Abstract

Numerical techniques for the analysis of multilayer waveguide structures were used to study the modes that exist in organic light-emitting diode (OLED) devices. The analysis revealed that waveguide modes of the OLED structure could be grouped, according to the behavior of modal-field profiles in the air cover and the glass substrate, into one of four different “families”: (i) bound mode, (ii) semibound modes, (iii) leaky modes, and (iv) nonphysical modes. Four different OLED samples were fabricated on glass substrates on which photoresist gratings had been previously formed. The theory was used to compute the angles at which light from these devices should exit into the air. Theory and data agreed well for the semibound modes for all samples; however, they did not agree so well for the leaky modes. Further investigation revealed that better agreement between theory and data could be obtained with these modes being analyzed as Fabry–Perot cavity modes. The theoretical relation between leaky waveguide modes and Fabry–Perot cavity modes is discussed.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Wood, Optoelectronic Semiconductor Devices, Prentice Hall, London, 1997.
  2. A. N. Safonov, M. Jory, B. J. Matterson, J. M. Luption, M. G. Salt, J. A. E. Wasey, W. L. Barnes, I. D. W. Samuel, “Modification of polymer light emission by lateral microstruc-ture,” Synth. Met. 116, 145–148 (2001).
    [CrossRef]
  3. Y. J. Lee, S. H. Kim, J. Huh, G. H. Kim, Y. H. Lee, S. H. Cho, Y. C. Kim, Y. R. Do, “A high-extraction-efficiency nanopatterned organic light-emitting diode,” Appl. Phys. Lett. 82, 3779–3781 (2003).
    [CrossRef]
  4. H. Benistry, H. D. Neveand, C. Weisbuch, “Impact of planar microcavity effects on light extraction-Part II: selected exact simulations and role of photon recycling,” IEEE J. Quantum Electron. 34, 1632–1643 (1998).
    [CrossRef]
  5. I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, A. Scherer, “30% external quantum efficiency from surface textured, thin-film light-emitting diodes,” Appl. Phys. Lett. 63, 2174–2176 (1993).
    [CrossRef]
  6. J. J. Shiang, A. R. Duggal, “Application of radiative transport theory to light extraction from organic light emitting diodes,” J. Appl. Phys. 95, 2880–2888 (2004).
    [CrossRef]
  7. V. Bulovic, V. B. Khalifin, G. Gu, P. E. Burrows, D. Z. Gar-buzov, S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58, 3730–3740 (1998).
    [CrossRef]
  8. G. Gu, D. Z. Garbuzov, P. E. Burrows, S. Venkatesh, S. R. Forrest, M. E. Thompson, “High-external-quantum-efficiency organic light-emitting devices,” Opt. Lett. 22, 396–398 (1997).
    [CrossRef] [PubMed]
  9. S. O. Barros, C. Mias, C. B. Thomas, R. Stevens, “A comparison of the outcoupling characteristics of laterally emitting thin-film electroluminescent devices,” Semicond. Sci. Technol. 15, 875–881 (2000).
    [CrossRef]
  10. D. K. Gifford, D. G. Hall, “Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling,” Appl. Phys. Lett. 81, 4315–4317 (2002).
    [CrossRef]
  11. R. E. Smith, S. N. Houde-Walter, G. W. Forbes, “Mode determination for planar waveguide using the four-sheeted dispersion relation,” IEEE J. Quantum Electron. 28, 1520–1526 (1992).
    [CrossRef]
  12. The emitting layer is in the Alq3 and is located near the ETL–HTL interface. The thickness of the ETL layer represents the combined thickness of the ETL and the emission layers.
  13. See, for example, F. B. Hildebrand, Advanced Calculus for Applications (Prentice Hall, New Jersey, 1964), p. 362.
  14. L. M. Delves, J. N. Lyness, “A numerical method for locating the zeros of an analytic function,” Math. Comput. 21, 543–560 (1967).
    [CrossRef]
  15. See, for example, D. K. Gifford, Emission from Organic Light-Emitting Diodes via Surface-Plasmon Cross-Coupling, Ph.D. dissertation (University of Rochester, Rochester, NY, 2001), Chap. 3.
  16. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985).
  17. A. Dodabalapur, L. J. Rothberg, T. M. Miller, E. W. Kwock, “Microcavity effects in organic semiconductors,” Appl. Phys. Lett. 64, 2486–2488 (1994).
    [CrossRef]
  18. T. Shiga, H. Fujikawa, Y. Taga, “Design of multiwave-length resonant cavities for white organic light-emitting diodes,” J. Appl. Phys. 93, 19–22 (2003).
    [CrossRef]
  19. At first glance, it might appear as if the Fabry–Perot modes should be classified as nonphysical since these modes assume that AN≠ 0. However, the Fabry–Perot cavity represents a driven oscillator, and as such, it is fundamentally different from a waveguide. In the context of the current analysis, Fabry–Perot modes can be regarded as resonance responses of an oscillator; that is, the natural oscillations established in the absence of a driving term.
  20. See, for example, M. V. Klein, Optics (Wiley, New York, 1970), p. 205.
  21. The solution given in Eq. (23) is an approximation to the roots of the waveguide dispersion equation because account has not been taken of ρc,ρa,ϕc,and ϕa being functions of z.
  22. Note that both the TE and the TM semibound modes exhibit exponentially growing field profiles with distance into the glass substrate. This feature is not evident on the scale shown in Fig. 8.
  23. See, for example, R. W. Gruhlke, Optical Emission from Surface Waves Supported in Thin Metal Films, Ph.D. dissertation (University of Rochester, Rochester, NY, 1987).
  24. R. W. Gruhlke, W. R. Holland, D. G. Hall, “Surface plasmon cross coupling in molecular fluorescence near a corrugated thin metal film,” Phys. Rev. Lett. 56, 2838–2841 (1986).
    [CrossRef] [PubMed]

