Abstract

A modified X-band radar system designed to detect aircraft during atmospheric lidar operations is described and characterized. The capability of the radar to identify aircraft approaching from a variety of directions was tested, and first detections were found to occur between the −10 and −3 dB perimeters of the gain horn’s antenna pattern. A model based on the radar equation projects the performance of the radar for different sizes of aircraft and at different altitude levels. Risk analysis indicates that the probability of accidently illuminating an aircraft with the laser beam during joint lidar–radar operations is low.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Sassen, “The polarization lidar technique for cloud research: a review and current assessment,” Bull. Am. Meteorol. Soc. 72, 1848–1866 (1991).
    [CrossRef]
  2. J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, D. D. Turner, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols,” Appl. Opt. 37, 4979–4990 (1998).
    [CrossRef]
  3. A. Hauchecorne, M. L. Chanin, “Density and temperature profiles obtained by lidar between 35 and 70 km,” Geophys. Res. Lett. 7, 565–568 (1980).
    [CrossRef]
  4. T. J. McGee, M. Gross, R. Ferrare, W. S. Heaps, U. N. Singh, “Raman DIAL measurements of stratospheric ozone in the presence of volcanic aerosols,” Geophys. Res. Lett. 20, 955–958 (1993).
    [CrossRef]
  5. T. J. Duck, J. A. Whiteway, A. I. Carswell, “The gravity wave-Arctic stratospheric vortex interaction,” J. Atmos. Sci. 58, 3581–3596 (2001).
    [CrossRef]
  6. T. J. Duck, M. D. Greene, “High Arctic observations of mesospheric inversion layers,” Geophys. Res. Lett.31, doi: (2004).
    [CrossRef]
  7. S. D. Mayor, S. M. Spuler, “Raman-shifted eye-safe aerosol lidar,” Appl. Opt. 43, 3915–3924 (2004).
    [CrossRef] [PubMed]
  8. American National Standards Institute, “American National Standard for the Safe Use of Lasers, ANSI Z136.1-2000,” (American National Standards Institute, 2000).
  9. J. M. Alvarez, W. H. Fuller, R. M. Lawrence, “A radar safety device for lidars probing the atmosphere,” in Proceedings of the Nineteenth International Laser Radar Conference, U. N. Singh, S. Ismail, G. K. Schwemmer, eds. (National Aeronautics and Space Administration, 1998), pp. 983–986.
  10. G. S. Kent, G. M. Hansen, “Scanning lidar with a coupled radar safety system,” Appl. Opt. 38, 6383–6387 (1999).
    [CrossRef]
  11. T. J. Duck, D. P. Sipler, J. E. Salah, J. W. Meriwether, “Rayleigh lidar observations of a mesospheric inversion layer during night and day,” Geophys. Res. Lett. 28, 3597–3600 (2001).
    [CrossRef]
  12. T. J. Duck, B. Firanski, C. Tyler, D. Kelly, M. Greene, B. Joyce, C. Dickinson, “Development of a large-aperture transportable lidar system,” in Proceedings of the 22nd International Laser Radar Conference, G. Pappalardo, A. Amodeo, eds. (European Space Agency, 2004), pp. 143–146.
  13. J. V. DiFranco, W. L. Rubin, Radar Detection (Artech House, 1980).
  14. F. E. Nathanson, J. P. Reilly, M. N. Cohen, Radar Design Principles: Signal Processing and the Environment (McGraw-Hill, 1991).
  15. E. Brookner, Radar Technology (Artech House, 1977).
  16. J. R. Taylor, An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements, (University Science Books, 1997).
  17. K. Sassen, J. R. Campbell, “A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. Part I: Macrophysical and synoptic properties,” J. Atmos. Sci. 58, 481–496 (2001).
    [CrossRef]
  18. T. Leblanc, I. S. McDermid, P. Keckhut, A. Hauchecorne, C. Y. She, D. A. Krueger, “Temperature climatology of the middle atmosphere from long-term lidar measurements at middle and low latitudes,” J. Geophys. Res. 103, 17191–17204 (1998).
    [CrossRef]
  19. J. E. M. Goldsmith, T. P. Tooman, R. A. Ferrare, D. D. Turner, “Recent progress in CART Raman lidar measurements,” Eleventh ARM Science Team Meeting Proceedings (Atmospheric Radiation Measurement Program, 2001).
  20. “FAA Aerospace Forecasts: Fiscal Years 2004–2015,” (U.S. Department of Transportation, Federal Aviation Administration, Office of Aviation Policy and Plans, 2004).

