Abstract

An intensity-referenced temperature-independent curvature-measurement technique that uses a smart composite that comprises two chirped fiber Bragg gratings is demonstrated. The two gratings are embedded on opposite sides of the composite laminate and act simultaneously as curvature sensors and as wavelength discriminators, enabling a temperature-independent intensity-based scheme to measure radius of curvature. Also, the system’s performance is independent of arbitrary power losses that are induced in the lead fibers to the sensing head. It is demonstrated that the measurement range depends on the relative positions of the chirped fiber Bragg gratings and on their spectral bandwidths. By using two chirped fiber Bragg gratings with bandwidths W1 = 2.8 nm and W2 = 3.7 nm and with central wavelengths at λ01 = 1560.3 nm and λ02 = 1563.7 nm, we obtained a resolution of 1.6mm/Hz for the measurement of the radius of curvature (∼R = 350 mm) over the measurement range 190 mm < R < ∞.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Gander, W. N. McPherson, R. McBride, J. D. C. Jones, L. Shang, I. Bennion, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fiber,” Electron. Lett. 36, 120–121 (2000).
    [CrossRef]
  2. F. M. Araújo, L. A. Ferreira, J. L. Santos, F. Farahi, “Temperature and strain insensitive bending measurements with D-type fiber Bragg gratings,” Meas. Sci. Technol. 12, 829–833 (2001).
    [CrossRef]
  3. H. J. Patrick, C. C. Chang, S. T. Bohra, “Long period fibre gratings for structural bend sensing,” Electron. Lett. 34, 1773–1775 (1998).
    [CrossRef]
  4. Y. Liu, L. Zhang, J. A. R. Williams, I. Bennion, “Bend sensor based on measurement of resonance mode splitting of long-period fiber grating,” IEEE Photon. Technol. Lett. 12, 531–533 (2000).
    [CrossRef]
  5. A. E. Wilnner, B. Hoanca, “Fixed and tunable management of fiber chromatic dispersion,” in Handbook of Optical Fiber Telecommunications IV-B, (Systems and Impairments), I. Kaminow, T. Li, eds.(Academic, 2002), pp. 642–724.
    [CrossRef]
  6. T. Allsop, K. Chisholm, I. Bennion, A. Malvern, R. Neal, “A strain sensing system using a novel optical fiber Bragg grating sensor and a synthetic heterodyne interrogation technique,” Meas. Sci. Technol. 13, 731–740 (2002).
    [CrossRef]
  7. A. A. Chtcherbakov, P. L. Swart, “Chirped fiber optic Bragg grating strain sensor with sub-carrier phase detection,” Meas. Sci. Technol. 12, 814–817 (2001).
    [CrossRef]
  8. S. Kim, J. Kwon, S. Kim, B. Lee, “Temperature-independent strain sensor using a chirped grating partially embedded in a glass tube,” IEEE Photon. Technol. Lett. 12, 678–680 (2000).
    [CrossRef]
  9. R. Romero, O. Frazão, P. V. S. Marques, H. M. Salgado, J. L. Santos, “Fiber Bragg grating interrogation technique based on a chirped grating written in an erbium doped fiber,” Meas. Sci. Technol. 14, 1993–1997 (2003).
    [CrossRef]
  10. A. Othonos, K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).
  11. Y. Chiang, L. Wang, H. Chen, C. Yang, W. Liu, “Multipoint temperature-independent fiber-Bragg-grating strain-sensing system employing an optical-power-detection scheme,” Appl. Opt. 41, 1661–1667 (2002).
    [CrossRef] [PubMed]
  12. J. M. Lopez-Higuera, Optical Sensors (Universidad de Cantsabria, 1998).