2004 (1)

J. J. Shiang, A. R. Duggal, “Application of radiative transport theory to light extraction from organic light emitting diodes,” J. Appl. Phys. 95, 2880–2888 (2004).
[CrossRef]

2003 (2)

Y. J. Lee, S. H. Kim, J. Huh, G. H. Kim, Y. H. Lee, S. H. Cho, Y. C. Kim, Y. R. Do, “A high-extraction-efficiency nanopatterned organic light-emitting diode,” Appl. Phys. Lett. 82, 3779–3781 (2003).
[CrossRef]

T. Shiga, H. Fujikawa, Y. Taga, “Design of multiwave-length resonant cavities for white organic light-emitting diodes,” J. Appl. Phys. 93, 19–22 (2003).
[CrossRef]

2002 (1)

D. K. Gifford, D. G. Hall, “Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling,” Appl. Phys. Lett. 81, 4315–4317 (2002).
[CrossRef]

2001 (1)

A. N. Safonov, M. Jory, B. J. Matterson, J. M. Luption, M. G. Salt, J. A. E. Wasey, W. L. Barnes, I. D. W. Samuel, “Modification of polymer light emission by lateral microstruc-ture,” Synth. Met. 116, 145–148 (2001).
[CrossRef]

2000 (1)

S. O. Barros, C. Mias, C. B. Thomas, R. Stevens, “A comparison of the outcoupling characteristics of laterally emitting thin-film electroluminescent devices,” Semicond. Sci. Technol. 15, 875–881 (2000).
[CrossRef]

1998 (2)

H. Benistry, H. D. Neveand, C. Weisbuch, “Impact of planar microcavity effects on light extraction-Part II: selected exact simulations and role of photon recycling,” IEEE J. Quantum Electron. 34, 1632–1643 (1998).
[CrossRef]

V. Bulovic, V. B. Khalifin, G. Gu, P. E. Burrows, D. Z. Gar-buzov, S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58, 3730–3740 (1998).
[CrossRef]

1997 (1)

1994 (1)

A. Dodabalapur, L. J. Rothberg, T. M. Miller, E. W. Kwock, “Microcavity effects in organic semiconductors,” Appl. Phys. Lett. 64, 2486–2488 (1994).
[CrossRef]

1993 (1)

I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, A. Scherer, “30% external quantum efficiency from surface textured, thin-film light-emitting diodes,” Appl. Phys. Lett. 63, 2174–2176 (1993).
[CrossRef]

1992 (1)

R. E. Smith, S. N. Houde-Walter, G. W. Forbes, “Mode determination for planar waveguide using the four-sheeted dispersion relation,” IEEE J. Quantum Electron. 28, 1520–1526 (1992).
[CrossRef]

1986 (1)

R. W. Gruhlke, W. R. Holland, D. G. Hall, “Surface plasmon cross coupling in molecular fluorescence near a corrugated thin metal film,” Phys. Rev. Lett. 56, 2838–2841 (1986).
[CrossRef] [PubMed]

1967 (1)

L. M. Delves, J. N. Lyness, “A numerical method for locating the zeros of an analytic function,” Math. Comput. 21, 543–560 (1967).
[CrossRef]

Barnes, W. L.

