Abstract

We report the delivery of high-energy nanosecond pulses (~65 ns pulse width) from a high-repetition-rate (up to 100 kHz) Q-switched Nd:YAG laser through the fundamental mode of a hollow-core photonic crystal fiber (HC-PCF) at 1064 nm. The guided mode in the HC-PCF has a low overlap with the glass, allowing delivery of pulses with energies above those attainable with other fibers. Energies greater than 0.5 mJ were delivered in a single spatial mode through the hollow-core fiber, providing the pulse energy and high beam quality required for micromachining of metals. Practical micromachining of a metal sheet by fiber delivery has been demonstrated.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Kuhn, I. J. Blewett, D. P. Hand, P. French, M. Richmond, J. D. C. Jones, “Optical fibre beam delivery of high-energy laser pulses: beam quality preservation and fibre end-preparation,” Opt. Lasers Eng. 34, 273–288 (2000).
    [CrossRef]
  2. A. Kuhn, P. French, D. P. Hand, I. J. Blewett, M. Richmond, J. D. C. Jones, “Preparation of fiber optics for the delivery of high-energy high-beam-quality Nd:YAG laser pulses,” Appl. Opt. 39, 6136–6143 (2000).
    [CrossRef]
  3. D. Su, A. A. B. Boechat, J. D. C. Jones, “Optimum beam launching conditions for graded-index optical fibers—theory and practice,” IEE Proc. J 140, 221–226 (1993).
  4. T. J. Stephens, “Fibre-optic delivery of high peak power laser pulses for flow measurement,” Ph.D. dissertation (Heriot-Watt University, Edinburgh, UK, 2003).
  5. J. D. Shephard, J. D. C. Jones, D. P. Hand, G. Bouwmans, J. C. Knight, P. St, J. Russell, B. J. Mangan, “High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers,” Opt. Express 12, 717–723 (2004).
    [CrossRef] [PubMed]
  6. B. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, P. St, J. Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference (OFC), Vol. 95 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004), paper PDP24.
  7. F. Rainer, L. J. Atherton, J. H. Campbell, F. D. DeMarco, M. R. Kozolowski, A. J. Morgan, M. C. Staggs, “Four-harmonic database of laser-damage testing,” in Laser-Induced Damage in Optical Materials,H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE1624, 116–127 (1991).
  8. G. Humbert, J. C. Knight, G. Bouwmans, P. St, J. Russell, D. P. Wiliiams, P. J. Roberts, B. J. Mangan, “Hollow core photonic crystal fibers for beam delivery,” Opt. Express 12, 1477–1484 (2004).
    [CrossRef] [PubMed]
  9. T. F. Johnston, “Beam propagation (M-2) measurement made as easy as it gets: the four-cuts method,” Appl. Opt. 37, 4840–4850 (1998).
    [CrossRef]

2004 (2)

2000 (2)

A. Kuhn, I. J. Blewett, D. P. Hand, P. French, M. Richmond, J. D. C. Jones, “Optical fibre beam delivery of high-energy laser pulses: beam quality preservation and fibre end-preparation,” Opt. Lasers Eng. 34, 273–288 (2000).
[CrossRef]

A. Kuhn, P. French, D. P. Hand, I. J. Blewett, M. Richmond, J. D. C. Jones, “Preparation of fiber optics for the delivery of high-energy high-beam-quality Nd:YAG laser pulses,” Appl. Opt. 39, 6136–6143 (2000).
[CrossRef]

1998 (1)

1993 (1)

D. Su, A. A. B. Boechat, J. D. C. Jones, “Optimum beam launching conditions for graded-index optical fibers—theory and practice,” IEE Proc. J 140, 221–226 (1993).

Atherton, L. J.

F. Rainer, L. J. Atherton, J. H. Campbell, F. D. DeMarco, M. R. Kozolowski, A. J. Morgan, M. C. Staggs, “Four-harmonic database of laser-damage testing,” in Laser-Induced Damage in Optical Materials,H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE1624, 116–127 (1991).

Birks, T. A.

B. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, P. St, J. Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference (OFC), Vol. 95 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004), paper PDP24.

Blewett, I. J.

A. Kuhn, I. J. Blewett, D. P. Hand, P. French, M. Richmond, J. D. C. Jones, “Optical fibre beam delivery of high-energy laser pulses: beam quality preservation and fibre end-preparation,” Opt. Lasers Eng. 34, 273–288 (2000).
[CrossRef]

A. Kuhn, P. French, D. P. Hand, I. J. Blewett, M. Richmond, J. D. C. Jones, “Preparation of fiber optics for the delivery of high-energy high-beam-quality Nd:YAG laser pulses,” Appl. Opt. 39, 6136–6143 (2000).
[CrossRef]

Boechat, A. A. B.