2003

R. Romero, O. Frazão, P. V. S. Marques, H. M. Salgado, J. L. Santos, “Fiber Bragg grating interrogation technique based on a chirped grating written in an erbium doped fiber,” Meas. Sci. Technol. 14, 1993–1997 (2003).
[CrossRef]

2002

Y. Chiang, L. Wang, H. Chen, C. Yang, W. Liu, “Multipoint temperature-independent fiber-Bragg-grating strain-sensing system employing an optical-power-detection scheme,” Appl. Opt. 41, 1661–1667 (2002).
[CrossRef] [PubMed]

T. Allsop, K. Chisholm, I. Bennion, A. Malvern, R. Neal, “A strain sensing system using a novel optical fiber Bragg grating sensor and a synthetic heterodyne interrogation technique,” Meas. Sci. Technol. 13, 731–740 (2002).
[CrossRef]

2001

A. A. Chtcherbakov, P. L. Swart, “Chirped fiber optic Bragg grating strain sensor with sub-carrier phase detection,” Meas. Sci. Technol. 12, 814–817 (2001).
[CrossRef]

F. M. Araújo, L. A. Ferreira, J. L. Santos, F. Farahi, “Temperature and strain insensitive bending measurements with D-type fiber Bragg gratings,” Meas. Sci. Technol. 12, 829–833 (2001).
[CrossRef]

2000

M. J. Gander, W. N. McPherson, R. McBride, J. D. C. Jones, L. Shang, I. Bennion, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fiber,” Electron. Lett. 36, 120–121 (2000).
[CrossRef]

Y. Liu, L. Zhang, J. A. R. Williams, I. Bennion, “Bend sensor based on measurement of resonance mode splitting of long-period fiber grating,” IEEE Photon. Technol. Lett. 12, 531–533 (2000).
[CrossRef]

S. Kim, J. Kwon, S. Kim, B. Lee, “Temperature-independent strain sensor using a chirped grating partially embedded in a glass tube,” IEEE Photon. Technol. Lett. 12, 678–680 (2000).
[CrossRef]

1998

H. J. Patrick, C. C. Chang, S. T. Bohra, “Long period fibre gratings for structural bend sensing,” Electron. Lett. 34, 1773–1775 (1998).
[CrossRef]

Allsop, T.

T. Allsop, K. Chisholm, I. Bennion, A. Malvern, R. Neal, “A strain sensing system using a novel optical fiber Bragg grating sensor and a synthetic heterodyne interrogation technique,” Meas. Sci. Technol. 13, 731–740 (2002).
[CrossRef]

Araújo, F. M.

F. M. Araújo, L. A. Ferreira, J. L. Santos, F. Farahi, “Temperature and strain insensitive bending measurements with D-type fiber Bragg gratings,” Meas. Sci. Technol. 12, 829–833 (2001).
[CrossRef]

Bennion, I.

T. Allsop, K. Chisholm, I. Bennion, A. Malvern, R. Neal, “A strain sensing system using a novel optical fiber Bragg grating sensor and a synthetic heterodyne interrogation technique,” Meas. Sci. Technol. 13, 731–740 (2002).
[CrossRef]

Y. Liu, L. Zhang, J. A. R. Williams, I. Bennion, “Bend sensor based on measurement of resonance mode splitting of long-period fiber grating,” IEEE Photon. Technol. Lett. 12, 531–533 (2000).
[CrossRef]

M. J. Gander, W. N. McPherson, R. McBride, J. D. C. Jones, L. Shang, I. Bennion, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fiber,” Electron. Lett. 36, 120–121 (2000).
[CrossRef]

Blanchard, P. M.

M. J. Gander, W. N. McPherson, R. McBride, J. D. C. Jones, L. Shang, I. Bennion, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fiber,” Electron. Lett. 36, 120–121 (2000).
[CrossRef]

Bohra, S. T.

H. J. Patrick, C. C. Chang, S. T. Bohra, “Long period fibre gratings for structural bend sensing,” Electron. Lett. 34, 1773–1775 (1998).
[CrossRef]

Burnett, J. G.

M. J. Gander, W. N. McPherson, R. McBride, J. D. C. Jones, L. Shang, I. Bennion, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fiber,” Electron. Lett. 36, 120–121 (2000).
[CrossRef]

Chang, C. C.

H. J. Patrick, C. C. Chang, S. T. Bohra, “Long period fibre gratings for structural bend sensing,” Electron. Lett. 34, 1773–1775 (1998).
[CrossRef]

Chen, H.

Chiang, Y.

Chisholm, K.

T. Allsop, K. Chisholm, I. Bennion, A. Malvern, R. Neal, “A strain sensing system using a novel optical fiber Bragg grating sensor and a synthetic heterodyne interrogation technique,” Meas. Sci. Technol. 13, 731–740 (2002).
[CrossRef]

Chtcherbakov, A. A.

