Abstract

Typical inversion of limb-sounding measurements assumes local horizontal homogeneity of the atmosphere. This simplification corresponds to spectral radiance errors that can exceed the noise level of a typical infrared instrument by a factor of 10 and causes errors in retrieved state parameters. To avoid these errors and to take the horizontal structure of the atmosphere into account, a two-dimensional (2D) tomographic sequential estimation approach is described. Application to temperature retrievals from simulated measurements yields typical retrieval errors of the order of 1K, and a one-dimensional retrieval with the same synthetic measurements shows differences to the true values up to 10 K in regions with strong horizontal inhomogeneities. The horizontal resolution of the 2D retrieval is even better (up to 40 km) than the horizontal tangent point spacing.

© 2005 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription