Abstract

Numerical techniques for the analysis of multilayer waveguide structures were used to study the modes that exist in organic light-emitting diode (OLED) devices. The analysis revealed that waveguide modes of the OLED structure could be grouped, according to the behavior of modal-field profiles in the air cover and the glass substrate, into one of four different “families”: (i) bound mode, (ii) semibound modes, (iii) leaky modes, and (iv) nonphysical modes. Four different OLED samples were fabricated on glass substrates on which photoresist gratings had been previously formed. The theory was used to compute the angles at which light from these devices should exit into the air. Theory and data agreed well for the semibound modes for all samples; however, they did not agree so well for the leaky modes. Further investigation revealed that better agreement between theory and data could be obtained with these modes being analyzed as Fabry–Perot cavity modes. The theoretical relation between leaky waveguide modes and Fabry–Perot cavity modes is discussed.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (29)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription