Abstract

We present a detailed characterization of a system for fast time-resolved spectroscopy of turbid media based on supercontinuum generation in a photonic crystal fiber. The light source provides subpicosecond pulses in the 550–1000-nm spectral range, at 85 MHz, at an average power of up to 50 mW. Wavelength-resolved detection is accomplished by means of a spectrometer coupled to a 16-channel, multianode photomultiplier tube, giving a resolution of 4.5–35 nm/channel, depending on the grating. Time-dispersion curves are acquired with time-correlated single-photon counting, and absorption and reduced scattering coefficients are determined by fitting the data to the diffusion equation. We characterized the system by measuring the time-resolved diffuse reflectance of epoxy phantoms and by assessing the performance in terms of accuracy, linearity, noise sensitivity, stability, and reproducibility. The results were similar to those from previous systems, whereas the full-spectrum (6103810 nm) acquisition time was as short as 1 s owing to the parallel acquisition. We also present the first in vivo real-time dynamic spectral measurements showing tissue oxygenation changes in the arm of a human subject.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, R. Cubeddu, “In vivo absorption and scattering spectroscopy of biological tissues,” Photochem. Photobiol. Sci. 2, 124–129 (2003).
    [CrossRef] [PubMed]
  2. R. Doornbos, R. Lang, M. Aalders, F. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999).
    [CrossRef] [PubMed]
  3. F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt. 39, 6498–6507 (2000).
    [CrossRef]
  4. S. Andersson-Engels, R. Berg, A. Persson, S. Svanberg, “Multispectral tissue characterization with time-resolved detection of diffusely scattered white light,” Opt. Lett. 18, 1697–1699 (1993).
    [CrossRef] [PubMed]
  5. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: an application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874–876 (1999).
    [CrossRef]
  6. J. Johansson, S. Folestad, M. Josefson, A. Sparen, C. Abrahamsson, S. Andersson-Engels, S. Svanberg, “Time-resolved NIR/Vis spectroscopy for analysis of solids: pharmaceutical tablets,” Appl. Spectrosc. 56, 725–731 (2002).
    [CrossRef]
  7. S. L. Jacques, “Time-resolved reflectance spectroscopy in turbid tissues,” IEEE Trans. Biomed. Eng. 36, 1155–1161 (1989).
    [CrossRef] [PubMed]
  8. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996).
    [CrossRef] [PubMed]
  9. A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomed. Opt. 9, 1143–1151 (2004).
    [CrossRef] [PubMed]
  10. V. Ntziachristos, X. H. Ma, A. G. Yodh, B. Chance, “Multichannel photon counting instrument for spatially resolved near infrared spectroscopy,” Rev. Sci. Instrum. 70, 193–201 (1999).
    [CrossRef]
  11. F. E. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
    [CrossRef]
  12. E. M. C. Hillman, “Experimental and theoretical investigations of near infrared tomographic imaging methods and clinical applications,” Ph.D. dissertation (University College London, London, UK, 2002).
  13. A. Bassi, J. Swartling, C. D’Andrea, A. Pifferi, A. Torricelli, R. Cubeddu, “Time-resolved spectrophotometer for turbid media based on supercontinuum generation in a photonic crystal fiber,” Opt. Lett. 29, 2405–2407 (2004).
    [CrossRef] [PubMed]
  14. C. Abrahamsson, T. Svensson, S. Svanberg, S. Andersson-Engels, J. Johansson, S. Folestad, “Time and wavelength resolved spectroscopy of turbid media using light continuum generated in a crystal fiber,” Opt. Express 12, 4103–4112 (2004).
    [CrossRef] [PubMed]
  15. A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J. M. Tualle, H. L. Nghiem, E. Tinet, S. Avrillier, M. Whelan, H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt. 44, 2104–2114 (2005).
    [CrossRef] [PubMed]
  16. J. K. Ranka, R. S. Windeler, A. J. Stentz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
    [CrossRef]
  17. S. Coen, A. Hing, Lun Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, P. St, J. Russell, “Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,” J. Opt. Soc. Am. B 19, 753–764 (2002).
    [CrossRef]
  18. J. Swartling, J. S. Dam, S. Andersson-Engels, “Comparison of spatially and temporally resolved diffuse-reflectance measurement systems for determination of biomedical optical properties,” Appl. Opt. 42, 4612–4620 (2003).
    [CrossRef] [PubMed]
  19. E. Antonini, M. Brunori, Hemoglobin and Moglobin in Their Reactions with Ligands (North-Holland, Amsterdam, 1971).
  20. J. Swartling, “Biomedical and atmospheric applications of optical spectroscopy in scattering media,” Ph.D. dissertation (Lund Institute of Technology, Lund, Sweden, 2002).
  21. D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. M. Schlag, H. Rinneberg, “Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors,” Appl. Opt. 42, 3170–3186 (2003).
    [CrossRef] [PubMed]
  22. A. Pifferi, P. Taroni, A. Torricelli, F. Messina, R. Cubeddu, G. Danesini, “Four-wavelength time-resolved optical mammography in the 680–980-nm range,” Opt. Lett. 28, 1138–1140 (2003).
    [CrossRef] [PubMed]
  23. J. C. Hebden, S. R. Arridge, D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
    [CrossRef] [PubMed]
  24. C. D’Andrea, D. Comelli, A. Pifferi, A. Torricelli, G. Valentini, R. Cubeddu, “Time-resolved optical imaging through turbid media using a fast data acquisition system based on a gated CCD camera,” J. Phys. D 36, 1675–1681 (2003).
    [CrossRef]
  25. W. Becker, A. Bergmann, G. Biscotti, C. Biskup, “Fluorescence lifetime imaging by multi-detector TCSPC,” in OSA Biomedical Topical Meetings on CD-ROM, OSA Technical Digest, WD1 (2004).
  26. Y. Nomura, O. Hazeki, M. Tamura, “Relationship between time-resolved and non-time-resolved Beer–Lambert law in turbid media,” Phys. Med. Biol. 42, 1009–1022 (1997).
    [CrossRef] [PubMed]

2005 (1)

2004 (3)

2003 (5)

2002 (2)

2000 (3)

1999 (3)

V. Ntziachristos, X. H. Ma, A. G. Yodh, B. Chance, “Multichannel photon counting instrument for spatially resolved near infrared spectroscopy,” Rev. Sci. Instrum. 70, 193–201 (1999).
[CrossRef]

R. Doornbos, R. Lang, M. Aalders, F. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999).
[CrossRef] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: an application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874–876 (1999).
[CrossRef]

1997 (2)

J. C. Hebden, S. R. Arridge, D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
[CrossRef] [PubMed]

Y. Nomura, O. Hazeki, M. Tamura, “Relationship between time-resolved and non-time-resolved Beer–Lambert law in turbid media,” Phys. Med. Biol. 42, 1009–1022 (1997).
[CrossRef] [PubMed]

1996 (1)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996).
[CrossRef] [PubMed]

1993 (1)

1989 (1)

S. L. Jacques, “Time-resolved reflectance spectroscopy in turbid tissues,” IEEE Trans. Biomed. Eng. 36, 1155–1161 (1989).
[CrossRef] [PubMed]

Aalders, M.

R. Doornbos, R. Lang, M. Aalders, F. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999).
[CrossRef] [PubMed]

Abrahamsson, C.

Andersson-Engels, S.

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J. M. Tualle, H. L. Nghiem, E. Tinet, S. Avrillier, M. Whelan, H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt. 44, 2104–2114 (2005).
[CrossRef] [PubMed]

C. Abrahamsson, T. Svensson, S. Svanberg, S. Andersson-Engels, J. Johansson, S. Folestad, “Time and wavelength resolved spectroscopy of turbid media using light continuum generated in a crystal fiber,” Opt. Express 12, 4103–4112 (2004).
[CrossRef] [PubMed]

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomed. Opt. 9, 1143–1151 (2004).
[CrossRef] [PubMed]

J. Swartling, J. S. Dam, S. Andersson-Engels, “Comparison of spatially and temporally resolved diffuse-reflectance measurement systems for determination of biomedical optical properties,” Appl. Opt. 42, 4612–4620 (2003).
[CrossRef] [PubMed]

J. Johansson, S. Folestad, M. Josefson, A. Sparen, C. Abrahamsson, S. Andersson-Engels, S. Svanberg, “Time-resolved NIR/Vis spectroscopy for analysis of solids: pharmaceutical tablets,” Appl. Spectrosc. 56, 725–731 (2002).
[CrossRef]

S. Andersson-Engels, R. Berg, A. Persson, S. Svanberg, “Multispectral tissue characterization with time-resolved detection of diffusely scattered white light,” Opt. Lett. 18, 1697–1699 (1993).
[CrossRef] [PubMed]

Antonini, E.

E. Antonini, M. Brunori, Hemoglobin and Moglobin in Their Reactions with Ligands (North-Holland, Amsterdam, 1971).

Arridge, S. R.

J. C. Hebden, S. R. Arridge, D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
[CrossRef] [PubMed]

Avrillier, S.

Bassi, A.

Becker, W.

W. Becker, A. Bergmann, G. Biscotti, C. Biskup, “Fluorescence lifetime imaging by multi-detector TCSPC,” in OSA Biomedical Topical Meetings on CD-ROM, OSA Technical Digest, WD1 (2004).

Berg, R.

Berger, A. J.

Bergmann, A.

W. Becker, A. Bergmann, G. Biscotti, C. Biskup, “Fluorescence lifetime imaging by multi-detector TCSPC,” in OSA Biomedical Topical Meetings on CD-ROM, OSA Technical Digest, WD1 (2004).

Bevilacqua, F.

Biscotti, G.

W. Becker, A. Bergmann, G. Biscotti, C. Biskup, “Fluorescence lifetime imaging by multi-detector TCSPC,” in OSA Biomedical Topical Meetings on CD-ROM, OSA Technical Digest, WD1 (2004).

Biskup, C.

W. Becker, A. Bergmann, G. Biscotti, C. Biskup, “Fluorescence lifetime imaging by multi-detector TCSPC,” in OSA Biomedical Topical Meetings on CD-ROM, OSA Technical Digest, WD1 (2004).

Brunori, M.

E. Antonini, M. Brunori, Hemoglobin and Moglobin in Their Reactions with Ligands (North-Holland, Amsterdam, 1971).

Cerussi, A. E.

Chance, B.

V. Ntziachristos, X. H. Ma, A. G. Yodh, B. Chance, “Multichannel photon counting instrument for spatially resolved near infrared spectroscopy,” Rev. Sci. Instrum. 70, 193–201 (1999).
[CrossRef]

Chau, Lun

Chikoidze, E.

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomed. Opt. 9, 1143–1151 (2004).
[CrossRef] [PubMed]

Coen, S.

Comelli, D.

P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, R. Cubeddu, “In vivo absorption and scattering spectroscopy of biological tissues,” Photochem. Photobiol. Sci. 2, 124–129 (2003).
[CrossRef] [PubMed]

C. D’Andrea, D. Comelli, A. Pifferi, A. Torricelli, G. Valentini, R. Cubeddu, “Time-resolved optical imaging through turbid media using a fast data acquisition system based on a gated CCD camera,” J. Phys. D 36, 1675–1681 (2003).
[CrossRef]

Cross, F.

R. Doornbos, R. Lang, M. Aalders, F. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999).
[CrossRef] [PubMed]

Cubeddu, R.

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J. M. Tualle, H. L. Nghiem, E. Tinet, S. Avrillier, M. Whelan, H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt. 44, 2104–2114 (2005).
[CrossRef] [PubMed]

A. Bassi, J. Swartling, C. D’Andrea, A. Pifferi, A. Torricelli, R. Cubeddu, “Time-resolved spectrophotometer for turbid media based on supercontinuum generation in a photonic crystal fiber,” Opt. Lett. 29, 2405–2407 (2004).
[CrossRef] [PubMed]

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomed. Opt. 9, 1143–1151 (2004).
[CrossRef] [PubMed]

A. Pifferi, P. Taroni, A. Torricelli, F. Messina, R. Cubeddu, G. Danesini, “Four-wavelength time-resolved optical mammography in the 680–980-nm range,” Opt. Lett. 28, 1138–1140 (2003).
[CrossRef] [PubMed]

C. D’Andrea, D. Comelli, A. Pifferi, A. Torricelli, G. Valentini, R. Cubeddu, “Time-resolved optical imaging through turbid media using a fast data acquisition system based on a gated CCD camera,” J. Phys. D 36, 1675–1681 (2003).
[CrossRef]

P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, R. Cubeddu, “In vivo absorption and scattering spectroscopy of biological tissues,” Photochem. Photobiol. Sci. 2, 124–129 (2003).
[CrossRef] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: an application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874–876 (1999).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996).
[CrossRef] [PubMed]

D’Andrea, C.