A. N. Safonov, M. Jory, B. J. Matterson, J. M. Luption, M. G. Salt, J. A. E. Wasey, W. L. Barnes, I. D. W. Samuel, “Modification of polymer light emission by lateral microstruc-ture,” Synth. Met. 116, 145–148 (2001).
[CrossRef]

Barros, S. O.

S. O. Barros, C. Mias, C. B. Thomas, R. Stevens, “A comparison of the outcoupling characteristics of laterally emitting thin-film electroluminescent devices,” Semicond. Sci. Technol. 15, 875–881 (2000).
[CrossRef]

Benistry, H.

H. Benistry, H. D. Neveand, C. Weisbuch, “Impact of planar microcavity effects on light extraction-Part II: selected exact simulations and role of photon recycling,” IEEE J. Quantum Electron. 34, 1632–1643 (1998).
[CrossRef]

Bulovic, V.

V. Bulovic, V. B. Khalifin, G. Gu, P. E. Burrows, D. Z. Gar-buzov, S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58, 3730–3740 (1998).
[CrossRef]

Burrows, P. E.

V. Bulovic, V. B. Khalifin, G. Gu, P. E. Burrows, D. Z. Gar-buzov, S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58, 3730–3740 (1998).
[CrossRef]

G. Gu, D. Z. Garbuzov, P. E. Burrows, S. Venkatesh, S. R. Forrest, M. E. Thompson, “High-external-quantum-efficiency organic light-emitting devices,” Opt. Lett. 22, 396–398 (1997).
[CrossRef] [PubMed]

Caneau, C.

I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, A. Scherer, “30% external quantum efficiency from surface textured, thin-film light-emitting diodes,” Appl. Phys. Lett. 63, 2174–2176 (1993).
[CrossRef]

Cho, S. H.

Y. J. Lee, S. H. Kim, J. Huh, G. H. Kim, Y. H. Lee, S. H. Cho, Y. C. Kim, Y. R. Do, “A high-extraction-efficiency nanopatterned organic light-emitting diode,” Appl. Phys. Lett. 82, 3779–3781 (2003).
[CrossRef]

Delves, L. M.

L. M. Delves, J. N. Lyness, “A numerical method for locating the zeros of an analytic function,” Math. Comput. 21, 543–560 (1967).
[CrossRef]

Do, Y. R.

Y. J. Lee, S. H. Kim, J. Huh, G. H. Kim, Y. H. Lee, S. H. Cho, Y. C. Kim, Y. R. Do, “A high-extraction-efficiency nanopatterned organic light-emitting diode,” Appl. Phys. Lett. 82, 3779–3781 (2003).
[CrossRef]

Dodabalapur, A.

A. Dodabalapur, L. J. Rothberg, T. M. Miller, E. W. Kwock, “Microcavity effects in organic semiconductors,” Appl. Phys. Lett. 64, 2486–2488 (1994).
[CrossRef]

Duggal, A. R.

J. J. Shiang, A. R. Duggal, “Application of radiative transport theory to light extraction from organic light emitting diodes,” J. Appl. Phys. 95, 2880–2888 (2004).
[CrossRef]

Forbes, G. W.

R. E. Smith, S. N. Houde-Walter, G. W. Forbes, “Mode determination for planar waveguide using the four-sheeted dispersion relation,” IEEE J. Quantum Electron. 28, 1520–1526 (1992).
[CrossRef]

Forrest, S. R.

V. Bulovic, V. B. Khalifin, G. Gu, P. E. Burrows, D. Z. Gar-buzov, S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58, 3730–3740 (1998).
[CrossRef]

G. Gu, D. Z. Garbuzov, P. E. Burrows, S. Venkatesh, S. R. Forrest, M. E. Thompson, “High-external-quantum-efficiency organic light-emitting devices,” Opt. Lett. 22, 396–398 (1997).
[CrossRef] [PubMed]

Fujikawa, H.

T. Shiga, H. Fujikawa, Y. Taga, “Design of multiwave-length resonant cavities for white organic light-emitting diodes,” J. Appl. Phys. 93, 19–22 (2003).
[CrossRef]

Garbuzov, D. Z.

Gar-buzov, D. Z.

V. Bulovic, V. B. Khalifin, G. Gu, P. E. Burrows, D. Z. Gar-buzov, S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58, 3730–3740 (1998).
[CrossRef]

Gifford, D. K.

D. K. Gifford, D. G. Hall, “Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling,” Appl. Phys. Lett. 81, 4315–4317 (2002).
[CrossRef]

See, for example, D. K. Gifford, Emission from Organic Light-Emitting Diodes via Surface-Plasmon Cross-Coupling, Ph.D. dissertation (University of Rochester, Rochester, NY, 2001), Chap. 3.