A. A. Chtcherbakov, P. L. Swart, “Chirped fiber optic Bragg grating strain sensor with sub-carrier phase detection,” Meas. Sci. Technol. 12, 814–817 (2001).
[CrossRef]

Farahi, F.

F. M. Araújo, L. A. Ferreira, J. L. Santos, F. Farahi, “Temperature and strain insensitive bending measurements with D-type fiber Bragg gratings,” Meas. Sci. Technol. 12, 829–833 (2001).
[CrossRef]

Ferreira, L. A.

F. M. Araújo, L. A. Ferreira, J. L. Santos, F. Farahi, “Temperature and strain insensitive bending measurements with D-type fiber Bragg gratings,” Meas. Sci. Technol. 12, 829–833 (2001).
[CrossRef]

Frazão, O.

R. Romero, O. Frazão, P. V. S. Marques, H. M. Salgado, J. L. Santos, “Fiber Bragg grating interrogation technique based on a chirped grating written in an erbium doped fiber,” Meas. Sci. Technol. 14, 1993–1997 (2003).
[CrossRef]

Gander, M. J.

M. J. Gander, W. N. McPherson, R. McBride, J. D. C. Jones, L. Shang, I. Bennion, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fiber,” Electron. Lett. 36, 120–121 (2000).
[CrossRef]

Greenaway, A. H.

M. J. Gander, W. N. McPherson, R. McBride, J. D. C. Jones, L. Shang, I. Bennion, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fiber,” Electron. Lett. 36, 120–121 (2000).
[CrossRef]

Hoanca, B.

A. E. Wilnner, B. Hoanca, “Fixed and tunable management of fiber chromatic dispersion,” in Handbook of Optical Fiber Telecommunications IV-B, (Systems and Impairments), I. Kaminow, T. Li, eds.(Academic, 2002), pp. 642–724.
[CrossRef]

Jones, J. D. C.

M. J. Gander, W. N. McPherson, R. McBride, J. D. C. Jones, L. Shang, I. Bennion, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fiber,” Electron. Lett. 36, 120–121 (2000).
[CrossRef]

Kalli, K.

A. Othonos, K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).

Kim, S.

S. Kim, J. Kwon, S. Kim, B. Lee, “Temperature-independent strain sensor using a chirped grating partially embedded in a glass tube,” IEEE Photon. Technol. Lett. 12, 678–680 (2000).
[CrossRef]

S. Kim, J. Kwon, S. Kim, B. Lee, “Temperature-independent strain sensor using a chirped grating partially embedded in a glass tube,” IEEE Photon. Technol. Lett. 12, 678–680 (2000).
[CrossRef]

Kwon, J.

S. Kim, J. Kwon, S. Kim, B. Lee, “Temperature-independent strain sensor using a chirped grating partially embedded in a glass tube,” IEEE Photon. Technol. Lett. 12, 678–680 (2000).
[CrossRef]

Lee, B.

S. Kim, J. Kwon, S. Kim, B. Lee, “Temperature-independent strain sensor using a chirped grating partially embedded in a glass tube,” IEEE Photon. Technol. Lett. 12, 678–680 (2000).
[CrossRef]

Liu, W.

Liu, Y.

Y. Liu, L. Zhang, J. A. R. Williams, I. Bennion, “Bend sensor based on measurement of resonance mode splitting of long-period fiber grating,” IEEE Photon. Technol. Lett. 12, 531–533 (2000).
[CrossRef]

Lopez-Higuera, J. M.

J. M. Lopez-Higuera, Optical Sensors (Universidad de Cantsabria, 1998).

Malvern, A.

T. Allsop, K. Chisholm, I. Bennion, A. Malvern, R. Neal, “A strain sensing system using a novel optical fiber Bragg grating sensor and a synthetic heterodyne interrogation technique,” Meas. Sci. Technol. 13, 731–740 (2002).
[CrossRef]

Marques, P. V. S.

R. Romero, O. Frazão, P. V. S. Marques, H. M. Salgado, J. L. Santos, “Fiber Bragg grating interrogation technique based on a chirped grating written in an erbium doped fiber,” Meas. Sci. Technol. 14, 1993–1997 (2003).
[CrossRef]

McBride, R.

M. J. Gander, W. N. McPherson, R. McBride, J. D. C. Jones, L. Shang, I. Bennion, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fiber,” Electron. Lett. 36, 120–121 (2000).
[CrossRef]

McPherson, W. N.

