Abstract

Polarization characteristics of signals of a monostatic lidar intended for sensing of homogeneous ice crystal clouds are calculated by the Monte Carlo method. Clouds are modeled as monodisperse ensembles of randomly oriented hexagonal ice crystals. The polarization state of multiply scattered lidar signal components is analyzed for different scattering orders depending on the crystal shapes and sizes as well as on the optical and geometrical conditions of observation. Light-scattering phase matrices (SPMs), calculated by the beam splitting method (BSM), are used as input data for solving the vector radiative transfer equation. The principles of the BSM method are briefly described, and the SPM components are given for hexagonal ice plates and columns of different sizes and linearly polarized incident radiation with the wavelength λ = 0.55 µm.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Mazin, A. Kh. Khrgian, I. M. Imyanitov, Clouds and the Cloudy Atmosphere (Gidrometeoizdat, 1989).
  2. K. N. Liou, “Influence of cirrus clouds on weather and climate processes: a global perspective,” Mon. Weather Rev. 114, 1167–1199 (1986).
    [CrossRef]
  3. V. P. Dugin, S. O. Mirumyants, “Light scattering matrices of artificial crystal clouds,” Izv. Akad. Nauk SSSR Fiz. Atmos. Okeana 12, 988–991 (1976).
  4. O. A. Volkovitskii, L. N. Pavlova, A. G. Petrushin, Optical Properties of Crystal Clouds (Gidrometeoizdat, 1984).
  5. K. Sassen, K. N. Liou, “Scattering of polarized laser light by water droplet, mixed phase, and ice crystal clouds. Part I: angular scattering patterns,” J. Atmos. Sci. 36, 838–851 (1979).
    [CrossRef]
  6. A. J. Heymsfield, C. M. R. Platt, “A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content,” J. Atmos. Sci. 41, 846–855 (1984).
    [CrossRef]
  7. K. Sassen, O. C. Starr, T. Uttal, “Mesoscale and microscale of cirrus clouds: three case studies,” J. Atmos. Sci. 46, 371–396 (1989).
    [CrossRef]
  8. A. J. Heymsfield, G. M. McFarquhar, “High albedos of cirrus in the tropical pacific warm pool: microphysical interpretations from Cepex and from Kwajalein, Marshall Islands,” J. Atmos. Sci. 53, 2424–2451 (1996).
    [CrossRef]
  9. V. Noel, H. Chepfer, G. Ledanois, A. Delaval, H. Flamant, “Classification of particle effective shape ratio in cirrus clouds based on the lidar depolarization ratio,” Appl. Opt. 41, 4225–4256 (2002).
    [CrossRef]
  10. P. N. Fransis, “Some aircraft observations of the scattering properties of ice crystals,” J. Atmos. Sci. 52, 1142–1154 (1995).
    [CrossRef]
  11. Yu. S. Balin, S. V. Samoilova, M. M. Krekova, D. W. Winker, “Retrieval of cloud optical parameters from space-based backscatter lidar data,” Appl. Opt. 38, 6385–6373 (1999).
    [CrossRef]
  12. D. M. Winker, R. H. Couch, M. P. McCormick, “An overview of LITE: NASA’s lidar in space technology experiment,” Proc. IEEE 84, 164–180 (1996).
    [CrossRef]
  13. “Fire Intensive field observation II,” J. Atmos. Sci. 52, 4041–4392 (1995).
    [CrossRef]
  14. M. I. Mishchenko, J. W. Howenier, L. D. Travis, eds., Light Scattering by Nonspherical Particles. Theory, Measurement, and Applications (Academic, 1999).
  15. P. Yang, K. N. Liou, W. P. Arnott, “Extinction efficiency and single-scattering albedo for laboratory and natural cirrus clouds,” J. Geophys. Res. D102, 21825–21835 (1997).
    [CrossRef]
  16. G. G. Macke, K. Sassen, S. Kinne, T. A. Ackermann, “An examination of cirrus cloud characteristics using data from millimeter-wave radar and lidar,” Geophys. Res. Lett. 25, 1133–1136 (1998).
    [CrossRef]
  17. W. N. Chen, C. W. Chiang, J. B. Nee, “Lidar ratio and depolarization ratio for cirrus clouds,” Appl. Opt. 41, 6470–6476 (2002).
    [CrossRef] [PubMed]
  18. B. V. Kaul, I. V. Samokhvalov, “Multiple scattering noise in lidar measurements of matrices of light backscattering by crystal clouds,” Opt. Atmos. Okeana 12, 401–405 (1999).
  19. P. Bruscaglioni, G. Zaccanti, “Multiple scattering in dense media,” in Scattering in Volumes and Surfaces, M. Nieto Vesparions, J. C. Dainty, eds. (Elsevier, 1990).
  20. P. Bruscaglioni, A. Ismaelli, G. Zaccanti, “Simple scaling relationships for calculation of lidar returns from turbid media in multiple scattering regime,” J. Mod. Opt. 39, 1003–1015 (1992).
    [CrossRef]
  21. C. M. R. Platt, “Remote sensing of high clouds. III: Monte Carlo calculations of multiple-scattered lidar returns,” J. Atmos. Sci. 38, 156–167 (1981).
    [CrossRef]
  22. J. Pelon, V. Trouillet, C. Flamant, P. H. Flamant, R. Valentin, “French contribution to E-LITE’94: comparative measurements with the airborne backscatter lidar LEANARDE-1. The European LITE correlative measurements campaign,” in Final Results Workshop Proceedings9–10 November 1995 (IROE-CNR, 1995), pp. 31–36.
  23. L. R. Bissonette, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, A. Cohen, Y. Benayahu, M. Kleiman, S. Egert, C. Flesia, P. Schwendimann, A. V. Starkov, M. Noormohammadian, U. G. Oppel, D. M. Winker, E. P. Zege, I. L. Katsev, I. N. Polonsky, “Lidar multiple scattering from clouds,” Appl. Phys. B 60, 355–362 (1995).
    [CrossRef]
  24. G. M. Krekov, M. M. Krekova, I. V. Samokhvalov, “Structure of spaceborne lidar signals in stratus cloud sounding,” Issled. Zemli Kosm. 6, 77–83 (1986).
  25. V. E. Zuev, G. M. Krekov, M. M. Krekova, G. A. Titov, “Mean characteristics of lidar signals from broken clouds,” Appl. Opt. 26, 3018–3025 (1987).
    [CrossRef] [PubMed]
  26. G. H. Ruppersberg, M. Kerscher, M. Noormohammedian, U. G. Oppel, W. Renger, “The influence of multiple scattering of lidar returns by cirrus clouds and effective inversion algorithm for the extinction coefficient,” Beitr. Phys. Atmos. 70, 93–105 (1997).
  27. E. P. Zege, I. L. Katsev, I. N. Polonsky, “Analitical solution to lidar return signals from clouds with regard to multiple scattering,” Appl. Phys. B 60, 345–353 (1995).
    [CrossRef]
  28. L. R. Bissonette, “Multiple scattering lidar equation,” Appl. Opt. 35, 6449–6463 (1996).
    [CrossRef]
  29. L. R. Bissonette, G. Roy, L. Poutier, S. G. Cober, G. A. Isaac, “Multiple scattering lidar method: test on Monte Carlo simulations and comparisons with in situ measurements,” Appl. Opt. 41, 6307–6324 (2002).
    [CrossRef]
  30. V. V. Veretennikov, A. I. Abramochkin, S. A. Abramochkin, “Experimental research of stratocumulus cloudiness above city of Tomsk with changeable field-of-view lidar,” in 12th International Workshop on Lidar Multiple Scattering Experiments, C. Werner, U. G. Oppel, T. Rother, eds., Proc. SPIE5059, 179–188 (2003).
    [CrossRef]
  31. A. Mannani, C. Flesia, P. Bruskaglioni, A. Ismaelli, “Multiple scattering from Chebyshev particles: Monte Carlo simulations for backscattering in ladar geometry,” Appl. Opt. 35, 7151–7164 (1996).
    [CrossRef]
  32. G. M. Krekov, M. M. Krekova, V. S. Shamanaev, “Laser sensing of a subsurface oceanic layer. II. Polarization characteristics of signal,” Appl. Opt. 37, 1596–1601 (1998).
    [CrossRef]
  33. A. P. Vasil’kov, T. V. Kondranin, E. V. Myasnikov, “Polarization characteristics of a backscattered signal in pulsed sensing of the ocean by a narrow light beam,” Izv. Akad. Nauk SSSR Ser. Fiz. Atmos. Okeana 24, 873–881 (1988).
  34. V. E. Zuev, G. M. Krekov, M. M. Krekova, “Polarization structure of a signal backscattered from water and crystal clouds,” Izv. Akad. Nauk SSSR Ser. Fiz. Atmos. Okeana 19, 595–602 (1983).
  35. G. M. Krekov, M. M. Krekova, “Polarization structure of multiply scattered component in lidar return signals,” Izv. Akad. Nauk SSSR Ser. Fiz. Atmos. Okeana 20, 969–974 (1984).
  36. R. J. Perry, A. J. Hunt, D. R. Huffman, “Experimental determinations of Mueller scattering matrices for nonspherical particles,” Appl. Opt. 17, 2700–2710 (1978).
    [CrossRef] [PubMed]
  37. S. Reichardt, J. Reichardt, “Effect of multiple scattering on depolarization measurements with spaceborne lidars,” Appl. Opt. 42, 3620–3633 (2003).
    [CrossRef] [PubMed]
  38. S. V. Samoilova, Yu. S. Balin, “Spaceborne polarization lidar for determining the optical parameters of cloudiness,” Izv. Akad. Nauk SSSR Fiz. Atmos. Okeana 37, 201–212 (2001).
  39. D. N. Romashov, “Backscattering phase matrix for monodispersed ensembles of ice crystals,” Opt. Atmos. Okeana 12, 392–400 (1999).
  40. D. N. Romashov, “Light scattering by hexagonal ice crystals,” Opt. Atmos. Okeana 14, 116–124 (2001).
  41. D. N. Romashov, “Reflection properties of hexagonal ice crystals,” Opt. Atmos. Okeana 12, 1077–1080 (1999).
  42. Q. Gai, K. N. Liou, “Polarized light scattering by hexagonal ice crystals: theory,” Appl. Opt. 21, 3569–3580 (1982).
    [CrossRef]
  43. A. A. Popov, “Scattering of a plane electromagnetic wave by a translucent flat polyhedron of arbitrary shape,” Deposited at VINITI, No. 8006-84 (1984), 55 pp., http://www.VINITI.ru .
  44. P. Yang, K. N. Liou, “Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals,” Appl. Opt. 35, 6568–6584 (1996).
    [CrossRef] [PubMed]
  45. Y. Takano, K. Jayaweera, “Scattering phase matrix for hexagonal ice crystals computed from ray optics,” Appl. Opt. 24, 3254–3263 (1985).
    [CrossRef] [PubMed]
  46. A. G. Petrushin, “Absorption and scattering of optical radiation by a crystal cloud,” in Fifth International Symposium on Atmospheric and Ocean Optics, V. E. Zuev, G. G. Matvienko, eds., Proc. SPIE3583, 147–154 (1998).
    [CrossRef]
  47. Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds. Part I: single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989).
    [CrossRef]
  48. H. C. Van de Hulst, Light scattering by Small Particles (Wiley, 1957).
  49. M. I. Mishchenko, A. Macke, “Depolarization of light backscattering by randomly oriented nonspherical particles,” Opt. Lett. 20, 1356–1358 (1995).
    [CrossRef] [PubMed]
  50. A. J. Heymsfield, G. M. McFarquhar, “High albedos of cirrus in the tropical Pacific warm pool: microphysical interpretation from CEPEX and from Kwajalein, Marshall Islands,” J. Atmos Sci. 53, 2424–2451 (1996).
    [CrossRef]
  51. C. M. R. Platt, J. D. Spinhirne, W. D. Hart, “Optical and microphysical properties of a cold cirrus cloud: evidence for regions of small ice particles,” J. Geophys. Res. 94, 11151–11164 (1989).
    [CrossRef]
  52. A. Macke, P. N. Francis, G. M. McFarquhar, S. Kinne, “The role of ice particle shapes and size distributions in single scattering properties of cirrus clouds,” J. Atmos. Sci. 55, 2874–2883 (1998).
    [CrossRef]
  53. C. M. R. Platt, S. A. Yang, P. J. Manson, G. R. Patterson, S. C. Marsden, R. T. Austin, J. N. Churnside, “The optical properties of equatorial cirrus observations in the ARM pilot radiation observation experiment,” J. Atmos. Sci. 55, 1977–1996 (1998).
    [CrossRef]
  54. M. Del Guasta, M. Morandi, L. Stefanutti, “One year of cloud lidar data from Dumont D’Urwille (Antarctica) 1. General overview of geometrical and optical properties,” J. Geophys. Res. 98, 18575–18587 (1993).
    [CrossRef]
  55. G. I. Marchuk, G. M. Mikchailov, T. A. Nazaraliev, R. A. Darbinyan, B. A. Kargin, E. P. Elepov, Monte Carlo Method in Atmospheric Optics, Springer Series in Solid-State Sciences, G. I. Marchuk, ed. (Springer-Verlag, 1980), Chap. 5.
    [CrossRef]
  56. V. V. Belov, G. M. Krekov, G. A. Titov, “Some methods of increasing the efficiency of numerical experiments on laser sensing of the atmospheric aerosol,” in Problems of Remote Sensing of the Atmosphere, V. E. Zuev, ed. (Publishing House of the Siberian Branch of the Russian Academy of Sciences, 1975).
  57. I. V. Samokhvalov, V. S. Shamanaev, “Lidar diagnostics of water and crystal clouds,” Izv. Akad. Nauk SSSR Ser. Fiz. Atmos. Okeana 18, 1050–1056 (1982).
  58. K. Sassen, K. N. Liou, “Scattering of polarized light by water droplet, mixed-phase and ice crystal clouds. Part II: angular depolarizing and multiple-scattering behavior,” J. Atmos. Sci. 36, 852–861 (1979).
    [CrossRef]