Gmitter, T. J.

I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, A. Scherer, “30% external quantum efficiency from surface textured, thin-film light-emitting diodes,” Appl. Phys. Lett. 63, 2174–2176 (1993).
[CrossRef]

Gruhlke, R. W.

R. W. Gruhlke, W. R. Holland, D. G. Hall, “Surface plasmon cross coupling in molecular fluorescence near a corrugated thin metal film,” Phys. Rev. Lett. 56, 2838–2841 (1986).
[CrossRef] [PubMed]

See, for example, R. W. Gruhlke, Optical Emission from Surface Waves Supported in Thin Metal Films, Ph.D. dissertation (University of Rochester, Rochester, NY, 1987).

Gu, G.

V. Bulovic, V. B. Khalifin, G. Gu, P. E. Burrows, D. Z. Gar-buzov, S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58, 3730–3740 (1998).
[CrossRef]

G. Gu, D. Z. Garbuzov, P. E. Burrows, S. Venkatesh, S. R. Forrest, M. E. Thompson, “High-external-quantum-efficiency organic light-emitting devices,” Opt. Lett. 22, 396–398 (1997).
[CrossRef] [PubMed]

Hall, D. G.

D. K. Gifford, D. G. Hall, “Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling,” Appl. Phys. Lett. 81, 4315–4317 (2002).
[CrossRef]

R. W. Gruhlke, W. R. Holland, D. G. Hall, “Surface plasmon cross coupling in molecular fluorescence near a corrugated thin metal film,” Phys. Rev. Lett. 56, 2838–2841 (1986).
[CrossRef] [PubMed]

Hildebrand, F. B.

See, for example, F. B. Hildebrand, Advanced Calculus for Applications (Prentice Hall, New Jersey, 1964), p. 362.

Holland, W. R.

R. W. Gruhlke, W. R. Holland, D. G. Hall, “Surface plasmon cross coupling in molecular fluorescence near a corrugated thin metal film,” Phys. Rev. Lett. 56, 2838–2841 (1986).
[CrossRef] [PubMed]

Houde-Walter, S. N.

R. E. Smith, S. N. Houde-Walter, G. W. Forbes, “Mode determination for planar waveguide using the four-sheeted dispersion relation,” IEEE J. Quantum Electron. 28, 1520–1526 (1992).
[CrossRef]

Huh, J.

Y. J. Lee, S. H. Kim, J. Huh, G. H. Kim, Y. H. Lee, S. H. Cho, Y. C. Kim, Y. R. Do, “A high-extraction-efficiency nanopatterned organic light-emitting diode,” Appl. Phys. Lett. 82, 3779–3781 (2003).
[CrossRef]

Jory, M.

A. N. Safonov, M. Jory, B. J. Matterson, J. M. Luption, M. G. Salt, J. A. E. Wasey, W. L. Barnes, I. D. W. Samuel, “Modification of polymer light emission by lateral microstruc-ture,” Synth. Met. 116, 145–148 (2001).
[CrossRef]

Khalifin, V. B.

V. Bulovic, V. B. Khalifin, G. Gu, P. E. Burrows, D. Z. Gar-buzov, S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58, 3730–3740 (1998).
[CrossRef]

Kim, G. H.

Y. J. Lee, S. H. Kim, J. Huh, G. H. Kim, Y. H. Lee, S. H. Cho, Y. C. Kim, Y. R. Do, “A high-extraction-efficiency nanopatterned organic light-emitting diode,” Appl. Phys. Lett. 82, 3779–3781 (2003).
[CrossRef]

Kim, S. H.

Y. J. Lee, S. H. Kim, J. Huh, G. H. Kim, Y. H. Lee, S. H. Cho, Y. C. Kim, Y. R. Do, “A high-extraction-efficiency nanopatterned organic light-emitting diode,” Appl. Phys. Lett. 82, 3779–3781 (2003).
[CrossRef]

Kim, Y. C.

Y. J. Lee, S. H. Kim, J. Huh, G. H. Kim, Y. H. Lee, S. H. Cho, Y. C. Kim, Y. R. Do, “A high-extraction-efficiency nanopatterned organic light-emitting diode,” Appl. Phys. Lett. 82, 3779–3781 (2003).
[CrossRef]

Klein, M. V.

See, for example, M. V. Klein, Optics (Wiley, New York, 1970), p. 205.

Kwock, E. W.