2004 (1)

2001 (3)

T. J. Duck, D. P. Sipler, J. E. Salah, J. W. Meriwether, “Rayleigh lidar observations of a mesospheric inversion layer during night and day,” Geophys. Res. Lett. 28, 3597–3600 (2001).
[CrossRef]

K. Sassen, J. R. Campbell, “A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. Part I: Macrophysical and synoptic properties,” J. Atmos. Sci. 58, 481–496 (2001).
[CrossRef]

T. J. Duck, J. A. Whiteway, A. I. Carswell, “The gravity wave-Arctic stratospheric vortex interaction,” J. Atmos. Sci. 58, 3581–3596 (2001).
[CrossRef]

1999 (1)

1998 (2)

T. Leblanc, I. S. McDermid, P. Keckhut, A. Hauchecorne, C. Y. She, D. A. Krueger, “Temperature climatology of the middle atmosphere from long-term lidar measurements at middle and low latitudes,” J. Geophys. Res. 103, 17191–17204 (1998).
[CrossRef]

J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, D. D. Turner, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols,” Appl. Opt. 37, 4979–4990 (1998).
[CrossRef]

1993 (1)

T. J. McGee, M. Gross, R. Ferrare, W. S. Heaps, U. N. Singh, “Raman DIAL measurements of stratospheric ozone in the presence of volcanic aerosols,” Geophys. Res. Lett. 20, 955–958 (1993).
[CrossRef]

1991 (1)

K. Sassen, “The polarization lidar technique for cloud research: a review and current assessment,” Bull. Am. Meteorol. Soc. 72, 1848–1866 (1991).
[CrossRef]

1980 (1)

A. Hauchecorne, M. L. Chanin, “Density and temperature profiles obtained by lidar between 35 and 70 km,” Geophys. Res. Lett. 7, 565–568 (1980).
[CrossRef]

Alvarez, J. M.

J. M. Alvarez, W. H. Fuller, R. M. Lawrence, “A radar safety device for lidars probing the atmosphere,” in Proceedings of the Nineteenth International Laser Radar Conference, U. N. Singh, S. Ismail, G. K. Schwemmer, eds. (National Aeronautics and Space Administration, 1998), pp. 983–986.

Bisson, S. E.

Blair, F. H.

Brookner, E.

E. Brookner, Radar Technology (Artech House, 1977).

Campbell, J. R.

K. Sassen, J. R. Campbell, “A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. Part I: Macrophysical and synoptic properties,” J. Atmos. Sci. 58, 481–496 (2001).
[CrossRef]

Carswell, A. I.

T. J. Duck, J. A. Whiteway, A. I. Carswell, “The gravity wave-Arctic stratospheric vortex interaction,” J. Atmos. Sci. 58, 3581–3596 (2001).
[CrossRef]

Chanin, M. L.

A. Hauchecorne, M. L. Chanin, “Density and temperature profiles obtained by lidar between 35 and 70 km,” Geophys. Res. Lett. 7, 565–568 (1980).
[CrossRef]

Cohen, M. N.

F. E. Nathanson, J. P. Reilly, M. N. Cohen, Radar Design Principles: Signal Processing and the Environment (McGraw-Hill, 1991).

Dickinson, C.

T. J. Duck, B. Firanski, C. Tyler, D. Kelly, M. Greene, B. Joyce, C. Dickinson, “Development of a large-aperture transportable lidar system,” in Proceedings of the 22nd International Laser Radar Conference, G. Pappalardo, A. Amodeo, eds. (European Space Agency, 2004), pp. 143–146.

DiFranco, J. V.

J. V. DiFranco, W. L. Rubin, Radar Detection (Artech House, 1980).

Duck, T. J.

