Abstract

A closed-cell photothermal detector for aqueous analytes has been evaluated at 254 and 678 nm. We used a detector with a water meniscus as a pressure sensor, whose periodic deflection was measured using a low-finesse optical fiber Fabry–Perot interferometer. Performance was compared with a commercial diode array spectrometer and found to be similar for absorption measurements in nonturbid samples, but the results were affected up to 60 times less by scattered light. Finally the photothermal cell was converted into an integrating cavity using ceramic inserts, showing freedom from scattering-related errors at 678 nm but a degradation in performance at 254 nm.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (Wiley, 1980).
  2. Y.-H. Pao, Optoacoustic Spectroscopy and Detection (Academic, 1977).
  3. J. R. Small, N. S. Foster, J. E. Amonette, T. Autrey, “Listening to colloidal silica samples: simultaneous measurement of absorbed and scattered light using pulsed laser photoacoustics,” Appl. Spectrosc. 54, 1142–1150 (2000).
    [CrossRef]
  4. J. Hodgkinson, M. Johnson, J. P. Dakin, “Photoacoustic detection using the deflection of a water meniscus,” Meas. Sci. Technol. 9, 1316–1323 (1998).
    [CrossRef]
  5. P. Helander, I. Lundström, D. McQueen, “Light scattering effects in photoacoustic spectroscopy,” J. Appl. Phys. 51, 3841–3847 (1980).
    [CrossRef]
  6. J. F. McClelland, R. N. Kniseley, “Photoacoustic spectroscopy with condensed samples,” Appl. Opt. 15, 2658–2663 (1976).
    [CrossRef] [PubMed]
  7. J. D. Spear, R. E. Russo, R. J. Silva, “Collinear photothermal defection spectroscopy with light-scattering samples,” Appl. Opt. 29, 4225–4234 (1990).
    [CrossRef] [PubMed]
  8. J. B. Thorne, D. R. Bobbitt, “Comparison of Beer’s law and thermal lens techniques for absorption measurements under conditions of high scattering backgrounds,” Appl. Spectrosc. 47, 360–363 (1993).
    [CrossRef]
  9. J. Hodgkinson, M. Johnson, J. P. Dakin, “Photothermal detection of trace optical absorption in water by use of visible-light-emitting diodes,” Appl. Opt. 37, 7320–7326 (1998).
    [CrossRef]
  10. E. S. Fry, G. W. Kattawar, R. M. Pope, “Integrating cavity absorption meter,” Appl. Opt. 31, 2055–2065 (1992).
    [CrossRef] [PubMed]
  11. I. Fecht, M. Johnson, “Non-contact, scattering-independent water absorption measurement using a falling stream and integrating sphere,” Meas. Sci. Technol. 10, 612–618 (1999).
    [CrossRef]
  12. A. Yarai, Y. Okamoto, T. Nakanishi, “High-sensitivity photothermal radiometry measurement using a mirrored liquid sample vessel for multireflection of a pumping beam,” Rev. Sci. Instrum. 74, 652–654 (2003).
    [CrossRef]
  13. G. F. Lothian, F. P. Chappell, “Transmission of light through suspensions,” J. Appl. Chem. 1, 475–482 (1951).
    [CrossRef]
  14. J. L. Santos, A. P. Leite, D. A. Jackson, “Optical fiber sensing with a low-finesse Fabry–Perot cavity,” Appl. Opt. 31, 7361–7366 (1992).
    [CrossRef] [PubMed]
  15. J. Hodgkinson, M. Johnson, J. P. Dakin, “Comparison of self-referencing techniques for photothermal detection of trace compounds in water,” Sensor Actuators B 67, 227–234 (2000).
    [CrossRef]
  16. Elgastat Option 4 water deioniser Operators Handbook (Elga Ltd., 1994).
  17. S. E. Braslavsky, G. E. Heibel, “Time-resolved photothermal and photoacoustic methods applied to photoinduced processes in solution,” Chem. Rev. 92, 1381–1410 (1992).
    [CrossRef]
  18. K. Papacosta, “Turbidity calibration standards evaluated from a different perspective,” in Proceedings of the Federal Interagency Workshop on Turbidity and other Sediment Surrogates, U.S. Geological Survey Circular 1250 (U.S. Geological Survey, 2002).
  19. G. M. Hale, M. R. Querry, “Optical constants of water in the 200-nm to 200-µm wavelength region,” Appl. Opt. 12, 555–563 (1973).
    [CrossRef] [PubMed]
  20. C. K. N. Patel, A. C. Tam, “Pulsed optoacoustic spectroscopy of condensed matter,” Rev. Mod. Phys. 53, 517–550 (1981).
    [CrossRef]
  21. D. S. Goodman, “Machinable glass ceramic: a useful optical material,” Appl. Opt. 25, 1726 (1986).
    [CrossRef] [PubMed]
  22. L. G. Rosengren, “Optimal optoacoustic detector design,” Appl. Opt. 14, 1960–1976 (1975).
    [CrossRef] [PubMed]