A. Dodabalapur, L. J. Rothberg, T. M. Miller, E. W. Kwock, “Microcavity effects in organic semiconductors,” Appl. Phys. Lett. 64, 2486–2488 (1994).
[CrossRef]

Lee, Y. H.

Y. J. Lee, S. H. Kim, J. Huh, G. H. Kim, Y. H. Lee, S. H. Cho, Y. C. Kim, Y. R. Do, “A high-extraction-efficiency nanopatterned organic light-emitting diode,” Appl. Phys. Lett. 82, 3779–3781 (2003).
[CrossRef]

Lee, Y. J.

Y. J. Lee, S. H. Kim, J. Huh, G. H. Kim, Y. H. Lee, S. H. Cho, Y. C. Kim, Y. R. Do, “A high-extraction-efficiency nanopatterned organic light-emitting diode,” Appl. Phys. Lett. 82, 3779–3781 (2003).
[CrossRef]

Luption, J. M.

A. N. Safonov, M. Jory, B. J. Matterson, J. M. Luption, M. G. Salt, J. A. E. Wasey, W. L. Barnes, I. D. W. Samuel, “Modification of polymer light emission by lateral microstruc-ture,” Synth. Met. 116, 145–148 (2001).
[CrossRef]

Lyness, J. N.

L. M. Delves, J. N. Lyness, “A numerical method for locating the zeros of an analytic function,” Math. Comput. 21, 543–560 (1967).
[CrossRef]

Matterson, B. J.

A. N. Safonov, M. Jory, B. J. Matterson, J. M. Luption, M. G. Salt, J. A. E. Wasey, W. L. Barnes, I. D. W. Samuel, “Modification of polymer light emission by lateral microstruc-ture,” Synth. Met. 116, 145–148 (2001).
[CrossRef]

Mias, C.

S. O. Barros, C. Mias, C. B. Thomas, R. Stevens, “A comparison of the outcoupling characteristics of laterally emitting thin-film electroluminescent devices,” Semicond. Sci. Technol. 15, 875–881 (2000).
[CrossRef]

Miller, T. M.

A. Dodabalapur, L. J. Rothberg, T. M. Miller, E. W. Kwock, “Microcavity effects in organic semiconductors,” Appl. Phys. Lett. 64, 2486–2488 (1994).
[CrossRef]

Neveand, H. D.

H. Benistry, H. D. Neveand, C. Weisbuch, “Impact of planar microcavity effects on light extraction-Part II: selected exact simulations and role of photon recycling,” IEEE J. Quantum Electron. 34, 1632–1643 (1998).
[CrossRef]

Rothberg, L. J.

A. Dodabalapur, L. J. Rothberg, T. M. Miller, E. W. Kwock, “Microcavity effects in organic semiconductors,” Appl. Phys. Lett. 64, 2486–2488 (1994).
[CrossRef]

Safonov, A. N.

A. N. Safonov, M. Jory, B. J. Matterson, J. M. Luption, M. G. Salt, J. A. E. Wasey, W. L. Barnes, I. D. W. Samuel, “Modification of polymer light emission by lateral microstruc-ture,” Synth. Met. 116, 145–148 (2001).
[CrossRef]

Salt, M. G.

A. N. Safonov, M. Jory, B. J. Matterson, J. M. Luption, M. G. Salt, J. A. E. Wasey, W. L. Barnes, I. D. W. Samuel, “Modification of polymer light emission by lateral microstruc-ture,” Synth. Met. 116, 145–148 (2001).
[CrossRef]

Samuel, I. D. W.

A. N. Safonov, M. Jory, B. J. Matterson, J. M. Luption, M. G. Salt, J. A. E. Wasey, W. L. Barnes, I. D. W. Samuel, “Modification of polymer light emission by lateral microstruc-ture,” Synth. Met. 116, 145–148 (2001).
[CrossRef]

Scherer, A.

I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, A. Scherer, “30% external quantum efficiency from surface textured, thin-film light-emitting diodes,” Appl. Phys. Lett. 63, 2174–2176 (1993).
[CrossRef]

Schnitzer, I.

I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, A. Scherer, “30% external quantum efficiency from surface textured, thin-film light-emitting diodes,” Appl. Phys. Lett. 63, 2174–2176 (1993).
[CrossRef]

Shiang, J. J.

J. J. Shiang, A. R. Duggal, “Application of radiative transport theory to light extraction from organic light emitting diodes,” J. Appl. Phys. 95, 2880–2888 (2004).
[CrossRef]

Shiga, T.