D. Su, A. A. B. Boechat, J. D. C. Jones, “Optimum beam launching conditions for graded-index optical fibers—theory and practice,” IEE Proc. J 140, 221–226 (1993).

Bouwmans, G.

Campbell, J. H.

F. Rainer, L. J. Atherton, J. H. Campbell, F. D. DeMarco, M. R. Kozolowski, A. J. Morgan, M. C. Staggs, “Four-harmonic database of laser-damage testing,” in Laser-Induced Damage in Optical Materials,H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE1624, 116–127 (1991).

Couny, F.

B. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, P. St, J. Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference (OFC), Vol. 95 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004), paper PDP24.

Coupland, S.

B. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, P. St, J. Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference (OFC), Vol. 95 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004), paper PDP24.

DeMarco, F. D.

F. Rainer, L. J. Atherton, J. H. Campbell, F. D. DeMarco, M. R. Kozolowski, A. J. Morgan, M. C. Staggs, “Four-harmonic database of laser-damage testing,” in Laser-Induced Damage in Optical Materials,H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE1624, 116–127 (1991).

Farr, L.

B. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, P. St, J. Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference (OFC), Vol. 95 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004), paper PDP24.

Flea, R.

B. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, P. St, J. Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference (OFC), Vol. 95 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004), paper PDP24.

French, P.

A. Kuhn, I. J. Blewett, D. P. Hand, P. French, M. Richmond, J. D. C. Jones, “Optical fibre beam delivery of high-energy laser pulses: beam quality preservation and fibre end-preparation,” Opt. Lasers Eng. 34, 273–288 (2000).
[CrossRef]

A. Kuhn, P. French, D. P. Hand, I. J. Blewett, M. Richmond, J. D. C. Jones, “Preparation of fiber optics for the delivery of high-energy high-beam-quality Nd:YAG laser pulses,” Appl. Opt. 39, 6136–6143 (2000).
[CrossRef]

Hand, D. P.

Humbert, G.

Johnston, T. F.

Jones, J. D. C.

J. D. Shephard, J. D. C. Jones, D. P. Hand, G. Bouwmans, J. C. Knight, P. St, J. Russell, B. J. Mangan, “High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers,” Opt. Express 12, 717–723 (2004).
[CrossRef] [PubMed]

A. Kuhn, I. J. Blewett, D. P. Hand, P. French, M. Richmond, J. D. C. Jones, “Optical fibre beam delivery of high-energy laser pulses: beam quality preservation and fibre end-preparation,” Opt. Lasers Eng. 34, 273–288 (2000).
[CrossRef]

A. Kuhn, P. French, D. P. Hand, I. J. Blewett, M. Richmond, J. D. C. Jones, “Preparation of fiber optics for the delivery of high-energy high-beam-quality Nd:YAG laser pulses,” Appl. Opt. 39, 6136–6143 (2000).
[CrossRef]

D. Su, A. A. B. Boechat, J. D. C. Jones, “Optimum beam launching conditions for graded-index optical fibers—theory and practice,” IEE Proc. J 140, 221–226 (1993).

Knight, J. C.

J. D. Shephard, J. D. C. Jones, D. P. Hand, G. Bouwmans, J. C. Knight, P. St, J. Russell, B. J. Mangan, “High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers,” Opt. Express 12, 717–723 (2004).
[CrossRef] [PubMed]

G. Humbert, J. C. Knight, G. Bouwmans, P. St, J. Russell, D. P. Wiliiams, P. J. Roberts, B. J. Mangan, “Hollow core photonic crystal fibers for beam delivery,” Opt. Express 12, 1477–1484 (2004).
[CrossRef] [PubMed]

B. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, P. St, J. Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference (OFC), Vol. 95 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004), paper PDP24.

Kozolowski, M. R.

F. Rainer, L. J. Atherton, J. H. Campbell, F. D. DeMarco, M. R. Kozolowski, A. J. Morgan, M. C. Staggs, “Four-harmonic database of laser-damage testing,” in Laser-Induced Damage in Optical Materials,H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE1624, 116–127 (1991).

Kuhn, A.