A. Bassi, J. Swartling, C. D’Andrea, A. Pifferi, A. Torricelli, R. Cubeddu, “Time-resolved spectrophotometer for turbid media based on supercontinuum generation in a photonic crystal fiber,” Opt. Lett. 29, 2405–2407 (2004).
[CrossRef] [PubMed]

C. D’Andrea, D. Comelli, A. Pifferi, A. Torricelli, G. Valentini, R. Cubeddu, “Time-resolved optical imaging through turbid media using a fast data acquisition system based on a gated CCD camera,” J. Phys. D 36, 1675–1681 (2003).
[CrossRef]

Dam, J. S.

Danesini, G.

Delpy, D. T.

F. E. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[CrossRef]

J. C. Hebden, S. R. Arridge, D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
[CrossRef] [PubMed]

Doornbos, R.

R. Doornbos, R. Lang, M. Aalders, F. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999).
[CrossRef] [PubMed]

Folestad, S.

Fry, M. E.

F. E. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[CrossRef]

Grosenick, D.

Harvey, J. D.

Hazeki, O.

Y. Nomura, O. Hazeki, M. Tamura, “Relationship between time-resolved and non-time-resolved Beer–Lambert law in turbid media,” Phys. Med. Biol. 42, 1009–1022 (1997).
[CrossRef] [PubMed]

Hebden, J. C.

F. E. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[CrossRef]

J. C. Hebden, S. R. Arridge, D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
[CrossRef] [PubMed]

Hillman, E. M. C.

F. E. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[CrossRef]

E. M. C. Hillman, “Experimental and theoretical investigations of near infrared tomographic imaging methods and clinical applications,” Ph.D. dissertation (University College London, London, UK, 2002).

Hing, A.

Jacques, S. L.

S. L. Jacques, “Time-resolved reflectance spectroscopy in turbid tissues,” IEEE Trans. Biomed. Eng. 36, 1155–1161 (1989).
[CrossRef] [PubMed]

Jakubowski, D.

Johansson, J.

Josefson, M.

Knight, J. C.

Lang, R.

R. Doornbos, R. Lang, M. Aalders, F. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999).
[CrossRef] [PubMed]

Leonhardt, R.

Ma, X. H.

V. Ntziachristos, X. H. Ma, A. G. Yodh, B. Chance, “Multichannel photon counting instrument for spatially resolved near infrared spectroscopy,” Rev. Sci. Instrum. 70, 193–201 (1999).
[CrossRef]

Macdonald, R.

Messina, F.

Moesta, K. T.

Möller, M.

Mucke, J.

Nghiem, H. L.

Nomura, Y.

Y. Nomura, O. Hazeki, M. Tamura, “Relationship between time-resolved and non-time-resolved Beer–Lambert law in turbid media,” Phys. Med. Biol. 42, 1009–1022 (1997).
[CrossRef] [PubMed]

Ntziachristos, V.

V. Ntziachristos, X. H. Ma, A. G. Yodh, B. Chance, “Multichannel photon counting instrument for spatially resolved near infrared spectroscopy,” Rev. Sci. Instrum. 70, 193–201 (1999).
[CrossRef]

Persson, A.

Pifferi, A.

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J. M. Tualle, H. L. Nghiem, E. Tinet, S. Avrillier, M. Whelan, H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt. 44, 2104–2114 (2005).
[CrossRef] [PubMed]

A. Bassi, J. Swartling, C. D’Andrea, A. Pifferi, A. Torricelli, R. Cubeddu, “Time-resolved spectrophotometer for turbid media based on supercontinuum generation in a photonic crystal fiber,” Opt. Lett. 29, 2405–2407 (2004).
[CrossRef] [PubMed]

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomed. Opt. 9, 1143–1151 (2004).
[CrossRef] [PubMed]

A. Pifferi, P. Taroni, A. Torricelli, F. Messina, R. Cubeddu, G. Danesini, “Four-wavelength time-resolved optical mammography in the 680–980-nm range,” Opt. Lett. 28, 1138–1140 (2003).
[CrossRef] [PubMed]

C. D’Andrea, D. Comelli, A. Pifferi, A. Torricelli, G. Valentini, R. Cubeddu, “Time-resolved optical imaging through turbid media using a fast data acquisition system based on a gated CCD camera,” J. Phys. D 36, 1675–1681 (2003).
[CrossRef]

P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, R. Cubeddu, “In vivo absorption and scattering spectroscopy of biological tissues,” Photochem. Photobiol. Sci. 2, 124–129 (2003).
[CrossRef] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: an application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874–876 (1999).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996).
[CrossRef] [PubMed]

Ranka, J. K.