2003

A. Yarai, Y. Okamoto, T. Nakanishi, “High-sensitivity photothermal radiometry measurement using a mirrored liquid sample vessel for multireflection of a pumping beam,” Rev. Sci. Instrum. 74, 652–654 (2003).
[CrossRef]

2000

J. Hodgkinson, M. Johnson, J. P. Dakin, “Comparison of self-referencing techniques for photothermal detection of trace compounds in water,” Sensor Actuators B 67, 227–234 (2000).
[CrossRef]

J. R. Small, N. S. Foster, J. E. Amonette, T. Autrey, “Listening to colloidal silica samples: simultaneous measurement of absorbed and scattered light using pulsed laser photoacoustics,” Appl. Spectrosc. 54, 1142–1150 (2000).
[CrossRef]

1999

I. Fecht, M. Johnson, “Non-contact, scattering-independent water absorption measurement using a falling stream and integrating sphere,” Meas. Sci. Technol. 10, 612–618 (1999).
[CrossRef]

1998

J. Hodgkinson, M. Johnson, J. P. Dakin, “Photothermal detection of trace optical absorption in water by use of visible-light-emitting diodes,” Appl. Opt. 37, 7320–7326 (1998).
[CrossRef]

J. Hodgkinson, M. Johnson, J. P. Dakin, “Photoacoustic detection using the deflection of a water meniscus,” Meas. Sci. Technol. 9, 1316–1323 (1998).
[CrossRef]

1993

1992

1990

1986

1981

C. K. N. Patel, A. C. Tam, “Pulsed optoacoustic spectroscopy of condensed matter,” Rev. Mod. Phys. 53, 517–550 (1981).
[CrossRef]

1980

P. Helander, I. Lundström, D. McQueen, “Light scattering effects in photoacoustic spectroscopy,” J. Appl. Phys. 51, 3841–3847 (1980).
[CrossRef]

1976

1975

1973

1951

G. F. Lothian, F. P. Chappell, “Transmission of light through suspensions,” J. Appl. Chem. 1, 475–482 (1951).
[CrossRef]

Amonette, J. E.

Autrey, T.

Bobbitt, D. R.

Braslavsky, S. E.

S. E. Braslavsky, G. E. Heibel, “Time-resolved photothermal and photoacoustic methods applied to photoinduced processes in solution,” Chem. Rev. 92, 1381–1410 (1992).
[CrossRef]

Chappell, F. P.

G. F. Lothian, F. P. Chappell, “Transmission of light through suspensions,” J. Appl. Chem. 1, 475–482 (1951).
[CrossRef]

Dakin, J. P.

J. Hodgkinson, M. Johnson, J. P. Dakin, “Comparison of self-referencing techniques for photothermal detection of trace compounds in water,” Sensor Actuators B 67, 227–234 (2000).
[CrossRef]

J. Hodgkinson, M. Johnson, J. P. Dakin, “Photoacoustic detection using the deflection of a water meniscus,” Meas. Sci. Technol. 9, 1316–1323 (1998).
[CrossRef]

J. Hodgkinson, M. Johnson, J. P. Dakin, “Photothermal detection of trace optical absorption in water by use of visible-light-emitting diodes,” Appl. Opt. 37, 7320–7326 (1998).
[CrossRef]

Fecht, I.

I. Fecht, M. Johnson, “Non-contact, scattering-independent water absorption measurement using a falling stream and integrating sphere,” Meas. Sci. Technol. 10, 612–618 (1999).
[CrossRef]

Foster, N. S.

Fry, E. S.

Goodman, D. S.

Hale, G. M.

Heibel, G. E.

S. E. Braslavsky, G. E. Heibel, “Time-resolved photothermal and photoacoustic methods applied to photoinduced processes in solution,” Chem. Rev. 92, 1381–1410 (1992).
[CrossRef]

Helander, P.

P. Helander, I. Lundström, D. McQueen, “Light scattering effects in photoacoustic spectroscopy,” J. Appl. Phys. 51, 3841–3847 (1980).
[CrossRef]

Hodgkinson, J.