2003 (1)

2002 (3)

2001 (2)

S. V. Samoilova, Yu. S. Balin, “Spaceborne polarization lidar for determining the optical parameters of cloudiness,” Izv. Akad. Nauk SSSR Fiz. Atmos. Okeana 37, 201–212 (2001).

D. N. Romashov, “Light scattering by hexagonal ice crystals,” Opt. Atmos. Okeana 14, 116–124 (2001).

1999 (4)

D. N. Romashov, “Reflection properties of hexagonal ice crystals,” Opt. Atmos. Okeana 12, 1077–1080 (1999).

D. N. Romashov, “Backscattering phase matrix for monodispersed ensembles of ice crystals,” Opt. Atmos. Okeana 12, 392–400 (1999).

Yu. S. Balin, S. V. Samoilova, M. M. Krekova, D. W. Winker, “Retrieval of cloud optical parameters from space-based backscatter lidar data,” Appl. Opt. 38, 6385–6373 (1999).
[CrossRef]

B. V. Kaul, I. V. Samokhvalov, “Multiple scattering noise in lidar measurements of matrices of light backscattering by crystal clouds,” Opt. Atmos. Okeana 12, 401–405 (1999).

1998 (4)

G. G. Macke, K. Sassen, S. Kinne, T. A. Ackermann, “An examination of cirrus cloud characteristics using data from millimeter-wave radar and lidar,” Geophys. Res. Lett. 25, 1133–1136 (1998).
[CrossRef]

A. Macke, P. N. Francis, G. M. McFarquhar, S. Kinne, “The role of ice particle shapes and size distributions in single scattering properties of cirrus clouds,” J. Atmos. Sci. 55, 2874–2883 (1998).
[CrossRef]

C. M. R. Platt, S. A. Yang, P. J. Manson, G. R. Patterson, S. C. Marsden, R. T. Austin, J. N. Churnside, “The optical properties of equatorial cirrus observations in the ARM pilot radiation observation experiment,” J. Atmos. Sci. 55, 1977–1996 (1998).
[CrossRef]

G. M. Krekov, M. M. Krekova, V. S. Shamanaev, “Laser sensing of a subsurface oceanic layer. II. Polarization characteristics of signal,” Appl. Opt. 37, 1596–1601 (1998).
[CrossRef]

1997 (2)

G. H. Ruppersberg, M. Kerscher, M. Noormohammedian, U. G. Oppel, W. Renger, “The influence of multiple scattering of lidar returns by cirrus clouds and effective inversion algorithm for the extinction coefficient,” Beitr. Phys. Atmos. 70, 93–105 (1997).

P. Yang, K. N. Liou, W. P. Arnott, “Extinction efficiency and single-scattering albedo for laboratory and natural cirrus clouds,” J. Geophys. Res. D102, 21825–21835 (1997).
[CrossRef]

1996 (6)

D. M. Winker, R. H. Couch, M. P. McCormick, “An overview of LITE: NASA’s lidar in space technology experiment,” Proc. IEEE 84, 164–180 (1996).
[CrossRef]

A. J. Heymsfield, G. M. McFarquhar, “High albedos of cirrus in the tropical pacific warm pool: microphysical interpretations from Cepex and from Kwajalein, Marshall Islands,” J. Atmos. Sci. 53, 2424–2451 (1996).
[CrossRef]

A. J. Heymsfield, G. M. McFarquhar, “High albedos of cirrus in the tropical Pacific warm pool: microphysical interpretation from CEPEX and from Kwajalein, Marshall Islands,” J. Atmos Sci. 53, 2424–2451 (1996).
[CrossRef]

L. R. Bissonette, “Multiple scattering lidar equation,” Appl. Opt. 35, 6449–6463 (1996).
[CrossRef]

P. Yang, K. N. Liou, “Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals,” Appl. Opt. 35, 6568–6584 (1996).
[CrossRef] [PubMed]

A. Mannani, C. Flesia, P. Bruskaglioni, A. Ismaelli, “Multiple scattering from Chebyshev particles: Monte Carlo simulations for backscattering in ladar geometry,” Appl. Opt. 35, 7151–7164 (1996).
[CrossRef]

1995 (5)

M. I. Mishchenko, A. Macke, “Depolarization of light backscattering by randomly oriented nonspherical particles,” Opt. Lett. 20, 1356–1358 (1995).
[CrossRef] [PubMed]

E. P. Zege, I. L. Katsev, I. N. Polonsky, “Analitical solution to lidar return signals from clouds with regard to multiple scattering,” Appl. Phys. B 60, 345–353 (1995).
[CrossRef]

P. N. Fransis, “Some aircraft observations of the scattering properties of ice crystals,” J. Atmos. Sci. 52, 1142–1154 (1995).
[CrossRef]

“Fire Intensive field observation II,” J. Atmos. Sci. 52, 4041–4392 (1995).
[CrossRef]

L. R. Bissonette, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, A. Cohen, Y. Benayahu, M. Kleiman, S. Egert, C. Flesia, P. Schwendimann, A. V. Starkov, M. Noormohammadian, U. G. Oppel, D. M. Winker, E. P. Zege, I. L. Katsev, I. N. Polonsky, “Lidar multiple scattering from clouds,” Appl. Phys. B 60, 355–362 (1995).
[CrossRef]

1993 (1)

M. Del Guasta, M. Morandi, L. Stefanutti, “One year of cloud lidar data from Dumont D’Urwille (Antarctica) 1. General overview of geometrical and optical properties,” J. Geophys. Res. 98, 18575–18587 (1993).
[CrossRef]

1992 (1)

P. Bruscaglioni, A. Ismaelli, G. Zaccanti, “Simple scaling relationships for calculation of lidar returns from turbid media in multiple scattering regime,” J. Mod. Opt. 39, 1003–1015 (1992).
[CrossRef]

1989 (3)

K. Sassen, O. C. Starr, T. Uttal, “Mesoscale and microscale of cirrus clouds: three case studies,” J. Atmos. Sci. 46, 371–396 (1989).
[CrossRef]

C. M. R. Platt, J. D. Spinhirne, W. D. Hart, “Optical and microphysical properties of a cold cirrus cloud: evidence for regions of small ice particles,” J. Geophys. Res. 94, 11151–11164 (1989).
[CrossRef]

Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds. Part I: single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989).
[CrossRef]

1988 (1)

A. P. Vasil’kov, T. V. Kondranin, E. V. Myasnikov, “Polarization characteristics of a backscattered signal in pulsed sensing of the ocean by a narrow light beam,” Izv. Akad. Nauk SSSR Ser. Fiz. Atmos. Okeana 24, 873–881 (1988).