T. J. Duck, D. P. Sipler, J. E. Salah, J. W. Meriwether, “Rayleigh lidar observations of a mesospheric inversion layer during night and day,” Geophys. Res. Lett. 28, 3597–3600 (2001).
[CrossRef]

T. J. Duck, J. A. Whiteway, A. I. Carswell, “The gravity wave-Arctic stratospheric vortex interaction,” J. Atmos. Sci. 58, 3581–3596 (2001).
[CrossRef]

T. J. Duck, M. D. Greene, “High Arctic observations of mesospheric inversion layers,” Geophys. Res. Lett.31, doi: (2004).
[CrossRef]

T. J. Duck, B. Firanski, C. Tyler, D. Kelly, M. Greene, B. Joyce, C. Dickinson, “Development of a large-aperture transportable lidar system,” in Proceedings of the 22nd International Laser Radar Conference, G. Pappalardo, A. Amodeo, eds. (European Space Agency, 2004), pp. 143–146.

Ferrare, R.

T. J. McGee, M. Gross, R. Ferrare, W. S. Heaps, U. N. Singh, “Raman DIAL measurements of stratospheric ozone in the presence of volcanic aerosols,” Geophys. Res. Lett. 20, 955–958 (1993).
[CrossRef]

Ferrare, R. A.

J. E. M. Goldsmith, T. P. Tooman, R. A. Ferrare, D. D. Turner, “Recent progress in CART Raman lidar measurements,” Eleventh ARM Science Team Meeting Proceedings (Atmospheric Radiation Measurement Program, 2001).

Firanski, B.

T. J. Duck, B. Firanski, C. Tyler, D. Kelly, M. Greene, B. Joyce, C. Dickinson, “Development of a large-aperture transportable lidar system,” in Proceedings of the 22nd International Laser Radar Conference, G. Pappalardo, A. Amodeo, eds. (European Space Agency, 2004), pp. 143–146.

Fuller, W. H.

J. M. Alvarez, W. H. Fuller, R. M. Lawrence, “A radar safety device for lidars probing the atmosphere,” in Proceedings of the Nineteenth International Laser Radar Conference, U. N. Singh, S. Ismail, G. K. Schwemmer, eds. (National Aeronautics and Space Administration, 1998), pp. 983–986.

Goldsmith, J. E. M.

J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, D. D. Turner, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols,” Appl. Opt. 37, 4979–4990 (1998).
[CrossRef]

J. E. M. Goldsmith, T. P. Tooman, R. A. Ferrare, D. D. Turner, “Recent progress in CART Raman lidar measurements,” Eleventh ARM Science Team Meeting Proceedings (Atmospheric Radiation Measurement Program, 2001).

Greene, M.

T. J. Duck, B. Firanski, C. Tyler, D. Kelly, M. Greene, B. Joyce, C. Dickinson, “Development of a large-aperture transportable lidar system,” in Proceedings of the 22nd International Laser Radar Conference, G. Pappalardo, A. Amodeo, eds. (European Space Agency, 2004), pp. 143–146.

Greene, M. D.

T. J. Duck, M. D. Greene, “High Arctic observations of mesospheric inversion layers,” Geophys. Res. Lett.31, doi: (2004).
[CrossRef]

Gross, M.

T. J. McGee, M. Gross, R. Ferrare, W. S. Heaps, U. N. Singh, “Raman DIAL measurements of stratospheric ozone in the presence of volcanic aerosols,” Geophys. Res. Lett. 20, 955–958 (1993).
[CrossRef]

Hansen, G. M.

Hauchecorne, A.

T. Leblanc, I. S. McDermid, P. Keckhut, A. Hauchecorne, C. Y. She, D. A. Krueger, “Temperature climatology of the middle atmosphere from long-term lidar measurements at middle and low latitudes,” J. Geophys. Res. 103, 17191–17204 (1998).
[CrossRef]

A. Hauchecorne, M. L. Chanin, “Density and temperature profiles obtained by lidar between 35 and 70 km,” Geophys. Res. Lett. 7, 565–568 (1980).
[CrossRef]

Heaps, W. S.

T. J. McGee, M. Gross, R. Ferrare, W. S. Heaps, U. N. Singh, “Raman DIAL measurements of stratospheric ozone in the presence of volcanic aerosols,” Geophys. Res. Lett. 20, 955–958 (1993).
[CrossRef]

Joyce, B.

T. J. Duck, B. Firanski, C. Tyler, D. Kelly, M. Greene, B. Joyce, C. Dickinson, “Development of a large-aperture transportable lidar system,” in Proceedings of the 22nd International Laser Radar Conference, G. Pappalardo, A. Amodeo, eds. (European Space Agency, 2004), pp. 143–146.