J. Hodgkinson, M. Johnson, J. P. Dakin, “Comparison of self-referencing techniques for photothermal detection of trace compounds in water,” Sensor Actuators B 67, 227–234 (2000).
[CrossRef]

J. Hodgkinson, M. Johnson, J. P. Dakin, “Photoacoustic detection using the deflection of a water meniscus,” Meas. Sci. Technol. 9, 1316–1323 (1998).
[CrossRef]

J. Hodgkinson, M. Johnson, J. P. Dakin, “Photothermal detection of trace optical absorption in water by use of visible-light-emitting diodes,” Appl. Opt. 37, 7320–7326 (1998).
[CrossRef]

Jackson, D. A.

Johnson, M.

J. Hodgkinson, M. Johnson, J. P. Dakin, “Comparison of self-referencing techniques for photothermal detection of trace compounds in water,” Sensor Actuators B 67, 227–234 (2000).
[CrossRef]

I. Fecht, M. Johnson, “Non-contact, scattering-independent water absorption measurement using a falling stream and integrating sphere,” Meas. Sci. Technol. 10, 612–618 (1999).
[CrossRef]

J. Hodgkinson, M. Johnson, J. P. Dakin, “Photoacoustic detection using the deflection of a water meniscus,” Meas. Sci. Technol. 9, 1316–1323 (1998).
[CrossRef]

J. Hodgkinson, M. Johnson, J. P. Dakin, “Photothermal detection of trace optical absorption in water by use of visible-light-emitting diodes,” Appl. Opt. 37, 7320–7326 (1998).
[CrossRef]

Kattawar, G. W.

Kniseley, R. N.

Leite, A. P.

Lothian, G. F.

G. F. Lothian, F. P. Chappell, “Transmission of light through suspensions,” J. Appl. Chem. 1, 475–482 (1951).
[CrossRef]

Lundström, I.

P. Helander, I. Lundström, D. McQueen, “Light scattering effects in photoacoustic spectroscopy,” J. Appl. Phys. 51, 3841–3847 (1980).
[CrossRef]

McClelland, J. F.

McQueen, D.

P. Helander, I. Lundström, D. McQueen, “Light scattering effects in photoacoustic spectroscopy,” J. Appl. Phys. 51, 3841–3847 (1980).
[CrossRef]

Nakanishi, T.

A. Yarai, Y. Okamoto, T. Nakanishi, “High-sensitivity photothermal radiometry measurement using a mirrored liquid sample vessel for multireflection of a pumping beam,” Rev. Sci. Instrum. 74, 652–654 (2003).
[CrossRef]

Okamoto, Y.

A. Yarai, Y. Okamoto, T. Nakanishi, “High-sensitivity photothermal radiometry measurement using a mirrored liquid sample vessel for multireflection of a pumping beam,” Rev. Sci. Instrum. 74, 652–654 (2003).
[CrossRef]

Pao, Y.-H.

Y.-H. Pao, Optoacoustic Spectroscopy and Detection (Academic, 1977).

Papacosta, K.

K. Papacosta, “Turbidity calibration standards evaluated from a different perspective,” in Proceedings of the Federal Interagency Workshop on Turbidity and other Sediment Surrogates, U.S. Geological Survey Circular 1250 (U.S. Geological Survey, 2002).

Patel, C. K. N.

C. K. N. Patel, A. C. Tam, “Pulsed optoacoustic spectroscopy of condensed matter,” Rev. Mod. Phys. 53, 517–550 (1981).
[CrossRef]

Pope, R. M.

Querry, M. R.

Rosencwaig, A.

A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (Wiley, 1980).

Rosengren, L. G.

Russo, R. E.

Santos, J. L.

Silva, R. J.

Small, J. R.

Spear, J. D.

Tam, A. C.

C. K. N. Patel, A. C. Tam, “Pulsed optoacoustic spectroscopy of condensed matter,” Rev. Mod. Phys. 53, 517–550 (1981).
[CrossRef]

Thorne, J. B.

Yarai, A.

A. Yarai, Y. Okamoto, T. Nakanishi, “High-sensitivity photothermal radiometry measurement using a mirrored liquid sample vessel for multireflection of a pumping beam,” Rev. Sci. Instrum. 74, 652–654 (2003).
[CrossRef]

Appl. Opt.

Appl. Spectrosc.

Chem. Rev.

S. E. Braslavsky, G. E. Heibel, “Time-resolved photothermal and photoacoustic methods applied to photoinduced processes in solution,” Chem. Rev. 92, 1381–1410 (1992).
[CrossRef]

J. Appl. Chem.

G. F. Lothian, F. P. Chappell, “Transmission of light through suspensions,” J. Appl. Chem. 1, 475–482 (1951).
[CrossRef]

J. Appl. Phys.

P. Helander, I. Lundström, D. McQueen, “Light scattering effects in photoacoustic spectroscopy,” J. Appl. Phys. 51, 3841–3847 (1980).
[CrossRef]

Meas. Sci. Technol.