1987 (1)

1986 (2)

K. N. Liou, “Influence of cirrus clouds on weather and climate processes: a global perspective,” Mon. Weather Rev. 114, 1167–1199 (1986).
[CrossRef]

G. M. Krekov, M. M. Krekova, I. V. Samokhvalov, “Structure of spaceborne lidar signals in stratus cloud sounding,” Issled. Zemli Kosm. 6, 77–83 (1986).

1985 (1)

1984 (3)

G. M. Krekov, M. M. Krekova, “Polarization structure of multiply scattered component in lidar return signals,” Izv. Akad. Nauk SSSR Ser. Fiz. Atmos. Okeana 20, 969–974 (1984).

A. J. Heymsfield, C. M. R. Platt, “A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content,” J. Atmos. Sci. 41, 846–855 (1984).
[CrossRef]

A. A. Popov, “Scattering of a plane electromagnetic wave by a translucent flat polyhedron of arbitrary shape,” Deposited at VINITI, No. 8006-84 (1984), 55 pp., http://www.VINITI.ru .

1983 (1)

V. E. Zuev, G. M. Krekov, M. M. Krekova, “Polarization structure of a signal backscattered from water and crystal clouds,” Izv. Akad. Nauk SSSR Ser. Fiz. Atmos. Okeana 19, 595–602 (1983).

1982 (2)

I. V. Samokhvalov, V. S. Shamanaev, “Lidar diagnostics of water and crystal clouds,” Izv. Akad. Nauk SSSR Ser. Fiz. Atmos. Okeana 18, 1050–1056 (1982).

Q. Gai, K. N. Liou, “Polarized light scattering by hexagonal ice crystals: theory,” Appl. Opt. 21, 3569–3580 (1982).
[CrossRef]

1981 (1)

C. M. R. Platt, “Remote sensing of high clouds. III: Monte Carlo calculations of multiple-scattered lidar returns,” J. Atmos. Sci. 38, 156–167 (1981).
[CrossRef]

1979 (2)

K. Sassen, K. N. Liou, “Scattering of polarized laser light by water droplet, mixed phase, and ice crystal clouds. Part I: angular scattering patterns,” J. Atmos. Sci. 36, 838–851 (1979).
[CrossRef]

K. Sassen, K. N. Liou, “Scattering of polarized light by water droplet, mixed-phase and ice crystal clouds. Part II: angular depolarizing and multiple-scattering behavior,” J. Atmos. Sci. 36, 852–861 (1979).
[CrossRef]

1978 (1)

1976 (1)

V. P. Dugin, S. O. Mirumyants, “Light scattering matrices of artificial crystal clouds,” Izv. Akad. Nauk SSSR Fiz. Atmos. Okeana 12, 988–991 (1976).

Abramochkin, A. I.

V. V. Veretennikov, A. I. Abramochkin, S. A. Abramochkin, “Experimental research of stratocumulus cloudiness above city of Tomsk with changeable field-of-view lidar,” in 12th International Workshop on Lidar Multiple Scattering Experiments, C. Werner, U. G. Oppel, T. Rother, eds., Proc. SPIE5059, 179–188 (2003).
[CrossRef]

Abramochkin, S. A.

V. V. Veretennikov, A. I. Abramochkin, S. A. Abramochkin, “Experimental research of stratocumulus cloudiness above city of Tomsk with changeable field-of-view lidar,” in 12th International Workshop on Lidar Multiple Scattering Experiments, C. Werner, U. G. Oppel, T. Rother, eds., Proc. SPIE5059, 179–188 (2003).
[CrossRef]

Ackermann, T. A.

G. G. Macke, K. Sassen, S. Kinne, T. A. Ackermann, “An examination of cirrus cloud characteristics using data from millimeter-wave radar and lidar,” Geophys. Res. Lett. 25, 1133–1136 (1998).
[CrossRef]

Arnott, W. P.

P. Yang, K. N. Liou, W. P. Arnott, “Extinction efficiency and single-scattering albedo for laboratory and natural cirrus clouds,” J. Geophys. Res. D102, 21825–21835 (1997).
[CrossRef]

Austin, R. T.

C. M. R. Platt, S. A. Yang, P. J. Manson, G. R. Patterson, S. C. Marsden, R. T. Austin, J. N. Churnside, “The optical properties of equatorial cirrus observations in the ARM pilot radiation observation experiment,” J. Atmos. Sci. 55, 1977–1996 (1998).
[CrossRef]

Balin, Yu. S.

S. V. Samoilova, Yu. S. Balin, “Spaceborne polarization lidar for determining the optical parameters of cloudiness,” Izv. Akad. Nauk SSSR Fiz. Atmos. Okeana 37, 201–212 (2001).

Yu. S. Balin, S. V. Samoilova, M. M. Krekova, D. W. Winker, “Retrieval of cloud optical parameters from space-based backscatter lidar data,” Appl. Opt. 38, 6385–6373 (1999).
[CrossRef]

Belov, V. V.

V. V. Belov, G. M. Krekov, G. A. Titov, “Some methods of increasing the efficiency of numerical experiments on laser sensing of the atmospheric aerosol,” in Problems of Remote Sensing of the Atmosphere, V. E. Zuev, ed. (Publishing House of the Siberian Branch of the Russian Academy of Sciences, 1975).

Benayahu, Y.

L. R. Bissonette, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, A. Cohen, Y. Benayahu, M. Kleiman, S. Egert, C. Flesia, P. Schwendimann, A. V. Starkov, M. Noormohammadian, U. G. Oppel, D. M. Winker, E. P. Zege, I. L. Katsev, I. N. Polonsky, “Lidar multiple scattering from clouds,” Appl. Phys. B 60, 355–362 (1995).
[CrossRef]

Bissonette, L. R.

L. R. Bissonette, G. Roy, L. Poutier, S. G. Cober, G. A. Isaac, “Multiple scattering lidar method: test on Monte Carlo simulations and comparisons with in situ measurements,” Appl. Opt. 41, 6307–6324 (2002).
[CrossRef]

L. R. Bissonette, “Multiple scattering lidar equation,” Appl. Opt. 35, 6449–6463 (1996).
[CrossRef]

L. R. Bissonette, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, A. Cohen, Y. Benayahu, M. Kleiman, S. Egert, C. Flesia, P. Schwendimann, A. V. Starkov, M. Noormohammadian, U. G. Oppel, D. M. Winker, E. P. Zege, I. L. Katsev, I. N. Polonsky, “Lidar multiple scattering from clouds,” Appl. Phys. B 60, 355–362 (1995).
[CrossRef]

Bruscaglioni, P.

L. R. Bissonette, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, A. Cohen, Y. Benayahu, M. Kleiman, S. Egert, C. Flesia, P. Schwendimann, A. V. Starkov, M. Noormohammadian, U. G. Oppel, D. M. Winker, E. P. Zege, I. L. Katsev, I. N. Polonsky, “Lidar multiple scattering from clouds,” Appl. Phys. B 60, 355–362 (1995).
[CrossRef]

P. Bruscaglioni, A. Ismaelli, G. Zaccanti, “Simple scaling relationships for calculation of lidar returns from turbid media in multiple scattering regime,” J. Mod. Opt. 39, 1003–1015 (1992).
[CrossRef]

P. Bruscaglioni, G. Zaccanti, “Multiple scattering in dense media,” in Scattering in Volumes and Surfaces, M. Nieto Vesparions, J. C. Dainty, eds. (Elsevier, 1990).

Bruskaglioni, P.

Chen, W. N.

Chepfer, H.

V. Noel, H. Chepfer, G. Ledanois, A. Delaval, H. Flamant, “Classification of particle effective shape ratio in cirrus clouds based on the lidar depolarization ratio,” Appl. Opt. 41, 4225–4256 (2002).
[CrossRef]

Chiang, C. W.

Churnside, J. N.

C. M. R. Platt, S. A. Yang, P. J. Manson, G. R. Patterson, S. C. Marsden, R. T. Austin, J. N. Churnside, “The optical properties of equatorial cirrus observations in the ARM pilot radiation observation experiment,” J. Atmos. Sci. 55, 1977–1996 (1998).
[CrossRef]

Cober, S. G.

Cohen, A.

L. R. Bissonette, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, A. Cohen, Y. Benayahu, M. Kleiman, S. Egert, C. Flesia, P. Schwendimann, A. V. Starkov, M. Noormohammadian, U. G. Oppel, D. M. Winker, E. P. Zege, I. L. Katsev, I. N. Polonsky, “Lidar multiple scattering from clouds,” Appl. Phys. B 60, 355–362 (1995).
[CrossRef]

Couch, R. H.

D. M. Winker, R. H. Couch, M. P. McCormick, “An overview of LITE: NASA’s lidar in space technology experiment,” Proc. IEEE 84, 164–180 (1996).
[CrossRef]

Darbinyan, R. A.

G. I. Marchuk, G. M. Mikchailov, T. A. Nazaraliev, R. A. Darbinyan, B. A. Kargin, E. P. Elepov, Monte Carlo Method in Atmospheric Optics, Springer Series in Solid-State Sciences, G. I. Marchuk, ed. (Springer-Verlag, 1980), Chap. 5.
[CrossRef]

Del Guasta, M.

M. Del Guasta, M. Morandi, L. Stefanutti, “One year of cloud lidar data from Dumont D’Urwille (Antarctica) 1. General overview of geometrical and optical properties,” J. Geophys. Res. 98, 18575–18587 (1993).
[CrossRef]

Delaval, A.

V. Noel, H. Chepfer, G. Ledanois, A. Delaval, H. Flamant, “Classification of particle effective shape ratio in cirrus clouds based on the lidar depolarization ratio,” Appl. Opt. 41, 4225–4256 (2002).
[CrossRef]

Dugin, V. P.