Keckhut, P.

T. Leblanc, I. S. McDermid, P. Keckhut, A. Hauchecorne, C. Y. She, D. A. Krueger, “Temperature climatology of the middle atmosphere from long-term lidar measurements at middle and low latitudes,” J. Geophys. Res. 103, 17191–17204 (1998).
[CrossRef]

Kelly, D.

T. J. Duck, B. Firanski, C. Tyler, D. Kelly, M. Greene, B. Joyce, C. Dickinson, “Development of a large-aperture transportable lidar system,” in Proceedings of the 22nd International Laser Radar Conference, G. Pappalardo, A. Amodeo, eds. (European Space Agency, 2004), pp. 143–146.

Kent, G. S.

Krueger, D. A.

T. Leblanc, I. S. McDermid, P. Keckhut, A. Hauchecorne, C. Y. She, D. A. Krueger, “Temperature climatology of the middle atmosphere from long-term lidar measurements at middle and low latitudes,” J. Geophys. Res. 103, 17191–17204 (1998).
[CrossRef]

Lawrence, R. M.

J. M. Alvarez, W. H. Fuller, R. M. Lawrence, “A radar safety device for lidars probing the atmosphere,” in Proceedings of the Nineteenth International Laser Radar Conference, U. N. Singh, S. Ismail, G. K. Schwemmer, eds. (National Aeronautics and Space Administration, 1998), pp. 983–986.

Leblanc, T.

T. Leblanc, I. S. McDermid, P. Keckhut, A. Hauchecorne, C. Y. She, D. A. Krueger, “Temperature climatology of the middle atmosphere from long-term lidar measurements at middle and low latitudes,” J. Geophys. Res. 103, 17191–17204 (1998).
[CrossRef]

Mayor, S. D.

McDermid, I. S.

T. Leblanc, I. S. McDermid, P. Keckhut, A. Hauchecorne, C. Y. She, D. A. Krueger, “Temperature climatology of the middle atmosphere from long-term lidar measurements at middle and low latitudes,” J. Geophys. Res. 103, 17191–17204 (1998).
[CrossRef]

McGee, T. J.

T. J. McGee, M. Gross, R. Ferrare, W. S. Heaps, U. N. Singh, “Raman DIAL measurements of stratospheric ozone in the presence of volcanic aerosols,” Geophys. Res. Lett. 20, 955–958 (1993).
[CrossRef]

Meriwether, J. W.

T. J. Duck, D. P. Sipler, J. E. Salah, J. W. Meriwether, “Rayleigh lidar observations of a mesospheric inversion layer during night and day,” Geophys. Res. Lett. 28, 3597–3600 (2001).
[CrossRef]

Nathanson, F. E.

F. E. Nathanson, J. P. Reilly, M. N. Cohen, Radar Design Principles: Signal Processing and the Environment (McGraw-Hill, 1991).

Reilly, J. P.

F. E. Nathanson, J. P. Reilly, M. N. Cohen, Radar Design Principles: Signal Processing and the Environment (McGraw-Hill, 1991).

Rubin, W. L.

J. V. DiFranco, W. L. Rubin, Radar Detection (Artech House, 1980).

Salah, J. E.

T. J. Duck, D. P. Sipler, J. E. Salah, J. W. Meriwether, “Rayleigh lidar observations of a mesospheric inversion layer during night and day,” Geophys. Res. Lett. 28, 3597–3600 (2001).
[CrossRef]

Sassen, K.

K. Sassen, J. R. Campbell, “A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. Part I: Macrophysical and synoptic properties,” J. Atmos. Sci. 58, 481–496 (2001).
[CrossRef]

K. Sassen, “The polarization lidar technique for cloud research: a review and current assessment,” Bull. Am. Meteorol. Soc. 72, 1848–1866 (1991).
[CrossRef]

She, C. Y.

T. Leblanc, I. S. McDermid, P. Keckhut, A. Hauchecorne, C. Y. She, D. A. Krueger, “Temperature climatology of the middle atmosphere from long-term lidar measurements at middle and low latitudes,” J. Geophys. Res. 103, 17191–17204 (1998).
[CrossRef]

Singh, U. N.