I. Fecht, M. Johnson, “Non-contact, scattering-independent water absorption measurement using a falling stream and integrating sphere,” Meas. Sci. Technol. 10, 612–618 (1999).
[CrossRef]

J. Hodgkinson, M. Johnson, J. P. Dakin, “Photoacoustic detection using the deflection of a water meniscus,” Meas. Sci. Technol. 9, 1316–1323 (1998).
[CrossRef]

Rev. Mod. Phys.

C. K. N. Patel, A. C. Tam, “Pulsed optoacoustic spectroscopy of condensed matter,” Rev. Mod. Phys. 53, 517–550 (1981).
[CrossRef]

Rev. Sci. Instrum.

A. Yarai, Y. Okamoto, T. Nakanishi, “High-sensitivity photothermal radiometry measurement using a mirrored liquid sample vessel for multireflection of a pumping beam,” Rev. Sci. Instrum. 74, 652–654 (2003).
[CrossRef]

Sensor Actuators B

J. Hodgkinson, M. Johnson, J. P. Dakin, “Comparison of self-referencing techniques for photothermal detection of trace compounds in water,” Sensor Actuators B 67, 227–234 (2000).
[CrossRef]

Other

Elgastat Option 4 water deioniser Operators Handbook (Elga Ltd., 1994).

K. Papacosta, “Turbidity calibration standards evaluated from a different perspective,” in Proceedings of the Federal Interagency Workshop on Turbidity and other Sediment Surrogates, U.S. Geological Survey Circular 1250 (U.S. Geological Survey, 2002).

A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (Wiley, 1980).

Y.-H. Pao, Optoacoustic Spectroscopy and Detection (Academic, 1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic diagram of the PT detector.

Fig. 2
Fig. 2

Experimental configuration for PT detection.

Fig. 3
Fig. 3

Absorption and scattering of KMnO4 in aqueous solution and a suspension of silica powder, both taken with a diode array spectrometer using a 4 cm cell, against a DI water blank.

Fig. 4
Fig. 4

Absorption of aqueous solutions of KMnO4 taken with a diode array spectrometer with a 4 cm path-length cell against a DI water blank. (a) 254 nm, (b) 678 nm.

Fig. 5
Fig. 5

PT signals resulting from absorption of light by KMnO4 solutions from the UV lamp and the red laser diode. (a) and (c) Raw data. The dashed lines show the mean signal for a DI water blank. (b) and (d) Following subtraction of the mean signal for DI water (expanded scale). The dashed lines show 1 standard deviation in the signals for a DI water blank.

Fig. 6
Fig. 6

Effect of turbidity on (a) the scattering coefficient s measured with the diode array spectrometer and (b) the magnitude of the PT signals.

Fig. 7
Fig. 7

(a) False-positive absorption results (or scattering coefficient) of turbid samples measured with a PT detector. (b) Ratio of scattering coefficient s measured with the diode array spectrophotometer to the false-positive measurement made with the PT cell.

Fig. 8
Fig. 8

Macor sleeve insert and end pieces used to convert the cell into an integrating cavity.

Fig. 9
Fig. 9

PT signals resulting from absorption of light from the red laser diode by KMnO4 solutions inside the integrating cell. (a) Raw data, (b) following subtraction of the mean signal for DI water.

Fig. 10
Fig. 10

PT signals resulting from absorption of UV light by KMnO4 solutions plotted on the same scale as Fig. 9 for comparison. The results indicate a complete lack of sensitivity to additional UV absorption by KMnO4 for the integrating cell.

Fig. 11
Fig. 11

Effect of scattering on the magnitude of PT signals inside the integrating cavity.

Fig. 12
Fig. 12

Improvement in tolerance to analyte turbidity at 678 nm by use of the integrating cavity. (a) False-positive absorption coefficient (s) for turbid samples. (b) Ratio of the magnitude of false-positive signals for the spectrometer to the magnitude of the corresponding PT signals.

Tables (1)

Tables Icon

Table 1 Rms PT Meniscus Deflection for Excitation in a Highly Turbid Sample and as a Result of Absorption at the Cell Sidewall

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I = I 0 [ 1 10 ( α + s ) L ] ,
Δ h E = β a 2 4 C p ρ γ 1 ( V c χ + π a 4 8 γ ) ,
ϕ = ϕ 0 + A cos ( 4 π d λ ) ,
δ d = δ ϕ λ 4 π A .
Δ h = ( 0.78 ± 0.07 ) nm PT signal PZT signal .

Metrics