V. P. Dugin, S. O. Mirumyants, “Light scattering matrices of artificial crystal clouds,” Izv. Akad. Nauk SSSR Fiz. Atmos. Okeana 12, 988–991 (1976).

Egert, S.

L. R. Bissonette, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, A. Cohen, Y. Benayahu, M. Kleiman, S. Egert, C. Flesia, P. Schwendimann, A. V. Starkov, M. Noormohammadian, U. G. Oppel, D. M. Winker, E. P. Zege, I. L. Katsev, I. N. Polonsky, “Lidar multiple scattering from clouds,” Appl. Phys. B 60, 355–362 (1995).
[CrossRef]

Elepov, E. P.

G. I. Marchuk, G. M. Mikchailov, T. A. Nazaraliev, R. A. Darbinyan, B. A. Kargin, E. P. Elepov, Monte Carlo Method in Atmospheric Optics, Springer Series in Solid-State Sciences, G. I. Marchuk, ed. (Springer-Verlag, 1980), Chap. 5.
[CrossRef]

Flamant, C.

J. Pelon, V. Trouillet, C. Flamant, P. H. Flamant, R. Valentin, “French contribution to E-LITE’94: comparative measurements with the airborne backscatter lidar LEANARDE-1. The European LITE correlative measurements campaign,” in Final Results Workshop Proceedings9–10 November 1995 (IROE-CNR, 1995), pp. 31–36.

Flamant, H.

V. Noel, H. Chepfer, G. Ledanois, A. Delaval, H. Flamant, “Classification of particle effective shape ratio in cirrus clouds based on the lidar depolarization ratio,” Appl. Opt. 41, 4225–4256 (2002).
[CrossRef]

Flamant, P. H.

J. Pelon, V. Trouillet, C. Flamant, P. H. Flamant, R. Valentin, “French contribution to E-LITE’94: comparative measurements with the airborne backscatter lidar LEANARDE-1. The European LITE correlative measurements campaign,” in Final Results Workshop Proceedings9–10 November 1995 (IROE-CNR, 1995), pp. 31–36.

Flesia, C.

A. Mannani, C. Flesia, P. Bruskaglioni, A. Ismaelli, “Multiple scattering from Chebyshev particles: Monte Carlo simulations for backscattering in ladar geometry,” Appl. Opt. 35, 7151–7164 (1996).
[CrossRef]

L. R. Bissonette, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, A. Cohen, Y. Benayahu, M. Kleiman, S. Egert, C. Flesia, P. Schwendimann, A. V. Starkov, M. Noormohammadian, U. G. Oppel, D. M. Winker, E. P. Zege, I. L. Katsev, I. N. Polonsky, “Lidar multiple scattering from clouds,” Appl. Phys. B 60, 355–362 (1995).
[CrossRef]

Francis, P. N.

A. Macke, P. N. Francis, G. M. McFarquhar, S. Kinne, “The role of ice particle shapes and size distributions in single scattering properties of cirrus clouds,” J. Atmos. Sci. 55, 2874–2883 (1998).
[CrossRef]

Fransis, P. N.

P. N. Fransis, “Some aircraft observations of the scattering properties of ice crystals,” J. Atmos. Sci. 52, 1142–1154 (1995).
[CrossRef]

Gai, Q.

Hart, W. D.

C. M. R. Platt, J. D. Spinhirne, W. D. Hart, “Optical and microphysical properties of a cold cirrus cloud: evidence for regions of small ice particles,” J. Geophys. Res. 94, 11151–11164 (1989).
[CrossRef]

Heymsfield, A. J.

A. J. Heymsfield, G. M. McFarquhar, “High albedos of cirrus in the tropical pacific warm pool: microphysical interpretations from Cepex and from Kwajalein, Marshall Islands,” J. Atmos. Sci. 53, 2424–2451 (1996).
[CrossRef]

A. J. Heymsfield, G. M. McFarquhar, “High albedos of cirrus in the tropical Pacific warm pool: microphysical interpretation from CEPEX and from Kwajalein, Marshall Islands,” J. Atmos Sci. 53, 2424–2451 (1996).
[CrossRef]

A. J. Heymsfield, C. M. R. Platt, “A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content,” J. Atmos. Sci. 41, 846–855 (1984).
[CrossRef]

Huffman, D. R.

Hunt, A. J.

Imyanitov, I. M.

P. Mazin, A. Kh. Khrgian, I. M. Imyanitov, Clouds and the Cloudy Atmosphere (Gidrometeoizdat, 1989).

Isaac, G. A.

Ismaelli, A.

A. Mannani, C. Flesia, P. Bruskaglioni, A. Ismaelli, “Multiple scattering from Chebyshev particles: Monte Carlo simulations for backscattering in ladar geometry,” Appl. Opt. 35, 7151–7164 (1996).
[CrossRef]

L. R. Bissonette, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, A. Cohen, Y. Benayahu, M. Kleiman, S. Egert, C. Flesia, P. Schwendimann, A. V. Starkov, M. Noormohammadian, U. G. Oppel, D. M. Winker, E. P. Zege, I. L. Katsev, I. N. Polonsky, “Lidar multiple scattering from clouds,” Appl. Phys. B 60, 355–362 (1995).
[CrossRef]

P. Bruscaglioni, A. Ismaelli, G. Zaccanti, “Simple scaling relationships for calculation of lidar returns from turbid media in multiple scattering regime,” J. Mod. Opt. 39, 1003–1015 (1992).
[CrossRef]

Jayaweera, K.

Kargin, B. A.

G. I. Marchuk, G. M. Mikchailov, T. A. Nazaraliev, R. A. Darbinyan, B. A. Kargin, E. P. Elepov, Monte Carlo Method in Atmospheric Optics, Springer Series in Solid-State Sciences, G. I. Marchuk, ed. (Springer-Verlag, 1980), Chap. 5.
[CrossRef]

Katsev, I. L.

L. R. Bissonette, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, A. Cohen, Y. Benayahu, M. Kleiman, S. Egert, C. Flesia, P. Schwendimann, A. V. Starkov, M. Noormohammadian, U. G. Oppel, D. M. Winker, E. P. Zege, I. L. Katsev, I. N. Polonsky, “Lidar multiple scattering from clouds,” Appl. Phys. B 60, 355–362 (1995).
[CrossRef]

E. P. Zege, I. L. Katsev, I. N. Polonsky, “Analitical solution to lidar return signals from clouds with regard to multiple scattering,” Appl. Phys. B 60, 345–353 (1995).
[CrossRef]

Kaul, B. V.

B. V. Kaul, I. V. Samokhvalov, “Multiple scattering noise in lidar measurements of matrices of light backscattering by crystal clouds,” Opt. Atmos. Okeana 12, 401–405 (1999).

Kerscher, M.

G. H. Ruppersberg, M. Kerscher, M. Noormohammedian, U. G. Oppel, W. Renger, “The influence of multiple scattering of lidar returns by cirrus clouds and effective inversion algorithm for the extinction coefficient,” Beitr. Phys. Atmos. 70, 93–105 (1997).

Khrgian, A. Kh.

P. Mazin, A. Kh. Khrgian, I. M. Imyanitov, Clouds and the Cloudy Atmosphere (Gidrometeoizdat, 1989).

Kinne, S.

A. Macke, P. N. Francis, G. M. McFarquhar, S. Kinne, “The role of ice particle shapes and size distributions in single scattering properties of cirrus clouds,” J. Atmos. Sci. 55, 2874–2883 (1998).
[CrossRef]

G. G. Macke, K. Sassen, S. Kinne, T. A. Ackermann, “An examination of cirrus cloud characteristics using data from millimeter-wave radar and lidar,” Geophys. Res. Lett. 25, 1133–1136 (1998).
[CrossRef]

Kleiman, M.

L. R. Bissonette, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, A. Cohen, Y. Benayahu, M. Kleiman, S. Egert, C. Flesia, P. Schwendimann, A. V. Starkov, M. Noormohammadian, U. G. Oppel, D. M. Winker, E. P. Zege, I. L. Katsev, I. N. Polonsky, “Lidar multiple scattering from clouds,” Appl. Phys. B 60, 355–362 (1995).
[CrossRef]

Kondranin, T. V.

A. P. Vasil’kov, T. V. Kondranin, E. V. Myasnikov, “Polarization characteristics of a backscattered signal in pulsed sensing of the ocean by a narrow light beam,” Izv. Akad. Nauk SSSR Ser. Fiz. Atmos. Okeana 24, 873–881 (1988).

Krekov, G. M.

G. M. Krekov, M. M. Krekova, V. S. Shamanaev, “Laser sensing of a subsurface oceanic layer. II. Polarization characteristics of signal,” Appl. Opt. 37, 1596–1601 (1998).
[CrossRef]

V. E. Zuev, G. M. Krekov, M. M. Krekova, G. A. Titov, “Mean characteristics of lidar signals from broken clouds,” Appl. Opt. 26, 3018–3025 (1987).
[CrossRef] [PubMed]

G. M. Krekov, M. M. Krekova, I. V. Samokhvalov, “Structure of spaceborne lidar signals in stratus cloud sounding,” Issled. Zemli Kosm. 6, 77–83 (1986).

G. M. Krekov, M. M. Krekova, “Polarization structure of multiply scattered component in lidar return signals,” Izv. Akad. Nauk SSSR Ser. Fiz. Atmos. Okeana 20, 969–974 (1984).

V. E. Zuev, G. M. Krekov, M. M. Krekova, “Polarization structure of a signal backscattered from water and crystal clouds,” Izv. Akad. Nauk SSSR Ser. Fiz. Atmos. Okeana 19, 595–602 (1983).

V. V. Belov, G. M. Krekov, G. A. Titov, “Some methods of increasing the efficiency of numerical experiments on laser sensing of the atmospheric aerosol,” in Problems of Remote Sensing of the Atmosphere, V. E. Zuev, ed. (Publishing House of the Siberian Branch of the Russian Academy of Sciences, 1975).

Krekova, M. M.