M. J. Gander, W. N. McPherson, R. McBride, J. D. C. Jones, L. Shang, I. Bennion, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fiber,” Electron. Lett. 36, 120–121 (2000).
[CrossRef]

Neal, R.

T. Allsop, K. Chisholm, I. Bennion, A. Malvern, R. Neal, “A strain sensing system using a novel optical fiber Bragg grating sensor and a synthetic heterodyne interrogation technique,” Meas. Sci. Technol. 13, 731–740 (2002).
[CrossRef]

Othonos, A.

A. Othonos, K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).

Patrick, H. J.

H. J. Patrick, C. C. Chang, S. T. Bohra, “Long period fibre gratings for structural bend sensing,” Electron. Lett. 34, 1773–1775 (1998).
[CrossRef]

Romero, R.

R. Romero, O. Frazão, P. V. S. Marques, H. M. Salgado, J. L. Santos, “Fiber Bragg grating interrogation technique based on a chirped grating written in an erbium doped fiber,” Meas. Sci. Technol. 14, 1993–1997 (2003).
[CrossRef]

Salgado, H. M.

R. Romero, O. Frazão, P. V. S. Marques, H. M. Salgado, J. L. Santos, “Fiber Bragg grating interrogation technique based on a chirped grating written in an erbium doped fiber,” Meas. Sci. Technol. 14, 1993–1997 (2003).
[CrossRef]

Santos, J. L.

R. Romero, O. Frazão, P. V. S. Marques, H. M. Salgado, J. L. Santos, “Fiber Bragg grating interrogation technique based on a chirped grating written in an erbium doped fiber,” Meas. Sci. Technol. 14, 1993–1997 (2003).
[CrossRef]

F. M. Araújo, L. A. Ferreira, J. L. Santos, F. Farahi, “Temperature and strain insensitive bending measurements with D-type fiber Bragg gratings,” Meas. Sci. Technol. 12, 829–833 (2001).
[CrossRef]

Shang, L.

M. J. Gander, W. N. McPherson, R. McBride, J. D. C. Jones, L. Shang, I. Bennion, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fiber,” Electron. Lett. 36, 120–121 (2000).
[CrossRef]

Swart, P. L.

A. A. Chtcherbakov, P. L. Swart, “Chirped fiber optic Bragg grating strain sensor with sub-carrier phase detection,” Meas. Sci. Technol. 12, 814–817 (2001).
[CrossRef]

Wang, L.

Williams, J. A. R.

Y. Liu, L. Zhang, J. A. R. Williams, I. Bennion, “Bend sensor based on measurement of resonance mode splitting of long-period fiber grating,” IEEE Photon. Technol. Lett. 12, 531–533 (2000).
[CrossRef]

Wilnner, A. E.

A. E. Wilnner, B. Hoanca, “Fixed and tunable management of fiber chromatic dispersion,” in Handbook of Optical Fiber Telecommunications IV-B, (Systems and Impairments), I. Kaminow, T. Li, eds.(Academic, 2002), pp. 642–724.
[CrossRef]

Yang, C.

Zhang, L.

Y. Liu, L. Zhang, J. A. R. Williams, I. Bennion, “Bend sensor based on measurement of resonance mode splitting of long-period fiber grating,” IEEE Photon. Technol. Lett. 12, 531–533 (2000).
[CrossRef]

Appl. Opt.

Electron. Lett.

M. J. Gander, W. N. McPherson, R. McBride, J. D. C. Jones, L. Shang, I. Bennion, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fiber,” Electron. Lett. 36, 120–121 (2000).
[CrossRef]

H. J. Patrick, C. C. Chang, S. T. Bohra, “Long period fibre gratings for structural bend sensing,” Electron. Lett. 34, 1773–1775 (1998).
[CrossRef]

IEEE Photon. Technol. Lett.

Y. Liu, L. Zhang, J. A. R. Williams, I. Bennion, “Bend sensor based on measurement of resonance mode splitting of long-period fiber grating,” IEEE Photon. Technol. Lett. 12, 531–533 (2000).
[CrossRef]

S. Kim, J. Kwon, S. Kim, B. Lee, “Temperature-independent strain sensor using a chirped grating partially embedded in a glass tube,” IEEE Photon. Technol. Lett. 12, 678–680 (2000).
[CrossRef]

Meas. Sci. Technol.