T. Shiga, H. Fujikawa, Y. Taga, “Design of multiwave-length resonant cavities for white organic light-emitting diodes,” J. Appl. Phys. 93, 19–22 (2003).
[CrossRef]

Smith, R. E.

R. E. Smith, S. N. Houde-Walter, G. W. Forbes, “Mode determination for planar waveguide using the four-sheeted dispersion relation,” IEEE J. Quantum Electron. 28, 1520–1526 (1992).
[CrossRef]

Stevens, R.

S. O. Barros, C. Mias, C. B. Thomas, R. Stevens, “A comparison of the outcoupling characteristics of laterally emitting thin-film electroluminescent devices,” Semicond. Sci. Technol. 15, 875–881 (2000).
[CrossRef]

Taga, Y.

T. Shiga, H. Fujikawa, Y. Taga, “Design of multiwave-length resonant cavities for white organic light-emitting diodes,” J. Appl. Phys. 93, 19–22 (2003).
[CrossRef]

Thomas, C. B.

S. O. Barros, C. Mias, C. B. Thomas, R. Stevens, “A comparison of the outcoupling characteristics of laterally emitting thin-film electroluminescent devices,” Semicond. Sci. Technol. 15, 875–881 (2000).
[CrossRef]

Thompson, M. E.

Venkatesh, S.

Wasey, J. A. E.

A. N. Safonov, M. Jory, B. J. Matterson, J. M. Luption, M. G. Salt, J. A. E. Wasey, W. L. Barnes, I. D. W. Samuel, “Modification of polymer light emission by lateral microstruc-ture,” Synth. Met. 116, 145–148 (2001).
[CrossRef]

Weisbuch, C.

H. Benistry, H. D. Neveand, C. Weisbuch, “Impact of planar microcavity effects on light extraction-Part II: selected exact simulations and role of photon recycling,” IEEE J. Quantum Electron. 34, 1632–1643 (1998).
[CrossRef]

Wood, D.

D. Wood, Optoelectronic Semiconductor Devices, Prentice Hall, London, 1997.

Yablonovitch, E.

I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, A. Scherer, “30% external quantum efficiency from surface textured, thin-film light-emitting diodes,” Appl. Phys. Lett. 63, 2174–2176 (1993).
[CrossRef]

Appl. Phys. Lett. (4)

Y. J. Lee, S. H. Kim, J. Huh, G. H. Kim, Y. H. Lee, S. H. Cho, Y. C. Kim, Y. R. Do, “A high-extraction-efficiency nanopatterned organic light-emitting diode,” Appl. Phys. Lett. 82, 3779–3781 (2003).
[CrossRef]

I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, A. Scherer, “30% external quantum efficiency from surface textured, thin-film light-emitting diodes,” Appl. Phys. Lett. 63, 2174–2176 (1993).
[CrossRef]

D. K. Gifford, D. G. Hall, “Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling,” Appl. Phys. Lett. 81, 4315–4317 (2002).
[CrossRef]

A. Dodabalapur, L. J. Rothberg, T. M. Miller, E. W. Kwock, “Microcavity effects in organic semiconductors,” Appl. Phys. Lett. 64, 2486–2488 (1994).
[CrossRef]

IEEE J. Quantum Electron. (2)

R. E. Smith, S. N. Houde-Walter, G. W. Forbes, “Mode determination for planar waveguide using the four-sheeted dispersion relation,” IEEE J. Quantum Electron. 28, 1520–1526 (1992).
[CrossRef]

H. Benistry, H. D. Neveand, C. Weisbuch, “Impact of planar microcavity effects on light extraction-Part II: selected exact simulations and role of photon recycling,” IEEE J. Quantum Electron. 34, 1632–1643 (1998).
[CrossRef]

J. Appl. Phys. (2)

J. J. Shiang, A. R. Duggal, “Application of radiative transport theory to light extraction from organic light emitting diodes,” J. Appl. Phys. 95, 2880–2888 (2004).
[CrossRef]

T. Shiga, H. Fujikawa, Y. Taga, “Design of multiwave-length resonant cavities for white organic light-emitting diodes,” J. Appl. Phys. 93, 19–22 (2003).
[CrossRef]

Math. Comput. (1)

L. M. Delves, J. N. Lyness, “A numerical method for locating the zeros of an analytic function,” Math. Comput. 21, 543–560 (1967).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (1)

V. Bulovic, V. B. Khalifin, G. Gu, P. E. Burrows, D. Z. Gar-buzov, S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58, 3730–3740 (1998).
[CrossRef]

Phys. Rev. Lett. (1)