Yu. S. Balin, S. V. Samoilova, M. M. Krekova, D. W. Winker, “Retrieval of cloud optical parameters from space-based backscatter lidar data,” Appl. Opt. 38, 6385–6373 (1999).
[CrossRef]

G. M. Krekov, M. M. Krekova, V. S. Shamanaev, “Laser sensing of a subsurface oceanic layer. II. Polarization characteristics of signal,” Appl. Opt. 37, 1596–1601 (1998).
[CrossRef]

V. E. Zuev, G. M. Krekov, M. M. Krekova, G. A. Titov, “Mean characteristics of lidar signals from broken clouds,” Appl. Opt. 26, 3018–3025 (1987).
[CrossRef] [PubMed]

G. M. Krekov, M. M. Krekova, I. V. Samokhvalov, “Structure of spaceborne lidar signals in stratus cloud sounding,” Issled. Zemli Kosm. 6, 77–83 (1986).

G. M. Krekov, M. M. Krekova, “Polarization structure of multiply scattered component in lidar return signals,” Izv. Akad. Nauk SSSR Ser. Fiz. Atmos. Okeana 20, 969–974 (1984).

V. E. Zuev, G. M. Krekov, M. M. Krekova, “Polarization structure of a signal backscattered from water and crystal clouds,” Izv. Akad. Nauk SSSR Ser. Fiz. Atmos. Okeana 19, 595–602 (1983).

Ledanois, G.

V. Noel, H. Chepfer, G. Ledanois, A. Delaval, H. Flamant, “Classification of particle effective shape ratio in cirrus clouds based on the lidar depolarization ratio,” Appl. Opt. 41, 4225–4256 (2002).
[CrossRef]

Liou, K. N.

P. Yang, K. N. Liou, W. P. Arnott, “Extinction efficiency and single-scattering albedo for laboratory and natural cirrus clouds,” J. Geophys. Res. D102, 21825–21835 (1997).
[CrossRef]

P. Yang, K. N. Liou, “Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals,” Appl. Opt. 35, 6568–6584 (1996).
[CrossRef] [PubMed]

Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds. Part I: single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989).
[CrossRef]

K. N. Liou, “Influence of cirrus clouds on weather and climate processes: a global perspective,” Mon. Weather Rev. 114, 1167–1199 (1986).
[CrossRef]

Q. Gai, K. N. Liou, “Polarized light scattering by hexagonal ice crystals: theory,” Appl. Opt. 21, 3569–3580 (1982).
[CrossRef]

K. Sassen, K. N. Liou, “Scattering of polarized laser light by water droplet, mixed phase, and ice crystal clouds. Part I: angular scattering patterns,” J. Atmos. Sci. 36, 838–851 (1979).
[CrossRef]

K. Sassen, K. N. Liou, “Scattering of polarized light by water droplet, mixed-phase and ice crystal clouds. Part II: angular depolarizing and multiple-scattering behavior,” J. Atmos. Sci. 36, 852–861 (1979).
[CrossRef]

Macke, A.

A. Macke, P. N. Francis, G. M. McFarquhar, S. Kinne, “The role of ice particle shapes and size distributions in single scattering properties of cirrus clouds,” J. Atmos. Sci. 55, 2874–2883 (1998).
[CrossRef]

M. I. Mishchenko, A. Macke, “Depolarization of light backscattering by randomly oriented nonspherical particles,” Opt. Lett. 20, 1356–1358 (1995).
[CrossRef] [PubMed]

Macke, G. G.

G. G. Macke, K. Sassen, S. Kinne, T. A. Ackermann, “An examination of cirrus cloud characteristics using data from millimeter-wave radar and lidar,” Geophys. Res. Lett. 25, 1133–1136 (1998).
[CrossRef]

Mannani, A.

Manson, P. J.

C. M. R. Platt, S. A. Yang, P. J. Manson, G. R. Patterson, S. C. Marsden, R. T. Austin, J. N. Churnside, “The optical properties of equatorial cirrus observations in the ARM pilot radiation observation experiment,” J. Atmos. Sci. 55, 1977–1996 (1998).
[CrossRef]

Marchuk, G. I.

G. I. Marchuk, G. M. Mikchailov, T. A. Nazaraliev, R. A. Darbinyan, B. A. Kargin, E. P. Elepov, Monte Carlo Method in Atmospheric Optics, Springer Series in Solid-State Sciences, G. I. Marchuk, ed. (Springer-Verlag, 1980), Chap. 5.
[CrossRef]

Marsden, S. C.

C. M. R. Platt, S. A. Yang, P. J. Manson, G. R. Patterson, S. C. Marsden, R. T. Austin, J. N. Churnside, “The optical properties of equatorial cirrus observations in the ARM pilot radiation observation experiment,” J. Atmos. Sci. 55, 1977–1996 (1998).
[CrossRef]

Mazin, P.

P. Mazin, A. Kh. Khrgian, I. M. Imyanitov, Clouds and the Cloudy Atmosphere (Gidrometeoizdat, 1989).

McCormick, M. P.

D. M. Winker, R. H. Couch, M. P. McCormick, “An overview of LITE: NASA’s lidar in space technology experiment,” Proc. IEEE 84, 164–180 (1996).
[CrossRef]

McFarquhar, G. M.

A. Macke, P. N. Francis, G. M. McFarquhar, S. Kinne, “The role of ice particle shapes and size distributions in single scattering properties of cirrus clouds,” J. Atmos. Sci. 55, 2874–2883 (1998).
[CrossRef]

A. J. Heymsfield, G. M. McFarquhar, “High albedos of cirrus in the tropical Pacific warm pool: microphysical interpretation from CEPEX and from Kwajalein, Marshall Islands,” J. Atmos Sci. 53, 2424–2451 (1996).
[CrossRef]

A. J. Heymsfield, G. M. McFarquhar, “High albedos of cirrus in the tropical pacific warm pool: microphysical interpretations from Cepex and from Kwajalein, Marshall Islands,” J. Atmos. Sci. 53, 2424–2451 (1996).
[CrossRef]

Mikchailov, G. M.

G. I. Marchuk, G. M. Mikchailov, T. A. Nazaraliev, R. A. Darbinyan, B. A. Kargin, E. P. Elepov, Monte Carlo Method in Atmospheric Optics, Springer Series in Solid-State Sciences, G. I. Marchuk, ed. (Springer-Verlag, 1980), Chap. 5.
[CrossRef]

Mirumyants, S. O.

V. P. Dugin, S. O. Mirumyants, “Light scattering matrices of artificial crystal clouds,” Izv. Akad. Nauk SSSR Fiz. Atmos. Okeana 12, 988–991 (1976).

Mishchenko, M. I.

Morandi, M.

M. Del Guasta, M. Morandi, L. Stefanutti, “One year of cloud lidar data from Dumont D’Urwille (Antarctica) 1. General overview of geometrical and optical properties,” J. Geophys. Res. 98, 18575–18587 (1993).
[CrossRef]

Myasnikov, E. V.

A. P. Vasil’kov, T. V. Kondranin, E. V. Myasnikov, “Polarization characteristics of a backscattered signal in pulsed sensing of the ocean by a narrow light beam,” Izv. Akad. Nauk SSSR Ser. Fiz. Atmos. Okeana 24, 873–881 (1988).

Nazaraliev, T. A.

G. I. Marchuk, G. M. Mikchailov, T. A. Nazaraliev, R. A. Darbinyan, B. A. Kargin, E. P. Elepov, Monte Carlo Method in Atmospheric Optics, Springer Series in Solid-State Sciences, G. I. Marchuk, ed. (Springer-Verlag, 1980), Chap. 5.
[CrossRef]

Nee, J. B.

Noel, V.

V. Noel, H. Chepfer, G. Ledanois, A. Delaval, H. Flamant, “Classification of particle effective shape ratio in cirrus clouds based on the lidar depolarization ratio,” Appl. Opt. 41, 4225–4256 (2002).
[CrossRef]

Noormohammadian, M.

L. R. Bissonette, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, A. Cohen, Y. Benayahu, M. Kleiman, S. Egert, C. Flesia, P. Schwendimann, A. V. Starkov, M. Noormohammadian, U. G. Oppel, D. M. Winker, E. P. Zege, I. L. Katsev, I. N. Polonsky, “Lidar multiple scattering from clouds,” Appl. Phys. B 60, 355–362 (1995).
[CrossRef]

Noormohammedian, M.

G. H. Ruppersberg, M. Kerscher, M. Noormohammedian, U. G. Oppel, W. Renger, “The influence of multiple scattering of lidar returns by cirrus clouds and effective inversion algorithm for the extinction coefficient,” Beitr. Phys. Atmos. 70, 93–105 (1997).

Oppel, U. G.

G. H. Ruppersberg, M. Kerscher, M. Noormohammedian, U. G. Oppel, W. Renger, “The influence of multiple scattering of lidar returns by cirrus clouds and effective inversion algorithm for the extinction coefficient,” Beitr. Phys. Atmos. 70, 93–105 (1997).

L. R. Bissonette, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, A. Cohen, Y. Benayahu, M. Kleiman, S. Egert, C. Flesia, P. Schwendimann, A. V. Starkov, M. Noormohammadian, U. G. Oppel, D. M. Winker, E. P. Zege, I. L. Katsev, I. N. Polonsky, “Lidar multiple scattering from clouds,” Appl. Phys. B 60, 355–362 (1995).
[CrossRef]

Patterson, G. R.

C. M. R. Platt, S. A. Yang, P. J. Manson, G. R. Patterson, S. C. Marsden, R. T. Austin, J. N. Churnside, “The optical properties of equatorial cirrus observations in the ARM pilot radiation observation experiment,” J. Atmos. Sci. 55, 1977–1996 (1998).
[CrossRef]

Pavlova, L. N.

O. A. Volkovitskii, L. N. Pavlova, A. G. Petrushin, Optical Properties of Crystal Clouds (Gidrometeoizdat, 1984).

Pelon, J.

J. Pelon, V. Trouillet, C. Flamant, P. H. Flamant, R. Valentin, “French contribution to E-LITE’94: comparative measurements with the airborne backscatter lidar LEANARDE-1. The European LITE correlative measurements campaign,” in Final Results Workshop Proceedings9–10 November 1995 (IROE-CNR, 1995), pp. 31–36.

Perry, R. J.

Petrushin, A. G.