Rinneberg, H.

Russell, J.

Schlag, P. M.

Schmidt, F. E.

F. E. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[CrossRef]

Sparen, A.

St, P.

Stamm, H.

Stentz, A. J.

Sterenborg, H. J. C. M.

Stroszczynski, C.

Svanberg, S.

Svensson, T.

Swartling, J.

Tamura, M.

Y. Nomura, O. Hazeki, M. Tamura, “Relationship between time-resolved and non-time-resolved Beer–Lambert law in turbid media,” Phys. Med. Biol. 42, 1009–1022 (1997).
[CrossRef] [PubMed]

Taroni, P.

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J. M. Tualle, H. L. Nghiem, E. Tinet, S. Avrillier, M. Whelan, H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt. 44, 2104–2114 (2005).
[CrossRef] [PubMed]

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomed. Opt. 9, 1143–1151 (2004).
[CrossRef] [PubMed]

P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, R. Cubeddu, “In vivo absorption and scattering spectroscopy of biological tissues,” Photochem. Photobiol. Sci. 2, 124–129 (2003).
[CrossRef] [PubMed]

A. Pifferi, P. Taroni, A. Torricelli, F. Messina, R. Cubeddu, G. Danesini, “Four-wavelength time-resolved optical mammography in the 680–980-nm range,” Opt. Lett. 28, 1138–1140 (2003).
[CrossRef] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: an application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874–876 (1999).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996).
[CrossRef] [PubMed]

Tinet, E.

Torricelli, A.

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J. M. Tualle, H. L. Nghiem, E. Tinet, S. Avrillier, M. Whelan, H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt. 44, 2104–2114 (2005).
[CrossRef] [PubMed]

A. Bassi, J. Swartling, C. D’Andrea, A. Pifferi, A. Torricelli, R. Cubeddu, “Time-resolved spectrophotometer for turbid media based on supercontinuum generation in a photonic crystal fiber,” Opt. Lett. 29, 2405–2407 (2004).
[CrossRef] [PubMed]

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomed. Opt. 9, 1143–1151 (2004).
[CrossRef] [PubMed]

A. Pifferi, P. Taroni, A. Torricelli, F. Messina, R. Cubeddu, G. Danesini, “Four-wavelength time-resolved optical mammography in the 680–980-nm range,” Opt. Lett. 28, 1138–1140 (2003).
[CrossRef] [PubMed]

C. D’Andrea, D. Comelli, A. Pifferi, A. Torricelli, G. Valentini, R. Cubeddu, “Time-resolved optical imaging through turbid media using a fast data acquisition system based on a gated CCD camera,” J. Phys. D 36, 1675–1681 (2003).
[CrossRef]

P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, R. Cubeddu, “In vivo absorption and scattering spectroscopy of biological tissues,” Photochem. Photobiol. Sci. 2, 124–129 (2003).
[CrossRef] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: an application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874–876 (1999).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996).
[CrossRef] [PubMed]

Tromberg, B. J.

Tualle, J. M.

Valentini, G.

C. D’Andrea, D. Comelli, A. Pifferi, A. Torricelli, G. Valentini, R. Cubeddu, “Time-resolved optical imaging through turbid media using a fast data acquisition system based on a gated CCD camera,” J. Phys. D 36, 1675–1681 (2003).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: an application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874–876 (1999).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996).
[CrossRef] [PubMed]

van Veen, R. L. P.

Wabnitz, H.

Wadsworth, W. J.

Whelan, M.

Windeler, R. S.

Yodh, A. G.