R. W. Gruhlke, W. R. Holland, D. G. Hall, “Surface plasmon cross coupling in molecular fluorescence near a corrugated thin metal film,” Phys. Rev. Lett. 56, 2838–2841 (1986).
[CrossRef] [PubMed]

Semicond. Sci. Technol. (1)

S. O. Barros, C. Mias, C. B. Thomas, R. Stevens, “A comparison of the outcoupling characteristics of laterally emitting thin-film electroluminescent devices,” Semicond. Sci. Technol. 15, 875–881 (2000).
[CrossRef]

Synth. Met. (1)

A. N. Safonov, M. Jory, B. J. Matterson, J. M. Luption, M. G. Salt, J. A. E. Wasey, W. L. Barnes, I. D. W. Samuel, “Modification of polymer light emission by lateral microstruc-ture,” Synth. Met. 116, 145–148 (2001).
[CrossRef]

Other (10)

D. Wood, Optoelectronic Semiconductor Devices, Prentice Hall, London, 1997.

At first glance, it might appear as if the Fabry–Perot modes should be classified as nonphysical since these modes assume that AN≠ 0. However, the Fabry–Perot cavity represents a driven oscillator, and as such, it is fundamentally different from a waveguide. In the context of the current analysis, Fabry–Perot modes can be regarded as resonance responses of an oscillator; that is, the natural oscillations established in the absence of a driving term.

See, for example, M. V. Klein, Optics (Wiley, New York, 1970), p. 205.

The solution given in Eq. (23) is an approximation to the roots of the waveguide dispersion equation because account has not been taken of ρc,ρa,ϕc,and ϕa being functions of z.

Note that both the TE and the TM semibound modes exhibit exponentially growing field profiles with distance into the glass substrate. This feature is not evident on the scale shown in Fig. 8.

See, for example, R. W. Gruhlke, Optical Emission from Surface Waves Supported in Thin Metal Films, Ph.D. dissertation (University of Rochester, Rochester, NY, 1987).

The emitting layer is in the Alq3 and is located near the ETL–HTL interface. The thickness of the ETL layer represents the combined thickness of the ETL and the emission layers.

See, for example, F. B. Hildebrand, Advanced Calculus for Applications (Prentice Hall, New Jersey, 1964), p. 362.

See, for example, D. K. Gifford, Emission from Organic Light-Emitting Diodes via Surface-Plasmon Cross-Coupling, Ph.D. dissertation (University of Rochester, Rochester, NY, 2001), Chap. 3.

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Planar OLED waveguide structure. The x direction is taken to be the direction of confinement, and the z direction is the direction of propagation. The left-hand side of the figure shows the structure of the modeled device, and the right-hand side of the figure shows the periodic grating structure of the fabricated device.

Fig. 2
Fig. 2

Riemann sheets and characteristics of waveguide modes for OLED structure. Note that the left side of each inserted plot corresponds to the air cover and that the right side corresponds to the glass substrate.

Fig. 3
Fig. 3

Plots of the indices of refraction as functions of wavelength for Alq3 (solid curve), NPB (dash-dotted curve), MgAg (dotted curve), and Ag (dashed curve): (a) real part of index of refraction and (b) log (imaginary part) of index of refraction. These values were used in the computations along with n5 = 1.70 for the photoresist layer (PR) and n6 = 1.46 for the substrate (glass).

Fig. 4
Fig. 4

Angular spectra for the bound modes in the OLED devices described in the text: (a) OLED1, (b) OLED2, (c) OLED3, (d) OLED4. Open circles indicate theoretically predicted TM modes, and plus signs indicate theoretically predicted TE modes. No bound modes were observed experimentally in these devices. Note that modes with theoretical values of Im(βq) > 1 have been omitted from these plots.

Fig. 5
Fig. 5

Angular spectra for the semibound modes in the OLED devices described in the text: (a) OLED1, (b) OLED2, (c) OLED3, (d) OLED4. Open circles indicate theoretically predicted TM modes, plus signs indicate theoretically predicted TE modes, and filled squares indicate experimentally observed data. Note that modes with theoretical values of Im(βq) > 1 have been omitted from these plots.

Fig. 6
Fig. 6

Angular spectra for the leaky modes in the OLED devices described in the text: (a) OLED1, (b) OLED2, (c) OLED3, (d) OLED4. Open circles indicate theoretically predicted TM modes, plus signs indicate theoretically predicted TE modes, and filled squares indicate experimentally observed data. No leaky modes were observed experimentally for OLED2. Note that modes with theoretical values of Im(βq) > 1 have been omitted from these plots.