O. A. Volkovitskii, L. N. Pavlova, A. G. Petrushin, Optical Properties of Crystal Clouds (Gidrometeoizdat, 1984).

A. G. Petrushin, “Absorption and scattering of optical radiation by a crystal cloud,” in Fifth International Symposium on Atmospheric and Ocean Optics, V. E. Zuev, G. G. Matvienko, eds., Proc. SPIE3583, 147–154 (1998).
[CrossRef]

Platt, C. M. R.

C. M. R. Platt, S. A. Yang, P. J. Manson, G. R. Patterson, S. C. Marsden, R. T. Austin, J. N. Churnside, “The optical properties of equatorial cirrus observations in the ARM pilot radiation observation experiment,” J. Atmos. Sci. 55, 1977–1996 (1998).
[CrossRef]

C. M. R. Platt, J. D. Spinhirne, W. D. Hart, “Optical and microphysical properties of a cold cirrus cloud: evidence for regions of small ice particles,” J. Geophys. Res. 94, 11151–11164 (1989).
[CrossRef]

A. J. Heymsfield, C. M. R. Platt, “A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content,” J. Atmos. Sci. 41, 846–855 (1984).
[CrossRef]

C. M. R. Platt, “Remote sensing of high clouds. III: Monte Carlo calculations of multiple-scattered lidar returns,” J. Atmos. Sci. 38, 156–167 (1981).
[CrossRef]

Polonsky, I. N.

E. P. Zege, I. L. Katsev, I. N. Polonsky, “Analitical solution to lidar return signals from clouds with regard to multiple scattering,” Appl. Phys. B 60, 345–353 (1995).
[CrossRef]

L. R. Bissonette, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, A. Cohen, Y. Benayahu, M. Kleiman, S. Egert, C. Flesia, P. Schwendimann, A. V. Starkov, M. Noormohammadian, U. G. Oppel, D. M. Winker, E. P. Zege, I. L. Katsev, I. N. Polonsky, “Lidar multiple scattering from clouds,” Appl. Phys. B 60, 355–362 (1995).
[CrossRef]

Popov, A. A.

A. A. Popov, “Scattering of a plane electromagnetic wave by a translucent flat polyhedron of arbitrary shape,” Deposited at VINITI, No. 8006-84 (1984), 55 pp., http://www.VINITI.ru .

Poutier, L.

Reichardt, J.

Reichardt, S.

Renger, W.

G. H. Ruppersberg, M. Kerscher, M. Noormohammedian, U. G. Oppel, W. Renger, “The influence of multiple scattering of lidar returns by cirrus clouds and effective inversion algorithm for the extinction coefficient,” Beitr. Phys. Atmos. 70, 93–105 (1997).

Romashov, D. N.

D. N. Romashov, “Light scattering by hexagonal ice crystals,” Opt. Atmos. Okeana 14, 116–124 (2001).

D. N. Romashov, “Reflection properties of hexagonal ice crystals,” Opt. Atmos. Okeana 12, 1077–1080 (1999).

D. N. Romashov, “Backscattering phase matrix for monodispersed ensembles of ice crystals,” Opt. Atmos. Okeana 12, 392–400 (1999).

Roy, G.

Ruppersberg, G. H.

G. H. Ruppersberg, M. Kerscher, M. Noormohammedian, U. G. Oppel, W. Renger, “The influence of multiple scattering of lidar returns by cirrus clouds and effective inversion algorithm for the extinction coefficient,” Beitr. Phys. Atmos. 70, 93–105 (1997).

Samoilova, S. V.

S. V. Samoilova, Yu. S. Balin, “Spaceborne polarization lidar for determining the optical parameters of cloudiness,” Izv. Akad. Nauk SSSR Fiz. Atmos. Okeana 37, 201–212 (2001).

Yu. S. Balin, S. V. Samoilova, M. M. Krekova, D. W. Winker, “Retrieval of cloud optical parameters from space-based backscatter lidar data,” Appl. Opt. 38, 6385–6373 (1999).
[CrossRef]

Samokhvalov, I. V.

B. V. Kaul, I. V. Samokhvalov, “Multiple scattering noise in lidar measurements of matrices of light backscattering by crystal clouds,” Opt. Atmos. Okeana 12, 401–405 (1999).

G. M. Krekov, M. M. Krekova, I. V. Samokhvalov, “Structure of spaceborne lidar signals in stratus cloud sounding,” Issled. Zemli Kosm. 6, 77–83 (1986).

I. V. Samokhvalov, V. S. Shamanaev, “Lidar diagnostics of water and crystal clouds,” Izv. Akad. Nauk SSSR Ser. Fiz. Atmos. Okeana 18, 1050–1056 (1982).

Sassen, K.

G. G. Macke, K. Sassen, S. Kinne, T. A. Ackermann, “An examination of cirrus cloud characteristics using data from millimeter-wave radar and lidar,” Geophys. Res. Lett. 25, 1133–1136 (1998).
[CrossRef]

K. Sassen, O. C. Starr, T. Uttal, “Mesoscale and microscale of cirrus clouds: three case studies,” J. Atmos. Sci. 46, 371–396 (1989).
[CrossRef]

K. Sassen, K. N. Liou, “Scattering of polarized light by water droplet, mixed-phase and ice crystal clouds. Part II: angular depolarizing and multiple-scattering behavior,” J. Atmos. Sci. 36, 852–861 (1979).
[CrossRef]

K. Sassen, K. N. Liou, “Scattering of polarized laser light by water droplet, mixed phase, and ice crystal clouds. Part I: angular scattering patterns,” J. Atmos. Sci. 36, 838–851 (1979).
[CrossRef]

Schwendimann, P.

L. R. Bissonette, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, A. Cohen, Y. Benayahu, M. Kleiman, S. Egert, C. Flesia, P. Schwendimann, A. V. Starkov, M. Noormohammadian, U. G. Oppel, D. M. Winker, E. P. Zege, I. L. Katsev, I. N. Polonsky, “Lidar multiple scattering from clouds,” Appl. Phys. B 60, 355–362 (1995).
[CrossRef]

Shamanaev, V. S.

G. M. Krekov, M. M. Krekova, V. S. Shamanaev, “Laser sensing of a subsurface oceanic layer. II. Polarization characteristics of signal,” Appl. Opt. 37, 1596–1601 (1998).
[CrossRef]

I. V. Samokhvalov, V. S. Shamanaev, “Lidar diagnostics of water and crystal clouds,” Izv. Akad. Nauk SSSR Ser. Fiz. Atmos. Okeana 18, 1050–1056 (1982).

Spinhirne, J. D.

C. M. R. Platt, J. D. Spinhirne, W. D. Hart, “Optical and microphysical properties of a cold cirrus cloud: evidence for regions of small ice particles,” J. Geophys. Res. 94, 11151–11164 (1989).
[CrossRef]

Starkov, A. V.

L. R. Bissonette, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, A. Cohen, Y. Benayahu, M. Kleiman, S. Egert, C. Flesia, P. Schwendimann, A. V. Starkov, M. Noormohammadian, U. G. Oppel, D. M. Winker, E. P. Zege, I. L. Katsev, I. N. Polonsky, “Lidar multiple scattering from clouds,” Appl. Phys. B 60, 355–362 (1995).
[CrossRef]

Starr, O. C.

K. Sassen, O. C. Starr, T. Uttal, “Mesoscale and microscale of cirrus clouds: three case studies,” J. Atmos. Sci. 46, 371–396 (1989).
[CrossRef]

Stefanutti, L.

M. Del Guasta, M. Morandi, L. Stefanutti, “One year of cloud lidar data from Dumont D’Urwille (Antarctica) 1. General overview of geometrical and optical properties,” J. Geophys. Res. 98, 18575–18587 (1993).
[CrossRef]

Takano, Y.

Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds. Part I: single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989).
[CrossRef]

Y. Takano, K. Jayaweera, “Scattering phase matrix for hexagonal ice crystals computed from ray optics,” Appl. Opt. 24, 3254–3263 (1985).
[CrossRef] [PubMed]

Titov, G. A.

V. E. Zuev, G. M. Krekov, M. M. Krekova, G. A. Titov, “Mean characteristics of lidar signals from broken clouds,” Appl. Opt. 26, 3018–3025 (1987).
[CrossRef] [PubMed]

V. V. Belov, G. M. Krekov, G. A. Titov, “Some methods of increasing the efficiency of numerical experiments on laser sensing of the atmospheric aerosol,” in Problems of Remote Sensing of the Atmosphere, V. E. Zuev, ed. (Publishing House of the Siberian Branch of the Russian Academy of Sciences, 1975).

Trouillet, V.

J. Pelon, V. Trouillet, C. Flamant, P. H. Flamant, R. Valentin, “French contribution to E-LITE’94: comparative measurements with the airborne backscatter lidar LEANARDE-1. The European LITE correlative measurements campaign,” in Final Results Workshop Proceedings9–10 November 1995 (IROE-CNR, 1995), pp. 31–36.

Uttal, T.

K. Sassen, O. C. Starr, T. Uttal, “Mesoscale and microscale of cirrus clouds: three case studies,” J. Atmos. Sci. 46, 371–396 (1989).
[CrossRef]

Valentin, R.

J. Pelon, V. Trouillet, C. Flamant, P. H. Flamant, R. Valentin, “French contribution to E-LITE’94: comparative measurements with the airborne backscatter lidar LEANARDE-1. The European LITE correlative measurements campaign,” in Final Results Workshop Proceedings9–10 November 1995 (IROE-CNR, 1995), pp. 31–36.

Van de Hulst, H. C.

H. C. Van de Hulst, Light scattering by Small Particles (Wiley, 1957).

Vasil’kov, A. P.

A. P. Vasil’kov, T. V. Kondranin, E. V. Myasnikov, “Polarization characteristics of a backscattered signal in pulsed sensing of the ocean by a narrow light beam,” Izv. Akad. Nauk SSSR Ser. Fiz. Atmos. Okeana 24, 873–881 (1988).

Veretennikov, V. V.

