x 2 ) - ψ n ( x 2 ) t n ζ n ( x 2 ) - ζ n ( x 2 ) ,
s n = m 2 ψ n ( y 2 ) + p n χ n ( y 2 ) ψ n ( y 2 ) + p n χ n ( y 2 ) ,
t n = 1 m 2 ψ n ( y 2 ) + q n χ n ( y 2 ) ψ n ( y 2 ) + q n χ n ( y 2 ) ,
p n = d n c n = m n ψ n ( y 3 ) ψ n ( x 3 ) - m 3 ψ n ( y 3 ) ψ n ( x 3 ) m 3 ψ n ( y 3 ) χ n ( x 3 ) - m 2 ψ n ( y 3 ) χ n ( x 3 ) ,
q n = f n e n = m 3 ψ n ( y 3 ) ψ n ( x 3 ) - m 2 ψ n ( y 3 ) ψ n ( x 3 ) m 3 ψ n ( y 3 ) χ n ( x 3 ) - m 3 ψ n ( y 3 ) χ n ( x 3 ) ,
c n = ψ n ( x 2 ) - a n ζ n ( x 2 ) ψ n ( y 2 ) + p n χ n ( y 2 ) ,
d n = v n ( x 2 ) - b n ζ n ( x 2 ) ψ n ( y 2 ) + q n χ n ( y 2 ) ,
g n = c n ψ n ( y 3 ) [ ψ n ( x 3 ) + p n χ n ( x 3 ) ] ,
h n = e n ψ n ( y 3 ) [ ψ n ( x 3 ) + q n χ n ( x 3 ) ] .
R 1 = R 2 + t 2 - 2 t R cos φ ,
θ = arcsin ( R 2 - t 2 - R 1 2 2 t R 1 ) sign [ sin ( φ ) ] + π 2 { 1 - sign [ sin ( φ ) ] } ,
d θ = sin ( θ + φ ) d φ .
I s ( φ ) = sin ( θ + φ ) d φ R 1 2 [ 1 - T π + T 2 π Δ θ × exp ( - θ 2 2 Δ θ 2 ) ] F sh ( θ ) ,
I ( φ ) = i = 0 2 [ I s ( 2 3 π i + φ ) + I s ( 2 3 π i - φ ) ] ,
I s ( φ ) = R ( R 2 + z 2 ) 1.5 { 1 - T π + T 2 π Δ θ × exp [ - arctan ( z / R ) 2 2 Δ θ 2 ] } ,
I ( φ ) = i = 1 N 1 I s [ z - Δ z ( i - 0.5 ) ] ,
V V + ( 1 - V ) Δ z 2 ( Δ z 2 - 2 R 2 ) Δ z 4 + 8 R 4 + 6 R 2 Δ z 2 ,

Metrics