Fig. 7
Fig. 7

OLED structure analyzed as a waveguide structure (left) and as a Fabry–Perot structure (right).

Fig. 8
Fig. 8

Angular spectra for the Fabry–Perot modes in the OLED devices described in the text: (a) OLED1, (b) OLED2, (c) OLED3, (d) OLED4. Open circles indicate theoretically predicted TM modes, plus signs indicate theoretically predicted TE modes, and filled squares indicate experimentally observed data. Theoretical predictions were estimated from corresponding values of Re(zq) for the leaky modes shown in Fig. 6. Note that no Fabry–Perot modes were observed experimentally for OLED2 and that only a few were predicted from theory.

Fig. 9
Fig. 9

Plots of Re[Hy(x)] for TM semibound mode (dash-dotted curve) and Re[Ey(x)] for TE semibound mode (solid curve) in OLED4 at 0.54 µm. (Note that the expected exponential growth of the field profile envelopes with distance into the substrate cannot be seen on the scale shown in this figure.)

Fig. 10
Fig. 10

Plots of Re[Hy(x)] for other surface-plasmon modes in OLED4 at 0.59 µm: dashed curve is a semibound mode; dotted and solid curves are bound modes. (Note that the long-range surface-plasmon at 0.59 µm is not shown in this figure.)

Tables (2)

Tables Icon

Table 1 Definition of Four Riemann Sheets

Tables Icon

Table 2 Layer Thicknesses, Lloyd’s Mirror Angles, and Grating Pitches for the Four OLED Devicesa

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

F j = ŷ Re { F j ( x ) exp [ i ( β z ω t ) ] } ,
F j ( x ) = A j exp [ α j ( x d j ) ] + B j exp [ α j ( x d j ) ] ,
α j = ( β 2 k j 2 ) 1 / 2 , k j = ω c n j = 2 π λ n j ,
[ A 0 B 0 ] = T [ A N B N ] = j = 1 N m j [ A N B N ] ,
m j = 1 2 ρ j × [ ( ρ j + α j / α j 1 ) exp ( δ j ) ( ρ j α j / α j 1 ) exp ( δ j ) ( ρ j α j / α j 1 ) exp ( δ j ) ( ρ j + α j / α j 1 ) exp ( δ j ) ] .
ρ j { 1 TE modes n j 2 / n j 1 2 TM modes
δ j ( d j d j 1 ) α j = w j α j .
F 0 ( x ) = A 0 exp [ α 0 ( x d 0 ) ] ,
F N ( x ) = B N exp [ α N ( x d N ) ] .
α 0 = ( z k 0 2 ) 1 / 2 = R 0 1 / 2 exp ( i θ 0 2 ) ( π 2 θ 0 < 3 π 2 ) ,
α 6 = ( z k 6 2 ) 1 / 2 = R 6 1 / 2 exp ( i θ 6 2 ) ( π 2 θ 6 < 3 π 2 ) .
neff q = β q k 0 ,
2 π λ sin θ q = ± Re ( β q ) 2 π Λ .
θ q = ± arcsin [ Re ( neff q ) λ Λ ] .
θ q = ± arcsin [ Re ( neff q ) ] .
A 0 = T 11 A N + T 12 B N ,
B 0 = T 21 A N + T 22 B N .
T 22 ( z q ) = 0 ,
A 0 A N T FP ( θ air ) = T 11 ( β 2 ) T 22 ( β 2 ) T 12 ( β 2 ) T 21 ( β 2 ) T 22 ( β 2 ) ,
T 22 ( β 2 ) 1 ρ c ρ a exp [ i ( 2 k OLED w OLED + 2 ϕ c + 2 ϕ c ) ] ,
k OLED k 0 n OLED cos θ OLED = ( k 0 2 n OLED 2 β 2 ) 1 / 2 .
R c = ρ c exp ( i 2 ϕ c ) ,
R a = ρ a exp ( i 2 ϕ a ) ,
β m 2 = k 0 2 n OLED 2 a m 2 ,
a m ϕ s ϕ c m π w OLED .
z m k 0 2 n OLED 2 a m 2 + b 2 + i 2 a m b = β m 2 + b 2 + i 2 a m b ,
b ln ( ρ c ρ a ) 2 w OLED .
Δ ( sin 2 θ air ) Re ( z m ) β m 2 k 0 2 b 2 k 0 2 = [ ln ( ρ c ρ a ) 2 π ] 2 ( λ 2 w OLED ) 2 ,
Δ θ air 180 π [ ln ( ρ c ρ a ) 2 π ] ( λ 2 w OLED ) .

Metrics