V. V. Veretennikov, A. I. Abramochkin, S. A. Abramochkin, “Experimental research of stratocumulus cloudiness above city of Tomsk with changeable field-of-view lidar,” in 12th International Workshop on Lidar Multiple Scattering Experiments, C. Werner, U. G. Oppel, T. Rother, eds., Proc. SPIE5059, 179–188 (2003).
[CrossRef]

Volkovitskii, O. A.

O. A. Volkovitskii, L. N. Pavlova, A. G. Petrushin, Optical Properties of Crystal Clouds (Gidrometeoizdat, 1984).

Winker, D. M.

D. M. Winker, R. H. Couch, M. P. McCormick, “An overview of LITE: NASA’s lidar in space technology experiment,” Proc. IEEE 84, 164–180 (1996).
[CrossRef]

L. R. Bissonette, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, A. Cohen, Y. Benayahu, M. Kleiman, S. Egert, C. Flesia, P. Schwendimann, A. V. Starkov, M. Noormohammadian, U. G. Oppel, D. M. Winker, E. P. Zege, I. L. Katsev, I. N. Polonsky, “Lidar multiple scattering from clouds,” Appl. Phys. B 60, 355–362 (1995).
[CrossRef]

Winker, D. W.

Yu. S. Balin, S. V. Samoilova, M. M. Krekova, D. W. Winker, “Retrieval of cloud optical parameters from space-based backscatter lidar data,” Appl. Opt. 38, 6385–6373 (1999).
[CrossRef]

Yang, P.

P. Yang, K. N. Liou, W. P. Arnott, “Extinction efficiency and single-scattering albedo for laboratory and natural cirrus clouds,” J. Geophys. Res. D102, 21825–21835 (1997).
[CrossRef]

P. Yang, K. N. Liou, “Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals,” Appl. Opt. 35, 6568–6584 (1996).
[CrossRef] [PubMed]

Yang, S. A.

C. M. R. Platt, S. A. Yang, P. J. Manson, G. R. Patterson, S. C. Marsden, R. T. Austin, J. N. Churnside, “The optical properties of equatorial cirrus observations in the ARM pilot radiation observation experiment,” J. Atmos. Sci. 55, 1977–1996 (1998).
[CrossRef]

Zaccanti, G.

L. R. Bissonette, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, A. Cohen, Y. Benayahu, M. Kleiman, S. Egert, C. Flesia, P. Schwendimann, A. V. Starkov, M. Noormohammadian, U. G. Oppel, D. M. Winker, E. P. Zege, I. L. Katsev, I. N. Polonsky, “Lidar multiple scattering from clouds,” Appl. Phys. B 60, 355–362 (1995).
[CrossRef]

P. Bruscaglioni, A. Ismaelli, G. Zaccanti, “Simple scaling relationships for calculation of lidar returns from turbid media in multiple scattering regime,” J. Mod. Opt. 39, 1003–1015 (1992).
[CrossRef]

P. Bruscaglioni, G. Zaccanti, “Multiple scattering in dense media,” in Scattering in Volumes and Surfaces, M. Nieto Vesparions, J. C. Dainty, eds. (Elsevier, 1990).

Zege, E. P.

L. R. Bissonette, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, A. Cohen, Y. Benayahu, M. Kleiman, S. Egert, C. Flesia, P. Schwendimann, A. V. Starkov, M. Noormohammadian, U. G. Oppel, D. M. Winker, E. P. Zege, I. L. Katsev, I. N. Polonsky, “Lidar multiple scattering from clouds,” Appl. Phys. B 60, 355–362 (1995).
[CrossRef]

E. P. Zege, I. L. Katsev, I. N. Polonsky, “Analitical solution to lidar return signals from clouds with regard to multiple scattering,” Appl. Phys. B 60, 345–353 (1995).
[CrossRef]

Zuev, V. E.

V. E. Zuev, G. M. Krekov, M. M. Krekova, G. A. Titov, “Mean characteristics of lidar signals from broken clouds,” Appl. Opt. 26, 3018–3025 (1987).
[CrossRef] [PubMed]

V. E. Zuev, G. M. Krekov, M. M. Krekova, “Polarization structure of a signal backscattered from water and crystal clouds,” Izv. Akad. Nauk SSSR Ser. Fiz. Atmos. Okeana 19, 595–602 (1983).

Appl. Opt. (13)

V. Noel, H. Chepfer, G. Ledanois, A. Delaval, H. Flamant, “Classification of particle effective shape ratio in cirrus clouds based on the lidar depolarization ratio,” Appl. Opt. 41, 4225–4256 (2002).
[CrossRef]

Yu. S. Balin, S. V. Samoilova, M. M. Krekova, D. W. Winker, “Retrieval of cloud optical parameters from space-based backscatter lidar data,” Appl. Opt. 38, 6385–6373 (1999).
[CrossRef]

R. J. Perry, A. J. Hunt, D. R. Huffman, “Experimental determinations of Mueller scattering matrices for nonspherical particles,” Appl. Opt. 17, 2700–2710 (1978).
[CrossRef] [PubMed]

Q. Gai, K. N. Liou, “Polarized light scattering by hexagonal ice crystals: theory,” Appl. Opt. 21, 3569–3580 (1982).
[CrossRef]

Y. Takano, K. Jayaweera, “Scattering phase matrix for hexagonal ice crystals computed from ray optics,” Appl. Opt. 24, 3254–3263 (1985).
[CrossRef] [PubMed]

V. E. Zuev, G. M. Krekov, M. M. Krekova, G. A. Titov, “Mean characteristics of lidar signals from broken clouds,” Appl. Opt. 26, 3018–3025 (1987).
[CrossRef] [PubMed]

G. M. Krekov, M. M. Krekova, V. S. Shamanaev, “Laser sensing of a subsurface oceanic layer. II. Polarization characteristics of signal,” Appl. Opt. 37, 1596–1601 (1998).
[CrossRef]

L. R. Bissonette, “Multiple scattering lidar equation,” Appl. Opt. 35, 6449–6463 (1996).
[CrossRef]

P. Yang, K. N. Liou, “Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals,” Appl. Opt. 35, 6568–6584 (1996).
[CrossRef] [PubMed]

A. Mannani, C. Flesia, P. Bruskaglioni, A. Ismaelli, “Multiple scattering from Chebyshev particles: Monte Carlo simulations for backscattering in ladar geometry,” Appl. Opt. 35, 7151–7164 (1996).
[CrossRef]

L. R. Bissonette, G. Roy, L. Poutier, S. G. Cober, G. A. Isaac, “Multiple scattering lidar method: test on Monte Carlo simulations and comparisons with in situ measurements,” Appl. Opt. 41, 6307–6324 (2002).
[CrossRef]

W. N. Chen, C. W. Chiang, J. B. Nee, “Lidar ratio and depolarization ratio for cirrus clouds,” Appl. Opt. 41, 6470–6476 (2002).
[CrossRef] [PubMed]

S. Reichardt, J. Reichardt, “Effect of multiple scattering on depolarization measurements with spaceborne lidars,” Appl. Opt. 42, 3620–3633 (2003).
[CrossRef] [PubMed]

Appl. Phys. B (2)

E. P. Zege, I. L. Katsev, I. N. Polonsky, “Analitical solution to lidar return signals from clouds with regard to multiple scattering,” Appl. Phys. B 60, 345–353 (1995).
[CrossRef]

L. R. Bissonette, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, A. Cohen, Y. Benayahu, M. Kleiman, S. Egert, C. Flesia, P. Schwendimann, A. V. Starkov, M. Noormohammadian, U. G. Oppel, D. M. Winker, E. P. Zege, I. L. Katsev, I. N. Polonsky, “Lidar multiple scattering from clouds,” Appl. Phys. B 60, 355–362 (1995).
[CrossRef]

Beitr. Phys. Atmos. (1)

G. H. Ruppersberg, M. Kerscher, M. Noormohammedian, U. G. Oppel, W. Renger, “The influence of multiple scattering of lidar returns by cirrus clouds and effective inversion algorithm for the extinction coefficient,” Beitr. Phys. Atmos. 70, 93–105 (1997).

Geophys. Res. Lett. (1)

G. G. Macke, K. Sassen, S. Kinne, T. A. Ackermann, “An examination of cirrus cloud characteristics using data from millimeter-wave radar and lidar,” Geophys. Res. Lett. 25, 1133–1136 (1998).
[CrossRef]

Issled. Zemli Kosm. (1)

G. M. Krekov, M. M. Krekova, I. V. Samokhvalov, “Structure of spaceborne lidar signals in stratus cloud sounding,” Issled. Zemli Kosm. 6, 77–83 (1986).

Izv. Akad. Nauk SSSR Fiz. Atmos. Okeana (2)

S. V. Samoilova, Yu. S. Balin, “Spaceborne polarization lidar for determining the optical parameters of cloudiness,” Izv. Akad. Nauk SSSR Fiz. Atmos. Okeana 37, 201–212 (2001).

V. P. Dugin, S. O. Mirumyants, “Light scattering matrices of artificial crystal clouds,” Izv. Akad. Nauk SSSR Fiz. Atmos. Okeana 12, 988–991 (1976).

Izv. Akad. Nauk SSSR Ser. Fiz. Atmos. Okeana (4)

A. P. Vasil’kov, T. V. Kondranin, E. V. Myasnikov, “Polarization characteristics of a backscattered signal in pulsed sensing of the ocean by a narrow light beam,” Izv. Akad. Nauk SSSR Ser. Fiz. Atmos. Okeana 24, 873–881 (1988).

V. E. Zuev, G. M. Krekov, M. M. Krekova, “Polarization structure of a signal backscattered from water and crystal clouds,” Izv. Akad. Nauk SSSR Ser. Fiz. Atmos. Okeana 19, 595–602 (1983).

G. M. Krekov, M. M. Krekova, “Polarization structure of multiply scattered component in lidar return signals,” Izv. Akad. Nauk SSSR Ser. Fiz. Atmos. Okeana 20, 969–974 (1984).

I. V. Samokhvalov, V. S. Shamanaev, “Lidar diagnostics of water and crystal clouds,” Izv. Akad. Nauk SSSR Ser. Fiz. Atmos. Okeana 18, 1050–1056 (1982).