A. Kuhn, I. J. Blewett, D. P. Hand, P. French, M. Richmond, J. D. C. Jones, “Optical fibre beam delivery of high-energy laser pulses: beam quality preservation and fibre end-preparation,” Opt. Lasers Eng. 34, 273–288 (2000).
[CrossRef]

A. Kuhn, P. French, D. P. Hand, I. J. Blewett, M. Richmond, J. D. C. Jones, “Preparation of fiber optics for the delivery of high-energy high-beam-quality Nd:YAG laser pulses,” Appl. Opt. 39, 6136–6143 (2000).
[CrossRef]

Langford, A.

B. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, P. St, J. Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference (OFC), Vol. 95 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004), paper PDP24.

Lawman, M.

B. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, P. St, J. Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference (OFC), Vol. 95 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004), paper PDP24.

Mangan, B.

B. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, P. St, J. Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference (OFC), Vol. 95 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004), paper PDP24.

Mangan, B. J.

Mason, M.

B. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, P. St, J. Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference (OFC), Vol. 95 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004), paper PDP24.

Morgan, A. J.

F. Rainer, L. J. Atherton, J. H. Campbell, F. D. DeMarco, M. R. Kozolowski, A. J. Morgan, M. C. Staggs, “Four-harmonic database of laser-damage testing,” in Laser-Induced Damage in Optical Materials,H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE1624, 116–127 (1991).

Rainer, F.

F. Rainer, L. J. Atherton, J. H. Campbell, F. D. DeMarco, M. R. Kozolowski, A. J. Morgan, M. C. Staggs, “Four-harmonic database of laser-damage testing,” in Laser-Induced Damage in Optical Materials,H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE1624, 116–127 (1991).

Richmond, M.

A. Kuhn, I. J. Blewett, D. P. Hand, P. French, M. Richmond, J. D. C. Jones, “Optical fibre beam delivery of high-energy laser pulses: beam quality preservation and fibre end-preparation,” Opt. Lasers Eng. 34, 273–288 (2000).
[CrossRef]

A. Kuhn, P. French, D. P. Hand, I. J. Blewett, M. Richmond, J. D. C. Jones, “Preparation of fiber optics for the delivery of high-energy high-beam-quality Nd:YAG laser pulses,” Appl. Opt. 39, 6136–6143 (2000).
[CrossRef]

Roberts, P. J.

G. Humbert, J. C. Knight, G. Bouwmans, P. St, J. Russell, D. P. Wiliiams, P. J. Roberts, B. J. Mangan, “Hollow core photonic crystal fibers for beam delivery,” Opt. Express 12, 1477–1484 (2004).
[CrossRef] [PubMed]

B. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, P. St, J. Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference (OFC), Vol. 95 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004), paper PDP24.

Russell, J.

G. Humbert, J. C. Knight, G. Bouwmans, P. St, J. Russell, D. P. Wiliiams, P. J. Roberts, B. J. Mangan, “Hollow core photonic crystal fibers for beam delivery,” Opt. Express 12, 1477–1484 (2004).
[CrossRef] [PubMed]

J. D. Shephard, J. D. C. Jones, D. P. Hand, G. Bouwmans, J. C. Knight, P. St, J. Russell, B. J. Mangan, “High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers,” Opt. Express 12, 717–723 (2004).
[CrossRef] [PubMed]

B. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, P. St, J. Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference (OFC), Vol. 95 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004), paper PDP24.

Sabert, H.

B. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, P. St, J. Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference (OFC), Vol. 95 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004), paper PDP24.

Shephard, J. D.

St, P.

J. D. Shephard, J. D. C. Jones, D. P. Hand, G. Bouwmans, J. C. Knight, P. St, J. Russell, B. J. Mangan, “High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers,” Opt. Express 12, 717–723 (2004).
[CrossRef] [PubMed]

G. Humbert, J. C. Knight, G. Bouwmans, P. St, J. Russell, D. P. Wiliiams, P. J. Roberts, B. J. Mangan, “Hollow core photonic crystal fibers for beam delivery,” Opt. Express 12, 1477–1484 (2004).
[CrossRef] [PubMed]

B. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, P. St, J. Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference (OFC), Vol. 95 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004), paper PDP24.

Staggs, M. C.

F. Rainer, L. J. Atherton, J. H. Campbell, F. D. DeMarco, M. R. Kozolowski, A. J. Morgan, M. C. Staggs, “Four-harmonic database of laser-damage testing,” in Laser-Induced Damage in Optical Materials,H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE1624, 116–127 (1991).

Stephens, T. J.