V. Ntziachristos, X. H. Ma, A. G. Yodh, B. Chance, “Multichannel photon counting instrument for spatially resolved near infrared spectroscopy,” Rev. Sci. Instrum. 70, 193–201 (1999).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: an application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874–876 (1999).
[CrossRef]

Appl. Spectrosc. (1)

IEEE Trans. Biomed. Eng. (1)

S. L. Jacques, “Time-resolved reflectance spectroscopy in turbid tissues,” IEEE Trans. Biomed. Eng. 36, 1155–1161 (1989).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomed. Opt. 9, 1143–1151 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

C. D’Andrea, D. Comelli, A. Pifferi, A. Torricelli, G. Valentini, R. Cubeddu, “Time-resolved optical imaging through turbid media using a fast data acquisition system based on a gated CCD camera,” J. Phys. D 36, 1675–1681 (2003).
[CrossRef]

Med. Phys. (1)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (4)

Photochem. Photobiol. Sci. (1)

P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, R. Cubeddu, “In vivo absorption and scattering spectroscopy of biological tissues,” Photochem. Photobiol. Sci. 2, 124–129 (2003).
[CrossRef] [PubMed]

Phys. Med. Biol. (3)

R. Doornbos, R. Lang, M. Aalders, F. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999).
[CrossRef] [PubMed]

J. C. Hebden, S. R. Arridge, D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
[CrossRef] [PubMed]

Y. Nomura, O. Hazeki, M. Tamura, “Relationship between time-resolved and non-time-resolved Beer–Lambert law in turbid media,” Phys. Med. Biol. 42, 1009–1022 (1997).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (2)

V. Ntziachristos, X. H. Ma, A. G. Yodh, B. Chance, “Multichannel photon counting instrument for spatially resolved near infrared spectroscopy,” Rev. Sci. Instrum. 70, 193–201 (1999).
[CrossRef]

F. E. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[CrossRef]

Other (4)

E. M. C. Hillman, “Experimental and theoretical investigations of near infrared tomographic imaging methods and clinical applications,” Ph.D. dissertation (University College London, London, UK, 2002).

E. Antonini, M. Brunori, Hemoglobin and Moglobin in Their Reactions with Ligands (North-Holland, Amsterdam, 1971).

J. Swartling, “Biomedical and atmospheric applications of optical spectroscopy in scattering media,” Ph.D. dissertation (Lund Institute of Technology, Lund, Sweden, 2002).

W. Becker, A. Bergmann, G. Biscotti, C. Biskup, “Fluorescence lifetime imaging by multi-detector TCSPC,” in OSA Biomedical Topical Meetings on CD-ROM, OSA Technical Digest, WD1 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of the setup.

Fig. 2
Fig. 2

Absorption and scattering spectra for one phantom. Comparison between the TRS-PCF and TRS-SEQ systems.

Fig. 3
Fig. 3

Results of the accuracy assessment at 695 nm. Groups of markers with interconnecting lines indicate the results of phantoms with nominally identical scattering properties. The intersecting points of the grid lines represent the conventionally true values.

Fig. 4
Fig. 4

Linearity plots at 695 nm. Letters A–D indicate phantoms with increasing scattering, and numerals 1–8 indicate phantoms with increasing absorption. (a) Measured μa versus conventionally true μa. (b) Measured μa versus conventionally true μ s . (c) Measured μ s versus conventionally true μa. (d) Measured μ s versus conventionally true μ s .

Fig. 5
Fig. 5

Noise plots at 695 nm. (a) Coefficient of variation for μa and (b) coefficient of variation for μ s . The vertical lines indicate the energy corresponding to 104, 105, and 106 measured photon counts.

Fig. 6
Fig. 6

Stability at 695 nm during 18 min.

Fig. 7
Fig. 7

In vivo absorption and scattering spectra from the arm of a volunteer before and after 5 min of arterial occlusion. Markers indicate measurements; lines represent fitted spectral components for μa, and scattering power law for μ s .

Fig. 8
Fig. 8

Absorption coefficient at five different wavelengths, monitored during arterial occlusion. Occlusion was applied between the two points indicated by the vertical lines.

Fig. 9
Fig. 9

Evaluated results for (a) tH and (b) StO2 during arterial occlusion. Occlusion was applied between the two points indicated by the vertical lines. The gray curves represent 3-s acquisition times, and the black curves represent 9-s averaging.

Fig. 10
Fig. 10

Spectrum of the SC, shown in arbitrary units (logarithmic scale). Also shown is the absorption spectrum of hemoglobin (50% oxygen saturation), the quantum efficiency curve of the detector used in this work (R5900U-01), and the quantum efficiency curves of two other potentially useful detectors (H7260-20 and H7422-60).

Metrics