J. Atmos Sci. (1)

A. J. Heymsfield, G. M. McFarquhar, “High albedos of cirrus in the tropical Pacific warm pool: microphysical interpretation from CEPEX and from Kwajalein, Marshall Islands,” J. Atmos Sci. 53, 2424–2451 (1996).
[CrossRef]

J. Atmos. Sci. (11)

K. Sassen, K. N. Liou, “Scattering of polarized light by water droplet, mixed-phase and ice crystal clouds. Part II: angular depolarizing and multiple-scattering behavior,” J. Atmos. Sci. 36, 852–861 (1979).
[CrossRef]

A. Macke, P. N. Francis, G. M. McFarquhar, S. Kinne, “The role of ice particle shapes and size distributions in single scattering properties of cirrus clouds,” J. Atmos. Sci. 55, 2874–2883 (1998).
[CrossRef]

C. M. R. Platt, S. A. Yang, P. J. Manson, G. R. Patterson, S. C. Marsden, R. T. Austin, J. N. Churnside, “The optical properties of equatorial cirrus observations in the ARM pilot radiation observation experiment,” J. Atmos. Sci. 55, 1977–1996 (1998).
[CrossRef]

Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds. Part I: single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989).
[CrossRef]

C. M. R. Platt, “Remote sensing of high clouds. III: Monte Carlo calculations of multiple-scattered lidar returns,” J. Atmos. Sci. 38, 156–167 (1981).
[CrossRef]

K. Sassen, K. N. Liou, “Scattering of polarized laser light by water droplet, mixed phase, and ice crystal clouds. Part I: angular scattering patterns,” J. Atmos. Sci. 36, 838–851 (1979).
[CrossRef]

A. J. Heymsfield, C. M. R. Platt, “A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content,” J. Atmos. Sci. 41, 846–855 (1984).
[CrossRef]

K. Sassen, O. C. Starr, T. Uttal, “Mesoscale and microscale of cirrus clouds: three case studies,” J. Atmos. Sci. 46, 371–396 (1989).
[CrossRef]

A. J. Heymsfield, G. M. McFarquhar, “High albedos of cirrus in the tropical pacific warm pool: microphysical interpretations from Cepex and from Kwajalein, Marshall Islands,” J. Atmos. Sci. 53, 2424–2451 (1996).
[CrossRef]

“Fire Intensive field observation II,” J. Atmos. Sci. 52, 4041–4392 (1995).
[CrossRef]

P. N. Fransis, “Some aircraft observations of the scattering properties of ice crystals,” J. Atmos. Sci. 52, 1142–1154 (1995).
[CrossRef]

J. Geophys. Res. (3)

P. Yang, K. N. Liou, W. P. Arnott, “Extinction efficiency and single-scattering albedo for laboratory and natural cirrus clouds,” J. Geophys. Res. D102, 21825–21835 (1997).
[CrossRef]

M. Del Guasta, M. Morandi, L. Stefanutti, “One year of cloud lidar data from Dumont D’Urwille (Antarctica) 1. General overview of geometrical and optical properties,” J. Geophys. Res. 98, 18575–18587 (1993).
[CrossRef]

C. M. R. Platt, J. D. Spinhirne, W. D. Hart, “Optical and microphysical properties of a cold cirrus cloud: evidence for regions of small ice particles,” J. Geophys. Res. 94, 11151–11164 (1989).
[CrossRef]

J. Mod. Opt. (1)

P. Bruscaglioni, A. Ismaelli, G. Zaccanti, “Simple scaling relationships for calculation of lidar returns from turbid media in multiple scattering regime,” J. Mod. Opt. 39, 1003–1015 (1992).
[CrossRef]

Mon. Weather Rev. (1)

K. N. Liou, “Influence of cirrus clouds on weather and climate processes: a global perspective,” Mon. Weather Rev. 114, 1167–1199 (1986).
[CrossRef]

Opt. Atmos. Okeana (4)

B. V. Kaul, I. V. Samokhvalov, “Multiple scattering noise in lidar measurements of matrices of light backscattering by crystal clouds,” Opt. Atmos. Okeana 12, 401–405 (1999).

D. N. Romashov, “Backscattering phase matrix for monodispersed ensembles of ice crystals,” Opt. Atmos. Okeana 12, 392–400 (1999).

D. N. Romashov, “Light scattering by hexagonal ice crystals,” Opt. Atmos. Okeana 14, 116–124 (2001).

D. N. Romashov, “Reflection properties of hexagonal ice crystals,” Opt. Atmos. Okeana 12, 1077–1080 (1999).

Opt. Lett. (1)

Proc. IEEE (1)

D. M. Winker, R. H. Couch, M. P. McCormick, “An overview of LITE: NASA’s lidar in space technology experiment,” Proc. IEEE 84, 164–180 (1996).
[CrossRef]

VINITI (1)

A. A. Popov, “Scattering of a plane electromagnetic wave by a translucent flat polyhedron of arbitrary shape,” Deposited at VINITI, No. 8006-84 (1984), 55 pp., http://www.VINITI.ru .

Other (10)

V. V. Veretennikov, A. I. Abramochkin, S. A. Abramochkin, “Experimental research of stratocumulus cloudiness above city of Tomsk with changeable field-of-view lidar,” in 12th International Workshop on Lidar Multiple Scattering Experiments, C. Werner, U. G. Oppel, T. Rother, eds., Proc. SPIE5059, 179–188 (2003).
[CrossRef]

J. Pelon, V. Trouillet, C. Flamant, P. H. Flamant, R. Valentin, “French contribution to E-LITE’94: comparative measurements with the airborne backscatter lidar LEANARDE-1. The European LITE correlative measurements campaign,” in Final Results Workshop Proceedings9–10 November 1995 (IROE-CNR, 1995), pp. 31–36.

P. Bruscaglioni, G. Zaccanti, “Multiple scattering in dense media,” in Scattering in Volumes and Surfaces, M. Nieto Vesparions, J. C. Dainty, eds. (Elsevier, 1990).

M. I. Mishchenko, J. W. Howenier, L. D. Travis, eds., Light Scattering by Nonspherical Particles. Theory, Measurement, and Applications (Academic, 1999).

P. Mazin, A. Kh. Khrgian, I. M. Imyanitov, Clouds and the Cloudy Atmosphere (Gidrometeoizdat, 1989).

O. A. Volkovitskii, L. N. Pavlova, A. G. Petrushin, Optical Properties of Crystal Clouds (Gidrometeoizdat, 1984).

A. G. Petrushin, “Absorption and scattering of optical radiation by a crystal cloud,” in Fifth International Symposium on Atmospheric and Ocean Optics, V. E. Zuev, G. G. Matvienko, eds., Proc. SPIE3583, 147–154 (1998).
[CrossRef]

G. I. Marchuk, G. M. Mikchailov, T. A. Nazaraliev, R. A. Darbinyan, B. A. Kargin, E. P. Elepov, Monte Carlo Method in Atmospheric Optics, Springer Series in Solid-State Sciences, G. I. Marchuk, ed. (Springer-Verlag, 1980), Chap. 5.
[CrossRef]

V. V. Belov, G. M. Krekov, G. A. Titov, “Some methods of increasing the efficiency of numerical experiments on laser sensing of the atmospheric aerosol,” in Problems of Remote Sensing of the Atmosphere, V. E. Zuev, ed. (Publishing House of the Siberian Branch of the Russian Academy of Sciences, 1975).

H. C. Van de Hulst, Light scattering by Small Particles (Wiley, 1957).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Angular dependences of the normalized scattering phase function and of the normalized components of the SPM for hexagonal ice plate crystals with the indicated sizes.

Fig. 2
Fig. 2

Angular dependences of the normalized scattering phase function and of the normalized components of the SPM for hexagonal ice column crystals with the indicated sizes.

Fig. 3
Fig. 3

Relative contributions (a) of the first two scattering orders and (b) of the total multiply scattered component to lidar signals reflected from the cloud comprising hexagonal ice plates with the indicated sizes.

Fig. 4
Fig. 4

Same as in Fig. 3 but for the homogeneous monodisperse cloud comprising hexagonal ice columns with the indicated sizes.

Fig. 5
Fig. 5

Depolarization ratios for components of the lidar signal reflected from the homogeneous monodisperse cloud comprising hexagonal plate crystals. Curves 1, δ(h)(1) for the singly scattered signal component; curves 2, δ(h)(2) for the doubly scattered signal component; curves 3 and 4, δ(h)(3) for the triply scattered signal component; curves 5 and 6, depolarization ratio forthe total MSSC. Calculations were performed for detector FOV angles φd = 0.5 (curves 3 and 5) and 17.5 mrad (curves 4 and 6).

Fig. 6
Fig. 6

Dependences of the depolarization ratio δ(h) for the total lidar signal P(h) reflected from the homogeneous monodisperse cloud comprising hexagonal plate crystals on the depth of penetration into the cloud for the indicated crystal sizes and detector FOV angles φd of (curves 1) 0.5, (curves 2) 1, (curves 3) 5, and (curves 4) 17.5 mrad.

Fig. 7
Fig. 7

Same as in Fig. 5, but for the cloud comprising hexagonal ice columns with the indicated sizes. Curves 1, δ(h)(1) for the singly scattered signal component; curves 2, δ(h)(2) for the doubly scattered signal component; curves 3 and 4, δ(h)(3) for the triply scattered signal component; curves 5 and 6, the depolarization ratios for the total MSSC. Calculations were performed for detector FOV angles of φd (curves 3 and 5) 0.5 and (curves 4 and 6) 17.5 mrad.

Fig. 8
Fig. 8

Depolarization ratios for the total lidar signal reflected from the cloud containing hexagonal ice column crystals with the indicated sizes.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

G S = G D + G RT .
S b n RT ( e r ) = A b n RT q b n ( e r ) exp ( ikm d b n ) ,
q b n ( e r ) = k 2 / 4 π G b n exp ( i k e r · r ) d 2 r ,
0 π P 11 ( θ ) sin ( θ ) d θ = 1 ,
P 22 ( 0 ) = P 33 ( 0 ) , P 22 ( π ) = P 33 ( π ) , P 44 ( π ) = P 11 ( π ) 2 P 22 ( π ) , P 12 ( 0 ) = P 34 ( 0 ) = P 12 ( π ) = P 34 ( π ) ,

Metrics