T. J. McGee, M. Gross, R. Ferrare, W. S. Heaps, U. N. Singh, “Raman DIAL measurements of stratospheric ozone in the presence of volcanic aerosols,” Geophys. Res. Lett. 20, 955–958 (1993).
[CrossRef]

Sipler, D. P.

T. J. Duck, D. P. Sipler, J. E. Salah, J. W. Meriwether, “Rayleigh lidar observations of a mesospheric inversion layer during night and day,” Geophys. Res. Lett. 28, 3597–3600 (2001).
[CrossRef]

Spuler, S. M.

Taylor, J. R.

J. R. Taylor, An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements, (University Science Books, 1997).

Tooman, T. P.

J. E. M. Goldsmith, T. P. Tooman, R. A. Ferrare, D. D. Turner, “Recent progress in CART Raman lidar measurements,” Eleventh ARM Science Team Meeting Proceedings (Atmospheric Radiation Measurement Program, 2001).

Turner, D. D.

J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, D. D. Turner, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols,” Appl. Opt. 37, 4979–4990 (1998).
[CrossRef]

J. E. M. Goldsmith, T. P. Tooman, R. A. Ferrare, D. D. Turner, “Recent progress in CART Raman lidar measurements,” Eleventh ARM Science Team Meeting Proceedings (Atmospheric Radiation Measurement Program, 2001).

Tyler, C.

T. J. Duck, B. Firanski, C. Tyler, D. Kelly, M. Greene, B. Joyce, C. Dickinson, “Development of a large-aperture transportable lidar system,” in Proceedings of the 22nd International Laser Radar Conference, G. Pappalardo, A. Amodeo, eds. (European Space Agency, 2004), pp. 143–146.

Whiteway, J. A.

T. J. Duck, J. A. Whiteway, A. I. Carswell, “The gravity wave-Arctic stratospheric vortex interaction,” J. Atmos. Sci. 58, 3581–3596 (2001).
[CrossRef]

Appl. Opt. (3)

Bull. Am. Meteorol. Soc. (1)

K. Sassen, “The polarization lidar technique for cloud research: a review and current assessment,” Bull. Am. Meteorol. Soc. 72, 1848–1866 (1991).
[CrossRef]

Geophys. Res. Lett. (3)

T. J. Duck, D. P. Sipler, J. E. Salah, J. W. Meriwether, “Rayleigh lidar observations of a mesospheric inversion layer during night and day,” Geophys. Res. Lett. 28, 3597–3600 (2001).
[CrossRef]

A. Hauchecorne, M. L. Chanin, “Density and temperature profiles obtained by lidar between 35 and 70 km,” Geophys. Res. Lett. 7, 565–568 (1980).
[CrossRef]

T. J. McGee, M. Gross, R. Ferrare, W. S. Heaps, U. N. Singh, “Raman DIAL measurements of stratospheric ozone in the presence of volcanic aerosols,” Geophys. Res. Lett. 20, 955–958 (1993).
[CrossRef]

J. Atmos. Sci. (2)

T. J. Duck, J. A. Whiteway, A. I. Carswell, “The gravity wave-Arctic stratospheric vortex interaction,” J. Atmos. Sci. 58, 3581–3596 (2001).
[CrossRef]

K. Sassen, J. R. Campbell, “A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. Part I: Macrophysical and synoptic properties,” J. Atmos. Sci. 58, 481–496 (2001).
[CrossRef]

J. Geophys. Res. (1)

T. Leblanc, I. S. McDermid, P. Keckhut, A. Hauchecorne, C. Y. She, D. A. Krueger, “Temperature climatology of the middle atmosphere from long-term lidar measurements at middle and low latitudes,” J. Geophys. Res. 103, 17191–17204 (1998).
[CrossRef]

Other (10)

J. E. M. Goldsmith, T. P. Tooman, R. A. Ferrare, D. D. Turner, “Recent progress in CART Raman lidar measurements,” Eleventh ARM Science Team Meeting Proceedings (Atmospheric Radiation Measurement Program, 2001).

“FAA Aerospace Forecasts: Fiscal Years 2004–2015,” (U.S. Department of Transportation, Federal Aviation Administration, Office of Aviation Policy and Plans, 2004).

American National Standards Institute, “American National Standard for the Safe Use of Lasers, ANSI Z136.1-2000,” (American National Standards Institute, 2000).