T. J. Stephens, “Fibre-optic delivery of high peak power laser pulses for flow measurement,” Ph.D. dissertation (Heriot-Watt University, Edinburgh, UK, 2003).

Su, D.

D. Su, A. A. B. Boechat, J. D. C. Jones, “Optimum beam launching conditions for graded-index optical fibers—theory and practice,” IEE Proc. J 140, 221–226 (1993).

Wiliiams, D. P.

Williams, D. P.

B. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, P. St, J. Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference (OFC), Vol. 95 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004), paper PDP24.

Appl. Opt. (2)

IEE Proc. J (1)

D. Su, A. A. B. Boechat, J. D. C. Jones, “Optimum beam launching conditions for graded-index optical fibers—theory and practice,” IEE Proc. J 140, 221–226 (1993).

Opt. Express (2)

Opt. Lasers Eng. (1)

A. Kuhn, I. J. Blewett, D. P. Hand, P. French, M. Richmond, J. D. C. Jones, “Optical fibre beam delivery of high-energy laser pulses: beam quality preservation and fibre end-preparation,” Opt. Lasers Eng. 34, 273–288 (2000).
[CrossRef]

Other (3)

T. J. Stephens, “Fibre-optic delivery of high peak power laser pulses for flow measurement,” Ph.D. dissertation (Heriot-Watt University, Edinburgh, UK, 2003).

B. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, P. St, J. Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference (OFC), Vol. 95 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004), paper PDP24.

F. Rainer, L. J. Atherton, J. H. Campbell, F. D. DeMarco, M. R. Kozolowski, A. J. Morgan, M. C. Staggs, “Four-harmonic database of laser-damage testing,” in Laser-Induced Damage in Optical Materials,H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE1624, 116–127 (1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Scanning-electron micrograph image of a seven-cell defect hollow-core photonic bandgap fiber designed for use at 1064 nm wavelength.

Fig. 2
Fig. 2

Attenuation in the hollow-core photonic bandgap fiber. The minimum attenuation is ~60 dB/km, and the fiber guides over a band of roughly 180 nm width. Inset, the low-loss region shown in greater detail.

Fig. 3
Fig. 3

Temporal pulse profile delivered from a Q-switched Nd:YVO4 laser at 1064 nm and a repetition rate of 15 kHz.

Fig. 4
Fig. 4

False-color far-field image (recorded with nanosecond pulses) at 1064 nm after transmission through 1 m of a seven-cell HC-PCF. Excellent beam quality can be observed. The spatial profile is represented by the white curves.

Fig. 5
Fig. 5

Gray-scale spatial profile of the Q-switched Nd:YVO4 laser at 1064 nm and 15 kHz.

Fig. 6
Fig. 6

Scanning-electron micrograph image of a 19-cell defect hollow-core photonic-bandgap fiber designed for use at 1500 nm wavelength.

Fig. 7
Fig. 7

Optical micrograph showing damage to a seven-cell HC-PCF. The photonic cladding structure is completely ablated by tens of pulses of the order of 200 μJ. The distance between the horizontal and vertical lines is 50 μm.

Fig. 8
Fig. 8

Arrangement for a single-shot experiments with a Q-switched Nd:YAG laser with a 10 ns pulse and a beam splitter cube to attenuate the power.

Fig. 9
Fig. 9

Damage caused to the seven-cell HC-PCF by a single 100 μJ, 10 ns pulse at 1064 nm. The damaged area is considerably larger than the 9.5 μm diameter spot.

Fig. 10
Fig. 10

Gray-scale image of the beam profile at the beam waist formed with a 160 mm focal-length achromat at 1064 nm with 60 ns pulses after transmission through 2 m of HC-PCF fiber. Excellent beam quality can be observed.

Fig. 11
Fig. 11

Arrangement for machining of an aluminum sheet by pulses delivered through the HC-PCF fiber.

Fig. 12
Fig. 12

Raster pattern used for machining of a variety of shapes by use of the HC-PCF fiber output. The laser spot is represented as a gray circle.

Fig. 13
Fig. 13

Groove machined in the surface of the aluminum sheet by a single pass of the focused HC-PCF fiber output.

Fig. 14
Fig. 14

Slot feature machined into the aluminum by repeated raster scans.

Fig. 15
Fig. 15

A variety of patterns machined into the surface of the aluminum sheet by the output from the 19-cell HC-PCF.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

W ( z ) = W 0 [ 1 + ( z λ M 2 / π W 0 2 ) 2 ] 1 / 2 ,

Metrics