R. Romero, O. Frazão, P. V. S. Marques, H. M. Salgado, J. L. Santos, “Fiber Bragg grating interrogation technique based on a chirped grating written in an erbium doped fiber,” Meas. Sci. Technol. 14, 1993–1997 (2003).
[CrossRef]

T. Allsop, K. Chisholm, I. Bennion, A. Malvern, R. Neal, “A strain sensing system using a novel optical fiber Bragg grating sensor and a synthetic heterodyne interrogation technique,” Meas. Sci. Technol. 13, 731–740 (2002).
[CrossRef]

A. A. Chtcherbakov, P. L. Swart, “Chirped fiber optic Bragg grating strain sensor with sub-carrier phase detection,” Meas. Sci. Technol. 12, 814–817 (2001).
[CrossRef]

F. M. Araújo, L. A. Ferreira, J. L. Santos, F. Farahi, “Temperature and strain insensitive bending measurements with D-type fiber Bragg gratings,” Meas. Sci. Technol. 12, 829–833 (2001).
[CrossRef]

Other

A. E. Wilnner, B. Hoanca, “Fixed and tunable management of fiber chromatic dispersion,” in Handbook of Optical Fiber Telecommunications IV-B, (Systems and Impairments), I. Kaminow, T. Li, eds.(Academic, 2002), pp. 642–724.
[CrossRef]

A. Othonos, K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).

J. M. Lopez-Higuera, Optical Sensors (Universidad de Cantsabria, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Setup used for implementation of the sensing technique.

Fig. 2
Fig. 2

Relative positions of the CFBG spectra considered in the sensing concept calculations.

Fig. 3
Fig. 3

Reflection spectra of the CFBGs for (a) R = ∞ and (b) R = 175 mm. Solid curves, CFBG1 placed in the convex side of the laminate; dashed curves, CFBG2 placed in the concave side of the laminate.

Fig. 4
Fig. 4

Output signal as a function of the radius of curvature of the composite laminate.

Fig. 5
Fig. 5

Output signal as a function of the inverse of the radius of curvature of the composite laminate.

Fig. 6
Fig. 6

Minimum FWHM of the CFBGs necessary for measuring a maximum applied curvature (1/R).

Fig. 7
Fig. 7

Absolute value of the central wavelength change, Δλ0, at constant temperature and constant R for four numbers of CFRP laminates.

Fig. 8
Fig. 8

Output of the system when a bend waveform with decreasing period is applied to the sensing head.

Fig. 9
Fig. 9

Bend step change for evaluating system resolution.

Fig. 10
Fig. 10

Output signal as a function of temperature for two radii of curvature.

Fig. 11
Fig. 11

Output signal as a function of attenuation of optical power injected into the system (PBBS).

Fig. 12
Fig. 12

Output signal as a function of attenuation α1 for R = ∞ and as a function of attenuation α2 for R = 575 mm.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

P 0 = k P BBS ( λ ) d λ ,
P 1 / A B = ( 1 k ) P BBS 16 α 1 2 R 1 W 1 ,
P 2 / A B = ( 1 k ) P BBS 64 α 1 2 α 2 2 R 1 R 2 [ ( λ 01 + W 1 2 ) ( λ 02 W 2 2 ) ] ,
P 1 / A C = ( 1 k ) P BBS 64 α 1 2 α 2 2 R 1 R 2 [ ( λ 01 + W 1 2 ) ( λ 02 W 2 2 ) ] ,
P 2 / A C = ( 1 k ) P BBS 16 α 2 2 R 2 W 2 .
S out = A P 1 / A C P 0 P 1 / A B P 2 / A C = 4 A k δ λ W 1 W 2 ( 1 k ) ( λ 01 λ 02 ) + 2 A k δ λ W 1 W 2 ( 1 k ) ( W 1 + W 2 ) ,
Δ λ 01 = K ɛ d R + K T Δ T ,
Δ λ 02 = K ɛ d R + K T Δ T ,
Δ S out = 8 A k K ɛ d δ λ W 1 W 2 ( 1 k ) 1 R ,
δ C = 2 ( Δ C σ S OUT / Δ S OUT ) B ,

Metrics