J. M. Alvarez, W. H. Fuller, R. M. Lawrence, “A radar safety device for lidars probing the atmosphere,” in Proceedings of the Nineteenth International Laser Radar Conference, U. N. Singh, S. Ismail, G. K. Schwemmer, eds. (National Aeronautics and Space Administration, 1998), pp. 983–986.

T. J. Duck, M. D. Greene, “High Arctic observations of mesospheric inversion layers,” Geophys. Res. Lett.31, doi: (2004).
[CrossRef]

T. J. Duck, B. Firanski, C. Tyler, D. Kelly, M. Greene, B. Joyce, C. Dickinson, “Development of a large-aperture transportable lidar system,” in Proceedings of the 22nd International Laser Radar Conference, G. Pappalardo, A. Amodeo, eds. (European Space Agency, 2004), pp. 143–146.

J. V. DiFranco, W. L. Rubin, Radar Detection (Artech House, 1980).

F. E. Nathanson, J. P. Reilly, M. N. Cohen, Radar Design Principles: Signal Processing and the Environment (McGraw-Hill, 1991).

E. Brookner, Radar Technology (Artech House, 1977).

J. R. Taylor, An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements, (University Science Books, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Antenna patterns for the Narda Model 640 standard gain horn: E plane, solid curve; H plane, dashed curve.

Fig. 2
Fig. 2

Photograph of the radar showing (left) the gain horn mounted atop the transceiver and (right) the radar with the cover down and the gain horn protruding from the top. Note that the rotary joint has been removed. When the radar is located outdoors, a thin clear plastic dome is placed over the horn and is sealed to the cover.

Fig. 3
Fig. 3

GPS marks showing the locations of initial detection (circles), final detection (squares), and secondary detections (triangles) for a Sikorsky S76 helicopter as it flew over the radar–lidar site (asterisk). Points are numbered in the order in which they were collected. A 0.6 s communications delay was assumed in determining the location of each point. Trails behind each point denote the direction of each overpass and represent the distance covered in 0.6 s. Solid gray circles are used to represent the −3 dB (inside circle), −10 dB, and sidelobe (outside circle) perimeters of the antenna. The dashed gray circle represents a 50 m distance from the site.

Fig. 4
Fig. 4

GPS marks showing the locations of initial (circles) and final (squares) detection for a Cessna Citation jet aircraft. Gray circles and asterisk as in Fig. 3.

Fig. 5
Fig. 5

Summary of the acquisition points for the helicopter and jet aircraft as a function of altitude and horizontal range. The solid black lines represent the −3 dB, −10 dB, and sidelobe perimeters of the antenna (from left to right), and the vertical dashed line denotes 50 m from the radar–lidar site. The long dashed black curve represents the best fit of the radar detection constant, D, to the high-altitude data; gray shading gives the approximate uncertainties to the fit.

Fig. 6
Fig. 6

Probability of detecting an aircraft during a single dwell period as a function of altitude.

Fig. 7
Fig. 7

Probability of detecting an aircraft in multiple dwell periods during traversal of the radar beam: solid curves, one or more detections during the traversal; dashed curves, three detections per second or more.

Tables (3)

Tables Icon

Table 1 Specifications for the Nd:YAG Lasers used at Dalhousie University and MIT Haystack Observatory and the Respective Lidar Transmitter Characteristics

Tables Icon

Table 2 Furuno 1942 Mark 2 Marine Radar Specifications

Tables Icon

Table 3 Narda Model 640 X-Band Gain Horn Specifications

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

SNR = P t τ p f r τ d G 2 λ 2 σ ( 4 π ) 3 R 4 k B T F L ,
G 2 R 4 = ( 4 π ) 3 SNR k B T F L P t τ p f r λ 2 σ τ d = D ,
P d = 1 - γ ( Y b , n p - 1 ) + ( 1 + 1 n p SNR ) n p - 1 × exp ( - Y b 1 + n p SNR ) γ ( Y b 1 + ( n p SNR ) - 1 , n p - 1 ) ,
γ ( x , a ) = 1 Γ ( a ) 0 x exp ( - t ) t ( a - 1 ) d t ,
P f a = 1 - γ ( Y b , n p ) .
t f a ¯ = n p τ r n b P f a ,
n b = B τ m ,

Metrics